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We have performed a multifractal (G-moment) analysis of 14.6-200 GeV /nucleon nucleus-nucleus
and 200-800 GeV proton-nucleus interactions from KLM and Fermilab E-90 and E-508 emulsion
data, including explicit corrections for the finite statistical sample. The corrected slopes of the G-
moments for protons, 60, 28Si, and *2S nuclei show only slight evidence for departures from random
behavior, while the normalized entropies appear to show a more consistent departure from random-
ness, particularly for protons. Given the size of the uncertainties, the results of the fractal analysis
are not inconsistent either with results of intermittency analyses for nucleus-nucleus collisions or
with the nonrandom behavior previously reported for leptonic and hadronic collisions. However,
because of the effects of statistical noise, the fractal analysis is not as sensitive as the intermittency

analysis for detecting nonrandom fluctuations.

PACS number(s): 25.75.4+r, 12.38.Mh, 13.85.Hd, 25.40.Ve

I. INTRODUCTION

High energy nucleus-nucleus collisions may provide the
conditions necessary for producing a quark-gluon plasma.
The possible existence of a deconfined phase of quarks
and gluons at a central energy density in excess of 2-3
GeV/fm3, with a subsequent phase transition to hadrons,
has been suggested by a number of results [1]. For exam-
ple, experiments have suggested the presence of anoma-
lous high p; events, the enhancement of strange parti-
cle production, and suppression of J/% in ultrarelativis-
tic heavy ion interactions [2]. In no case, however, has
the evidence been conclusive. One possible approach de-
pends on observing the fluctuations in the particle den-
sity distributions: a phase transition may give rise to
fluctuations in individual events which manifest them-
selves as peaks or spikes in narrow phase space domains
3].
[ ]In the field of hydrodynamic turbulence, the related
phenomenon of intermittency is studied via the scaling
properties of the moments of the relevant distributions as
a function of the bin size in phase space [4]. Typically, a
set of generalized exponents or dimensions may be intro-
duced in order to quantify the extent of the dynamical
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fluctuations in a chaotic system. Bialas and Peschan-
ski [5] adapted the method of generalized scaling expo-
nents to study intermittency in multihadron production.
They suggested that the behavior of the factorial mo-
ments of the multiplicity distributions as a function of
successively smaller and smaller phase space bins, down
to the experimental resolution, might reveal fundamen-
tal properties of the interaction process. In particular,
they suggested the importance of a power-law (or inter-
mittent) dependence of the scaled factorial moments on
the bin size §7, and a connection between the power-law
exponents and the scaling properties of the collision pro-
cess. Evidence for intermittency has now been reported
for ete~ [6], up [7], hadron-hadron [8], and nucleus-
nucleus [9,10] collisions where, for sufficiently small &7,
the moments approach a power law é7~¢ . At least for
hadrons and nuclei, this intermittency behavior is not re-
produced by standard models of particle production [11].
We have previously demonstrated [9] the presence of an
intermittent power-law growth of the moments with de-
creasing bin size for 200 and 800 GeV protons, 60 and 200
GeV /nucleon %0, and 200 GeV /nucleon 32S interactions
with the Ag-Br in emulsion, and found that the intermit-
tency patterns were weaker for central nucleus-nucleus
collisions than for proton-nucleus events. Furthermore,
t:lile effect was weakest for the heaviest projectile nucleus
(329).

It is not at all clear whether the reported intermittency
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effects reflect anything more than conventional short-
range hadronic correlations. However, if one looks for a
link between a phase transition and intermittency, then
one is naturally led to a thermodynamic formulation of
fractal dynamics (of which intermittency is a special case)
[12]. A fractal or self-similar object has the property that
it satisfies a power-law scaling which reflects the under-
lying dynamics [13]. The most complete description of
the scaling properties of a fractal is given in terms of the
power-law exponent or dimension—or, for a multifractal,
in terms of an infinite set of generalized dimensions. In
this work, we use the method of multifractal moments (or
G moments) to study the scaling properties of the KLM
nucleus-nucleus and Fermilab E-90 and E-508 hadron-
nucleus interaction data. We describe the multifractal
moment analysis in Sec. II and present our results in
Secs. III and IV. We discuss the interpretation of the re-
sults in Sec. V, and in particular discuss the connection
between the fractal analysis and intermittency.

II. MULTIFRACTAL MOMENTS AND MASS
EXPONENTS

Assume a pseudorapidity range An is divided into M,
bins of width én = An/My, where n = —Intan6/2. Let
k; be the number of particles in the jth bin. Since there
may be bins that have no particles, we define M to be
the number of nonempty bins. A multifractal multiplicity
moment of order g is defined by [7,14]

M
=3 p16(k; —q) (21)

j=1

where p; = k;/N with N = > k; and ) p; = 1, and
q is an integer. The step function 6(k; — q) here is 1
for k; > g and 0 for k; < q. (The standard definition
of G, does not include the 0 function. Here we use the
modified formulation of Derado et al. [7] and Hwa and
Pan [14], who introduce the 6 function to minimize the
effects of finite multiplicity.) We note that for ¢ positive,
G, is sensitive to peaks in the pseudorapidity distribu-
tion; and ¢ negative provides sensitivity to dips in the 5
distribution.

A self-similar particle production process may be char-
acterized by a power law

Gq x on™ (2.2)

such that the “mass exponent” 74 is invariant under a
scale change 7 — adn. In physical systems, the scaling
relation (2.2) holds only down to a characteristic cutoff in
pseudorapidity (determined, for example, by an external
parameter such as Reynolds number in turbulence or in
our case by the experimental resolution 7exps ~ 0.1).

If a set is self-similar, it can be usefully characterized
by an infinite spectrum of generalized dimensions,

(2.3)

given by [15]
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Dy is the fractal dimension, which in most cases coincides
with the topological dimension of the set. D; is the infor-
mation dimension, which describes how the information
entropy

—> pilnp; 0(k; — 1)

varies with decreasing widths of the pseudorapidity bins.
D, is the correlation dimension, determined by the cor-
relation function of the set.

The generalized dimensions D, are a direct mani-
festation of any underlying fractal nature of the emis-
sion mechanism. They are related to the mass expo-
nents by Eq. (2.3) and (in the case of high multiplicity
N/M >> q) to the intermittency exponents by [14,16]

$q = (¢ = 1)(1 = Dy).

It should be noted that the high multiplicity condition
N/M >> q is generally not satisfied over the full range
of values of M and q even for nucleus-nucleus data sam-
ples, and so the intermittency slopes can be expected to
give only an indirect measure of the nature of the colli-
sions. One might hope that the fractal analysis might be
a more direct and more sensitive probe of the underlying
nature of the interaction process. Bialas and Hwa [12]
have pointed out that the fractal dimensions are sensi-
tive to the presence of a phase transition: If a quark-
gluon plasma is produced in central high-energy heavy
ion collisions, with a subsequent first- or second-order
phase transition to hadrons, then the fractal dimensions
D, will approach a limiting value with increasing order.
In particular, if the phase transition is first order with a
large latent heat and a short correlation length, then the
D, =0.

The discussion so far has been appropriate for single
events of fixed multiplicity N. In practice, however, it is
generally necessary to average over an ensemble of events
from the experimental database. A (horizontal) average
is defined as

(2.5)

(2.6)

Ney M
(Ga)n = ZZ P§ O(k; — q) (27)
where N, is the number of events in the sample. (We

note that the horizontal average (G4)n gives different re-
sults from the vertical average over bins [13].)

Finally, we must account for the effects of limited
statistics. In the case of a Gaussian parent distribution,
we can compute the effect (G5'**) of statistical noise due
to the finite multiplicity of the events in the experimental
sample: for every event with N particles in An we dis-
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tribute NV particles through the An window according to
a random Gaussian with standard deviation o and then
average the calculated values of G, over all the events
in the sample. In the absence of correlations, Eq. (2.1)
averaged over a Gaussian distribution will yield

(Gs*2) = GM* 9 (2.8)
G= -% (%) (erfx) erf(\/qx) (2.9)

where x = An/(2v/20), although for low multiplicity
data where N/M < 1 (i.e., ete™, up, pud, and hadron-
hadron data) the requirement of fixed total multiplicity
N may lead to bin-to-bin correlations and consequert de-
partures of (G5***) from the expected value. We therefore
correct for the finite multiplicity effect by scaling (G4) by
éMl—q/<GZtat>:

(Gq)

—
(G;tat)GM 7,

(GIvmy = (2.10)

Real dynamical effects then manifest themselves as de-
partures of the resulting dynamical mass exponent

T;iy" =Tq— T;tat +qg-—1 (2.11)

from ¢ — 1. [Chiu et al. [17] have considered the case of
a flat parent distribution, where G = 1. Equation (2.11)
remains the same.]

III. ANALYSIS OF THE FRACTAL MOMENTS

The present analysis focuses on central collisions, i.e.,
interactions in which essentially all projectile nucleons
participate. We have used high energy proton-nucleus
emulsion data at 200 GeV [18] and 800 GeV [19] from
Fermilab and KLM nucleus-nucleus data [9,20,21] for the
analysis. (See Table I for a list of the various beams
used.) Interactions were analyzed by studying the tracks
produced by relativistic secondary pions and protons (n,)
and the tracks of slow heavily ionizing particles (NN,) pro-
duced in target fragmentation. Emission angles of all
the tracks were measured with respect to the primary

TABLE I. Nucleus-nucleus and hadron-nucleus data sets.

Projectile Energy Sample Nev () (ns)
(GeV /nucleon)
325 200 Central 461 3.1 134.0
329 200 Min. bias 845 3.1 423
2854 14.6 Central 154 1.8 58.5
60 200 Central 158 2.9 75.4
180 200 Min. bias 812 3.1 30.6
160 60 Central 244 2.2 56.6
60 14.6 Central 246 1.7 304
P 800 Central 284 2.7 13.6
P 800 Min. bias 1665 3.3 8.2
P 200 Central 448 2.1 11.5
P 200 Min. bias 2431 2.6 6.9
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track with an accuracy in pseudorapidity of 0.1 units.
To ensure a sample of central (small impact parameter)
collisions in which a target Ag or Br nucleus is com-
pletely broken up, we select events with no charge Z > 2
fragments and with N, > 15. These central event se-
lection criteria have been applied to interactions of 14.6
GeV/nucleon %0 and 28Si, 60 GeV/nucleon °0, 200
GeV/nucleon %0 and 3%S, 200 GeV protons, and 800
GeV protons. In addition to these samples of central
events, we have also included minimum bias samples of
200 GeV /nucleon 60 and 328, 200 GeV protons, and 800
GeV protons. The number of events N.,, mean pseudora-
pidity (n), and average multiplicity (n,) within a window
of width An = 2 centered on (n) are given in Table I. We
note that N, given in Table I is the actual number of
events satisfying the N}, cut and with at least one track
in the central An = 2 window. The experimental de-
tails regarding scanning, measurement, and the method
of analyzing proton-nucleus collisions in emulsion can be
found elsewhere [9,19-21].

We have used Eq. (2.1) to calculate G, in different én
bins for the data as well as for the corresponding random-
ized events. Horizontal averaging was then performed
using Eq. (2.7). In Fig. 1 the dependence of In{G,)s on
the widths of the pseudorapidity windows d7 is shown for
samples of the KLM nucleus-nucleus and proton-nucleus
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FIG. 1. Multifractal moments In(G4)n vs — In 7 for central
nucleus-nucleus and proton-nucleus interactions with N > 15
and An = 2. Representative error bars are shown.
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central collision data for integer orders —6 < q < 6. We
plot the data here for the case Anp = 2, where we consider
particles within £1 pseudorapidity unit of the central
peak in the 7 distribution. The experimental resolution
0Nexpt ~ 0.1 (corresponding to —Inén = 2.3) defines the
cutoff in —In 7. The moments with positive values of ¢
typically show approximate linearity over the full range
of —In én, but those with negative ¢ values tend to satu-
rate at larger values of —1Ind7. The saturation of (Gg)n
at negative values of ¢ is a typical feature of the collisions
with small multiplicities per bin. For example, in the 28Si
data set at 14.6 GeV /nucleon, and the 200 and 800 GeV
proton data, the saturation effects are more pronounced
than in the 32S data at 200 GeV /nucleon. We note that
at —Indn = 1.1 (or My = 6), near the onset of the sat-
uration, the average multiplicity per bin (N)/M, is 22.3
for central 200 GeV /nucleon 32S. On the other hand, for
central 14.6 GeV/nucleon 28Si, the corresponding value
of (N)/My is 9.8; and for the central 200 and 800 GeV
proton samples, (N)/My =1.9 and 2.3. Near the edges
of the An window especially, there are a significant num-
ber of empty bins for the low multiplicity data sets. The
results are similar for the other data sets.

In Fig. 2 we show an expanded plot of In{(Gg), ver-
sus —Indn for 200 GeV/nucleon central 32S, 800 GeV
central protons, 200 GeV /nucleon central 80, and 14.6
GeV /nucleon central 60. The open circles denote the
measured data and the crosses show the results of a sim-
ulation of random events (assuming a Gaussian back-
ground distribution with the same N and o as the average
measured distribution, and averaging the simulated re-
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sults over 50N, events in order to reduce event-to-event
fluctuations). The solid lines are weighted straight-line
fits to the data; the dashed lines show the results of fit-
ting the simulated points. The 200 GeV /nucleon central
323 and %0 show relatively little scatter and very similar
results for the data and the random samples. The fractal
moments are clearly determined almost completely by
random statistics. For the lower multiplicity data sets
(800 GeV protons and 14.6 GeV/nucleon !®0), we see
more scatter in the data but still a reasonable agreement
between data and simulations. We obtain similar results
if we distribute the background according to a binomial
parent distribution instead of a Gaussian.

The generalized dimensions calculated from the differ-
ence of the slopes of the fitted lines according to Egs.
(2.3) and (2.11) are shown in Fig. 3 as a function of
the order ¢ for positive gq. (For negative g, the results
would just reflect the saturation due to the finite mul-
tiplicity.) We have corrected for the finite multiplicity
and scaled the mass exponents by ¢ — 1; i.e., we have
plotted Dgy“ = T.?yn/(q — 1). (We consider only q > 2
here, and treat the special case ¢ = 1 in the next sec-
tion.) The error bars reflect the statistical dispersion
[((r2) — (7¢)?)/Ney]*/? only. The results are tabulated
(both for central and minimum bias events) in Table II.

If there is a phase transition, we expect D, to approach
a constant [i.e., 'rgy“ — (g — 1)Dg]. In the particular
case where there is no self-similarity, we expect D, = 1.
For low multiplicity ete™, up, pud, hadron-hadron, and
hadron-nucleus data, departures of D, from 1 have been
reported [7,22]. Departures of D, from 1 have also been
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reported for nucleus-nucleus collisions [23]. However, in
none of the previous nucleus-nucleus analyses has the sep-
aration of the dynamical effects from the statistical back-
ground been performed; i.e., previous analyses have been
for 74, not ij“. As is shown in Fig. 2, 74 is dominated by
the statistical background effects so that the separation
of 7997 is essential to a meaningful analysis. Holynski et
al. [9] have reported intermittency slopes ¢¢/(qg — 1) of
0.005 — 0.07 for central proton-, 160-, and 32S-emulsion
interactions. According to Eq. (2.6), then, although the
high multiplicity condition N/M >> q is not well sat-
isfied by the present data set, we might expect at least
roughly comparable values of 1 — Dg.

The exact numerical values in Fig. 3 depend somewhat
on the detailed weighting and the particular fitting pre-
scription used, on whether we assume a Gaussian or a bi-
nomial background distribution, and on the precise value
of the minimum Nj. But in all cases we see qualitatively
similar behavior: There are some suggestions of a sup-
pression of D, below unity by a few percent for some of
the data, but for the 200 GeV protons (at least for ¢ = 6)
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we see Dy > 1. The D, values for 200 GeV /nucleon 328
are consistently less than 1 (0.98-0.99), as are 15 and 60
GeV /nucleon %0. The largest deviations for Dg, in the
15 and 60 GeV/nucleon ®O data, give values of 0.96,
corresponding to 2.80 and 4.20, respectively. However,
the 28Si and 200 GeV /nucleon 60 results fall at ~ 0.995,
totally consistent, within the uncertainties, with random
behavior (i.e., Dy = 1). For 800 GeV protons, D, is
3.10 below unity, but Dg is consistent with unity. The
200 GeV proton points are all consistent with or above
D, = 1. Thus, there are no clear trends in the data,
either with increasing energy or multiplicity, and definite
claims about departures of D, from randomness are not
possible. We see similar results for the minimum bias
sample in Table II.

IV. NORMALIZED ENTROPIES

Since the intermittency slopes appear to increase with
increasing ¢, one is initially tempted to look for a de-

TABLE II. Compilation of g, 74, 75¢*%, and Dgy“ for central and minimum bias interactions.

q

Projective Central Min. bias
(GeV /nucleon) q Tq Totat D™ q Tq Totat Dy
2 0.759 0.777 0.982+0.009 2 0.690 0.700 0.989+0.006
3 1.368 1.427 0.971+0.014 3 1.209 1.258 0.976+0.008
p 800 4 1.861 1.992 0.956+0.014 4 1.722 1.755 0.989--0.010
5 2.328 2.443 0.971+0.014 5 2.171 2.216 0.989+0.011
6 2.874 2.912 0.992+0.016 6 2.425 2.678 0.949+0.012
2 0.751 0.757 0.994+0.008 2 0.661 0.674 0.987+0.005
3 1.356 1.356 1.000+0.009 3 1.161 1.180 0.991+0.007
p 200 4 1.849 1.870 0.993+0.011 4 1.597 1.631 0.989+0.009
5 2.284 2.293 0.998-0.013 5 2.080 2.055 1.006+0.010
6 2.846 2.698 1.030+0.012 6 2.487 2.439 1.010+0.012
2 0.951 0.953 0.998+0.001 2 0.805 0.813 0.992+0.006
3 1.859 1.867 0.996+0.001 3 1.560 1.588 0.986+0.008
325 200 4 2.733 2.748 0.995-+0.001 4 2.279 2.379 0.967+0.012
5 3.576 3.602 0.994+0.002 5 3.101 3.126 0.994+0.010
6 4.396 4.444 0.990+0.002 6 3.757 3.874 0.977+0.011
2 0.903 0.915 0.988+0.003 2 0.806 0.802 1.005+0.006
3 1.767 1.780 0.993+0.003 3 1.534 1.542 0.996--0.009
160 200 4 2.580 2.603 0.992-:0.004 4 2.260 2.286 0.991+0.011
5 3.358 3.385 0.993+0.005 5 3.079 3.010 1.017+0.009
6 4.096 4.140 0.991+0.006 6 3.821 3.740 1.016+0.010
2 0.878 0.893 0.985+0.003
3 1.683 1.727 0.978+0.004
0 60 4 2.444 2.493 0.984+40.006
5 3.133 3.248 0.97140.007
6 3.780 3.971 0.962-:0.009
2 0.835 0.843 0.992+0.005
3 1.568 1.603 0.98340.007
60 15 4 2.248 2.308 0.980+0.008
5 2.864 2.941 0.98140.011
6 3.358 3.540 0.964+0.013
2 0.890 0.895 0.995+0.003
3 1.709 1.722 0.993+0.005
28gi 15 4 2.481 2.505 0.99240.007
5 3.203 3.241 0.99140.009
6 3.945 3.955 0.998-+0.010
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FIG. 3. Dgy“ as a function of ¢ for central events. In or-
der to show the error bars more clearly, the plotted points
have been displaced slightly to the left or right of their actual
positions.

parture of D, from 1 at large q. However, the error
bars in Fig. 3 also grow with q. If ¢4/(q — 1) is related
to 1 — Dy, then one might also search for a departure
of the generalized dimension D, from unity where the
statistics are best, i.e., for ¢ = 1. We therefore look in
more detail at the particular case ¢ = 1, where D; is
the derivative of the entropy S [Eq. (2.5)] with respect
to Ind7. In this case, Simdk et al. [24] have analyzed pd,
ap, and aa collisions at Fermilab and the CERN Inter-
secting Storage Rings (ISR), and demonstrated that the
entropy derived from the negative particle multiplicity
distributions obeys a simple scaling law. Furthermore,
they found that S/In(y/s/m,), where /s is the center-
of-mass energy, also obeys a scaling law when computed
in various rapidity intervals, and suggested that the nor-
malized entropy S/Smax should also be independent of
energy.

We plot the horizontally averaged entropy (S)n vs
—1Inén for the KLM data in Fig. 4(a), and find that
as projectile mass and energy increase, the points ap-
proach a straight line with characteristic slope D;. It is
interesting to ask whether this tendency to approach a
straight line with increasing multiplicity and energy is a
real dynamical effect, or just a result of saturation (bend-
over) at large M due to finite multiplicity. We therefore
calculate (S%%3) in a manner similar to the calculation
of (G=*2*): for every event with N particles in An, we
distribute each particle randomly (assuming a Gaussian
background), and then calculate (S*%2*) using Eq. (2.5).
(§%t2*) of the randomized events is then interpreted as
the averaged maximum entropy (Smax) attainable for ev-
ery event. It should be pointed out that our procedure
for calculating (Smax) differs from that of Simdk et al.
For hadron-hadron interactions at /s > 20 GeV, they
defined Sax as the entropy in the maximum rapidity
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FIG. 4. (a) (S)» as a function of — ln d7 for central events.
(b) {(SYn/(Smax) vs —Indn for central events. For clarity, we
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Figs. 4(a) and 4(b).

interval ymax = In(y/s/m,) of the produced particles:

InN

(@)
(0 ——a
(InN)

where a, b, and ¢ are constants and N is the average
charged multiplicity. Evidently, Sax calculated from Eq.
(4.1) is a fixed number, while in this work (Sp..z) has a
roughly linear dependence on —Inédn. We should also
note that our definition of S [Eq. (2.5)] includes the 6
function from Eq. (2.1); this is another difference from
the treatment of Simsk et al.

We plot (S)n/(Smax) in Fig. 4(b) for central events
with N, > 15 and An = 2 (i.e., central events with
tracks with pseudorapidities near the peak of the n dis-
tribution). Two interesting observations can be made
from Figs. 4(a) and 4(b).

(1) Although the entropy (S)p increases with increas-
ing multiplicity, the normalized entropy (S)n/)Smax) is
essentially constant and equal to the maximum value of
unity.

(2) Although (S); for protons is significantly less than
for the nuclei, the normalized entropy for protons is some-
what closer to the value for nuclei. (S)z/(Smax) for the
protons only falls significantly below the nuclear value
(given the large size of the proton error bars) for the
smallest values of —1ndn.

In Fig. 5, however, we show the normalized entropy for
minimum bias samples and see a clear difference between
proton-nucleus and nucleus-nucleus collisions. We note in
addition that the values of (S);/(Smax) for nuclei are now

— b
Smmaz =N +1— S
(InN) (InN)

(a.1)
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FIG. 5. Same plots as in Fig. 4 but for minimum bias
events.

less than 1, suggesting that the minimum bias sample
(in particular the proton sample) is less chaotic than the
sample of central events.

V. CONCLUSIONS

We have determined the slopes of the horizontally aver-
aged multifractal moments, explicitly correcting for finite
statistics, to obtain Tgy“ for projectiles from protons to
323 at energies from 14.6 to as high as 800 GeV /nucleon.
Only for central collisions of 32S at 200 GeV /nucleon do
we observe a possible departure from 73" = ¢ — 1 (or,
equivalently, Dy = 1). For all of the other systems in-
vestigated, D, is consistent with unity, within the uncer-
tainties, or exhibits a large scatter in values as a function
of g. A constant value of D, implies either a second-order
phase transition [12] or (in the particular case Dy = 1)
random, nonscaling behavior in the particle production
process. We find no systematic trends in D, with pro-
jectile energy or projectile mass.

It should be emphasized that for central nucleus-
nucleus collisions, the fluctuations are small and are dom-
inated by statistical background. It is therefore a crucial
and rather difficult task, often dependent on the detailed
analysis method, to disentangle dynamical and statistical
fluctuations.

The case of 325 is the most interesting from the point
of view of having the smallest statistical uncertainty in
the derived values of 'r,fy". The central collisions of 328
with Ag/Br targets exhibit a decreasing value of Dy with
increasing ¢q: the ¢ = 6 point is 5 standard deviations
below unity. For other central collision data sets, the
deviations are typically at the 1-2 o level. In the proton-
nucleus interactions, both minimum bias and central, as
well as the minimum bias nucleus-nucleus collisions, no
trends in the data are evident. The 32S represents the
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heaviest system that has been investigated and shows
the smallest intermittency slopes [9]. Yet, it is only this
system that shows any possible evidence of nonrandom
behavior. It should be noted, however, that the error
bars are purely statistical, and that the systematic effects
of correlations among the data points (since the data
points all represent the same experimental data with just
different binning) have been neglected. Especially given
the lack of evidence for Dy < 1 in the rest of the data,
it is not at all clear that the low values of D, for 32S are
significant.

Departures of D; from 1 have been reported by
ete™, up, pd, and hadron-hadron experiments. Previ-
ous reports of nonrandom behavior in nucleus-nucleus or
hadron-nucleus experiments have failed to account for
the statistical fluctuations in the data. The fact that we
do not see such effects in our corrected proton-nucleus
and minimum bias nucleus-nucleus results might indi-
cate the onset of a transition between the lepton-hadron
regime and the higher multiplicity nucleus-nucleus and
proton-nucleus regime studied here. Such behavior is
consistent with that suggested by Bialas and Hwa [12],
who remark that if a quark-gluon plasma is produced in
central nucleus-nucleus collisions, then one might expect
that D, depends on g for low values of transverse en-
ergy and multiplicity, and D, becomes independent of ¢
for large transverse energy and multiplicity. (They point
out, however, that cascading can also produce D, = con-
stant, so that, again, this condition is not a guarantee of
a phase transition.) Here, again, the 32S results stand as
a possible contradiction.

We have also looked in more detail at the particu-
lar case ¢ = 1, and studied the normalized entropy
(8Yn/{Smax) as a function of pseudorapidity. For min-
imum bias events especially, we see normalized entropies
somewhat less than unity and a clear difference between
proton-nucleus and nucleus-nucleus collisions. These re-
sults are consistent with intermittency analyses and sug-
gest nonrandom behavior in proton-hadron and low mul-
tiplicity collisions, but not in higher multiplicity central
heavy ion collisions. In this case, the central 32S results
show normalized entropies near unity.

Although our central nucleus-nucleus events do not re-
veal the same departures of D, from unity reported for
lower multiplicity data, we note that there is no inconsis-
tency with intermittency analyses. Intermittency slopes
have been found to be smaller for more complex (cen-
tral nucleus-nucleus) interactions than for simpler (e*e™,
meson-proton) interactions [9]. The intermittency slopes
¢q/(q — 1) ~0.5-7% measured by Ho}ynski et al. [9] cor-
respond [from Eq.( 2.6)] to values of 1 — Dy smaller than
or comparable to the error bars in the present fractal
analysis (Fig. 3 and Table II).
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