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for hadron collisions
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Jet finding algorithms, as they are used in e+e and hadron collisions, are reviewed and compared.
Et is suggested that a successive combination style algorithm, similar to that used in e+e physics,
might be useful also in hadron collisions, where cone style algorithms have been used previously.
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I. INTRODUCTION

The measurement of jet cross sections has provided
useful tests of quantum chromodynamics both at hadron
colliders and at electron-positron colliders. The ob-
served jets provide a view of the underlying hard quark
and gluon interactions that occur at very small dis-
tance scales. However, this view is inevitably clouded
by the subsequent long distance showering and eventual
hadronization of the primary quarks and gluons. Fur-
thermore, since the quarks and gluons carry nonzero color
charges and the final hadrons do not, there can be no
unique association of a jet of hadrons with a single initial
quark or gluon. Nevertheless, with a suitable definition
of the jet cross section one hopes to minimize the effect of
long distance physics and of the inherent jet ambiguities
and obtain a fairly precise picture of the short distance
dynamics.

Although the basic hard scattering processes studied
in hadron-hadron and in electron-positron collisions are
much the same, the overall event structure is quite difI'er-
ent. In the e+e case the initial state is purely electro-
magnetic and the entire final state can be thought of as
arising from the short distance interaction of the virtual
photon with the quarks. In this sense all of the hadrons
in the final state are associated with the hard scattering
process. In contrast the overall structure of the hadron-
hadron case is much more complex. Of the large number
of initial state partons, only one "active parton" from
each incident hadron participates in the hard scattering
process. Thus only a fraction of the hadrons in the Final
state are to be (loosely) associated with the hard scatter-
ing process, with the remainder ascribed to the "underly-
ing event. " This second contribution corresponds to the
soft interactions of the remaining partons in the incident
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hadrons and, in first approximation, can be treated as
uncorrelated with the hard process. The active partons
also produce additional radiation in the form of initial
state bremsstrahlung that is not present in e+e events.
The underlying event plus the initial state radiation pro-
duce the characteristic "beam jets" of hadron collisions:
particles with small momenta transverse to the beam
axis, but possibly large momenta along the beam axis.
The long distance soft interactions responsible for the
observed color singlet hadrons will, of course, result in
some degree of dynamical coupling between all of these
components. There will also be an essentially kinematical
correlation induced by the fact that the jet selection or
trigger process will generally be biased to choose events
where the beam jets have higher than average global ET
and multiplicity (i.e. , the underlying event is noisier than
average) .

These differences between the event structure of e+e
collisions and hadron-hadron collisions have, quite nat-
urally, led to differences in the way jet definitions have
been employed in the two cases. One might categorize
the differences as follows.

First, the cross sections studied are different. In e+e
collisions, where the entire event arises from an initially
small number of energetic partons, one typically works
with exclusive jet cross sections describing the production
of exactly n jets and nothing else. In hadron-hadron
collisions the practice has been to measure inclusive large
pT jet cross sections, that is, cross sections to make n
jets with specified properties plus any number of other
unobserved jets or particles not in jets.

Second, the variables used are different. For e+e an-
nihilation, one wants to emphasize rotational invariance.
Thus the natural variables are energies E and polar an-
gles 0, P. For hadron-hadron collisions, one wants to
emphasize invariance under boosts along the beam axis
since, in fact, the c.m. frame of the hard scattering is typ-
ically moving in the hadron-hadron c.m. frame. Thus the
natural variables are transverse momenta pT or the cor-
responding "transverse energy" ET = E sino, azimuthal
angle P, and pseudorapidity rI = —in[tan(0/2)j.
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Third, the jet definitions or algorithms employed to
precisely define the (otherwise ambiguous) jets tend to
be correspondingly difFerent. As implied above in e+e
collisions one normally uses a jet definition that asso-
ciates every final-state hadron uniqnely with one of the
jets. In hadron-hadron collisions producing high pT jets,
only a small &action of the final state hadrons are associ-
ated with the high pT jets. The other particles present in
the event can be thought of as associated with the "beam
jets" introduced earlier. One wants to keep the high pT
jets distinct from the hadronic debris in the beam jets.
For this reason, one has typically used a cone definition
[1], which was, in fact, inspired by the original theoreti-
cal definition for jets in e+e collisions [2]. A jet in this
definition is a set of particles whose momentum vectors
lie within a certain angular cone. Such a definition sup-
presses the eKect of the beam jets, since only a small
&action of the low pT particles in the beam jets will fall
into the cone of a high pT jet. Furthermore, since this
contribution is essentially determined by geometry, it is
relatively easy to estimate. In the case of e+e colli-
sions, the jet algorithm typically used experimentally is
rather of the "successive combination" variety first intro-
duced by the JADE group at DESY [3]. In this kind of
definition, one recursively groups sets of particles with
"nearby" momenta, as defined by some measure, into
larger sets of particles. The initial sets consist of just
one particle each. The final sets are the jets.

In this paper, we discuss a jet definition for hadron
collisions that makes use of some of the ideas used in
jet definitions in e+e collisions. The definition is es-
sentially that proposed by Catani, Dokshitzer, Seymour,
and Webber [4], adapted for the measurement of inclu-
sive, rather than exclusive, jet cross sections. %e first
define the algorithm. Then we comment on some of its
features. Finally, we provide some evidence that this def-
inition may have advantages compared to the cone defini-
tion that is currently the standard for hadron collisions.

d;=ET;
and for each pair of protojets define

d;. = min(ET, , ET,, ) [(q qi) + (P' Pi) ]/0 (2)

(2) Find the smallest of all the d; and d;~. and label it
dmin-

(3) If d;„ is a d,~, merge protojets i and j into a new
protojet k with

ET,I. = ET,.+ Ev,~

and

gk = [ET,*v' + ET,,n, ]/ET, I,
pi, = [ET,*W' + ET, 4 ]/ET, ~

(4a)
(4b)

(4) If d;„ is a d, , the corresponding protojet i is "not
mergable. " Remove it &om the list of protojets and add
it to the list of jets.

(5) Go to step 1.
The procedure continues until there are no more pro-

tojets. As it proceeds, it produces a list of jets with
successively larger values of d; = ET,

III. COMMENTS

also determines when, for a particular protojet, joining
should cease. This protojet is then labeled a completed
"jet" and is not manipulated further.

The algorithm depends on a parameter B, which
should be chosen to be of order 1. This parameter is
analogous to the cone size parameter in the cone algo-
rithm.

The algorithm begins with a list of protojets as de-
scribed above and an empty list of completed jets. It
then proceeds recursively as follows

(1) For each protojet, define

II. THE ALCORITHM

We consider hadron collisions in the hadron-hadron
c.m. frame with the z axis taken in the beam direction.
We represent the final state of the collision as consisting
of a starting set of "protojets" i with momenta p, The
starting p,. may be the momenta of individual particles,
or each p,- may be the total momentum of the particles
whose paths are contained in a small cell of solid an-
gle about the interaction point, as recorded in individual
towers of a hadron calorimeter. In either case, we have
in mind that the masses [p,". p;~] ~ are small compared
to the transverse momenta p, T, so that the p,. are essen-
tially lightlike. Each protojet is characterized by its az-
imuthal angle P;, its pseudorapidity g; = —in[tan(8, /2)],
and its transverse energy ET; = ~pT, ~.

Starting with the initial list of protojets, the jet al-
gorithm recursively groups pairs of protojets together
to form new protojets. The idea is that protojets with
nearly parallel momenta should be joined, so that they
will eventually form part of the same jet. The algorithm

The algorithm above produces a list containing many
jets for each event. However, only the jets with large val-
ues of ET (which are the last to be added to the jet list)
are of much physical interest. The jets with smaller ET
are "minijets" or just random debris from the beam jets.
This situation is fine for the construction of an inclusive
jet cross section. Consider, for instance, the one-jet in-
clusive cross section da/dET for, say, ET = 100 GeV at
i/s = 1800 GeV. We first note that the high value of E~
tells us that this jet is a signal of a short distance process.
Second, we recall that in hadron collisions the probability
for a parton collision decreases very quickly as the value
of the parton-parton c.m. energy ~i increases. Thus it is
very unlikely that an event with a 100 GeV jet contains
other high ET jets beyond a second jet with E'T 100
CeV that is needed to balance the transverse momentum.
That is to say, the one-jet inclusive cross section is pri-
marily sensitive to the highest E'T jets in hard scattering
events, even though the jet list for each event contains
many jets covering a wide range of transverse energies.

It is crucial that a jet cross section be "infrared safe. "
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That is, when the cross section is calculated in QCD
at the parton level, the cross section must be finite, de-
spite the infrared divergences present in the Feynman di-
agrams. At the level of the physical hadrons, this means
that the cross section is not sensitive to long distance
effects. The infrared divergences in Feynman diagrams
come &om configurations in which a parton emits a soft
gluon, with q" -+ 0, or in which an outgoing parton di-
vides into two collinear partons, or in which an incoming
parton emits another parton that carries away a fraction
of its longitudinal momentum but no transverse momen-
tum. The probability for one of these configurations to
occur is infrared sensitive, and infinite in fixed order per-
turbation theory. However, unitarity dictates that the
sum of the probabilities for one of these configurations
to happen or not to happen is 1. For this reason, in-
&ared safety is achieved if the measured jet variables
do not change when an ET ~ 0 parton is emitted or
when a parton divides into collinear partons. We note
that der jdET and similar jet cross sections produced us-
ing the algorithm described in the previous section will
have this property. If a parton divides into two partons
with collinear momenta, then the algorithm immediately
recombines them, producing the same result as if the par-
ton had not divided. Similarly, an ET —+ 0 parton may
wind up in one of the high ET jets or it may be left by
itself, but in the limit that its Ez tends to zero it does
not affect the transverse energy or angle of the high ET
jet.

We have discussed the one-jet inclusive cross section.
For the two-jet inclusive cross section, it would be sensi-
ble to pick the two jets in each event that have the highest
transverse energies, just as has been done for jets defined
with the cone algorithm. By analogy, in defining the
one-jet inclusive cross section one might be tempted to
pick only the most energetic jet in each event. However,
at the Born level there are two jets with exactly equal
transverse energies. Which one winds up with the most
transverse energy is affected by a long-distance process,
the emission of very low E~ gluons. Thus the resulting
cross section would not be infrared safe.

The algorithm defined above is very similar to the sim-
plest version of the various options discussed by Catani
et at. [4], which are generalizations of the "Durham" al-
gorithm [5] for e+e annihilation. The differences arise
primarily from questions of emphasis. Catani et al. take
the approach that the analysis should be kept as simi-
lar as possible to earlier e+e work. Thus they fix the
parameter A at the value 1 and focus on exclusive jet
cross sections. They also introduce two further param-
eters. The first additional parameter is d,„t. When the
smallest d, or d,~ is larger than d,„t, their recursion halts.
The jets that have been generated thus far, all of which
have E&,- ( d,„t, are regarded as part of the beam jet.
The rexnaining protojets, all of which have E&; ) d,„t,
are treated as resulting from the hard scattering process.
These protojets are then resolved into the final "jets" in
direct analogy to the e+e case using a resolution pa-
rameter y,„t. This is a sensible way to define an exclu-
sive jet cross section in analogy to the e+e case but now
including the beam jets. For instance, one might mea-

sure in this way a cross section os(d, „t,y, „&) to produce
exactly three high ET jets plus the beam jets. How-
ever, we prefer to maintain a similarity with the previous
cone algorithm work in hadron-hadron collisions. The jet
definition in the preceding section is intended to define
inclusive jet cross sections in terms of the single angu-
lar resolution parameter R (which plays a role similar
to y,„t). For example, the two-jet inclusive cross section
der/dM&& defined in this way is a function of only the
jet-jet invariant mass MJJ and R. It would be an addi-
tional complication if it also depended on the parameters
deut and ycut ~

We note, however, that an exclusive n-jet cross section
can be defined using the algorithm in Sec. II. In this
case, one needs a jet hardness parameter to play the role
of d,„t. A convenient choice is to count only jets with
transverse energies above a cutoff ET,„t. Except for the
issue of variable R, this is essentially the y,„t ——1 scenario
of Catani et al.

The function d;z given in Eq. (2) measures how "near-
by" the pair of protojets (i, j) is. As in other algorithms
of the successive combination type, the idea is to combine
first the protojets that are "nearest, " and thus have the
smallest d;~. There are, of course, other possibilities for
the function d,~, the measure of "nearness. " For instance,
one might use the invariant pair mass (for massless pro-
tojets i and j):

d; = M; = 2ET,ET ~ [cosh(q, —q~) —cos(P; —
P~ )]. .

(5)

For small ~q;
—

g~ ~

and ~P, —
P~ ~

this is

Such a choice for d; ~ yields an algorithm analogous to the
"JADE" version of the successive combination algorithm
used in e+e annihilation. The corresponding algorithm
with the factor ET,ET ~ replaced by min(ET, , ET .), as
in Eq. (2), is analogous to the "Durham" algorithm [5] in
e+e annihilation as noted earlier. A discussion of the
relative merits of these choices in the context of e+e
annihilation may be found in [6]. The Durham algorithm
has also been discussed in the context of lepton-hadron
collisions in [7].

IV. COMPARISON WITH CONE ALGORITHM

Now consider the algorithm advocated here. At any
stage in the operation of the algorithm, the two protojets
i and j with the smallest value of d,~ are merged if d,~ of
Eq. (2) is less than the smaller of ET2, and ET2 . . That
is, they are merged if

Thus the issue of which protojets merge first depends on
transverse energies and angles, but the issue of whether
to merge two protojets or to declare that they cannot be
merged is solely a question of the angle between them.
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g(il„—rig)2+ (p„—(6J)z ( R. (8)

The jet angles (rjg, PJ) are the averages of the particles'
angles,

rIJ — ) pT, n'gn/ET, J
n &cone

ngcone

(9-)

(9b)

with

The merging condition in Eq. (7) makes it clear that
the present algorithm is in fact not so di8erent from a
cone algorithm. The latter is typically defined [1] in
terms of the particles n whose momenta p lie within
a cone centered on the jet axis (gg, Pg) in pseudorapidity
il and azimuthal angle P,

(12)

The limit on the right-hand side lies in the range B &
&ET g/[ET g —ET;))R & 2R since 0 ( ET; ( ET ~/2.
Thus configurations are possible with two equally ener-
getic partons located near opposite edges of the cone, and
nothing in the center of the cone. These are precisely the
configurations where the merging issue arises in order o,,
perturbation theory.

In the successive combination algorithm, it is the sep-
aration between the two partons (or protojets) that has
the simple limit of Eq. (7). It is this angle between i
and j, not that between i and the final jet direction, that
controls the question of merging. The corresponding re-
lation for the angular separation between parton i (the
lower ET par-ton), and the jet J in order for merging to
occur is

nQ cone
(13)

analogous to Eqs. (4) and (3), respectively. This process
is iterated until the cone center matches the jet center
(re, PJ) computed in Eq. (9).

The definition of the jet axis given in Eqs. (9) and (10)
is chosen to be simple when expressed in the natural vari-
ables (ET, q, P). Of course, other choices could also yield
infrared safe jet definitions. Thus this definition should
be regarded. as a convenient convention. This convention
has been continued in the merging conditions, Eqs. (3)
and (4), of the successive combination algorithm.

While the successive combination algorithm never as-
signs a particle to more than one jet, this is not the case
for the cone algorithm as defined so far. It is possible for
jet cones to overlap, so that one particle is contained in
more than one jet. This issue was discussed in [8] in the
context of the order n, perturbative calculation. At this
order it is possible for two one-parton jets to lie within
the cone of a two-parton jet. In the calculation [9], such
jets are "merged. " That is, the two-parton jet is kept and
the one-parton subjets are not considered as being legit-
imate jets on their own. In a physical event, with many
more particles, the merging question is more serious, and
a criterion for merging must be part of the experimental
algorithm [10].

The di8'erence between cone and successive combina-
tion algorithm jets is apparent even in the simplest ex-
ample of merging two partons (or hadrons) to make a jet.
In the cone algorithin [1], two partons i and j are merged
if each falls within an angular distance B of the jet axis
defined by Eq. (9). The parton with the smaller ET, call
it i, is farther from the jet axis. In the cone algorithm,
the limit on angular separation between this parton and
the jet J (including the partons i and j) has the simple
for m

The corresponding relation in terms of the angular sepa-
ration of the two partons is

where the right-hand side is in the range R/2 ( ([ETg—
ET,]/ET ~}R( R. Thus the lower ET par-ton can be far
from the jet axis, up to a maximum separation B, while
the higher-ET parton must be closer to the jet axis.

Because of the difference between Eqs. (11) and (13),
the average distribution of transverse energy within jets
depends on which algorithm one uses. With the succes-
sive combination algorithm, there is less transverse en-
ergy near the edge of the allowed angular region than
there is with the cone algorithm. This is illustrated in
Fig. 1. The quantity plotted is the order o,, perturba-
tive result for the average transverse energy fraction as
a function of distance from the center of the jet, for jets
with ET = 100 GeV at i/s = 1800 GeV for R = 1. The
histogram represents the ET fraction in angular annuli,
r to r + 0.1, where r is the distance from the jet center,
r = g(q —qg) z + (P —P~) 2. Thus the sum over all bins,
r & B including 0 & r & 0.1, should equal unity. Note
also that the calculation yields energy outside of the cone,
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I"IG. 1. Praction of jet E'& in angular annuli r to r + 0.1
comparing the cone algorithm with the successive combina-
tion case. In both cases the jet has B = 1.0, E'7 ——100
GeV, ~s = 1800 GeV, 0.1 ( ~gg~ ( 0.7 with renormaliza-
tion/factorization scale p, = Ez /2 and the structure functions
of Harriman-Martin-Roberts-Stirling set 8 [HMRS(B)] [11].
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We see from the graph that, for each value of p, the
calculated cross sections are almost identical as long as
we identify R b 1.35 x R, „,. Thus, for instance,
a jet cross section calculated or measured with the cone
algorithm using the standard value R, „=0.7 should
be compared to a jet cross section with the successive
combination algorithm using R, b ——0.945 = 1.0.

In Fig. 3 we plot the order o., inclusive jet cross sec-
tion as defined by the successive combination algorithm
with B«~g = 1.0 versus the jet ET at i/s = 1800 GeV
taking p = ET/2. The corresponding cross section calcu-
lated using the cone algorithm with R, „,= 0.7 is nearly
identical (see, for example, Fig. 1 of [12]), and is not
shown as it would not be distinguishable. In the range
ET/4 & p & Ez, 10 GeV & Ez & 500 GeV, we find
that the two algorithms give order o., theoretical cross
sections that agree to within 10%.

We conclude from this comparison that the successive
combination algorithm is neither better nor worse than
the cone algorithm, at least as judged according to this
p dependence standard. We also note that the argument
[8] that B, „, 0.7 is a particularly stable and thus
sensible regime for comparing fixed order perturbation
theory with experiment is now translated into R,
1.0. This is just the regime studied by Catani et al. [4].

We now examine the question of higher order correc-
tions from a point of view that relates directly to the
reasoning behind the successive combination algorithms:
the idea of putting parton showers back together to re-
construct the parent parton. We suggest that jet cross
sections defined with the cone algorithm may have larger
higher order perturbative corrections than do jet cross
sections defined with the successive combination algo-
rithm because of what may be called "edge of the cone"
effects. Consider the application of the cone algorithm to
two partons, 1 and 2, with roughly equal transverse ener-
gies and an angular separation of approximately 2R, „„
the troublesome configuration mentioned earlier. These
two partons are near the edge of the region in which they
can form an allowable cone jet. Suppose that parton 2
splits into two partons, 2a and 2b, that each have sub-

stantial transverse energy. If the angle separating par-
tons 2a and 2b is infinitesimal, then they will both fit
into the jet cone. The resulting jet (1,2a, 2b) will have
the same direction and transverse energy as the jet (1,2)
that one obtains if the splitting did not occur. However,
if the angle separating partons 2a and 2b is small but not
infinitesimal, it can very well be that the three partons
(1,2a, 2b) cannot fit into a cone to form a single jet. Since
the matrix element for such a parton splitting is large
(although not infinite), one may worry that there will
be corresponding large order o., corrections to jet cross
sections calculated with the cone algorithm. What is
the situation with the successive combination algorithm' ?

Here we should consider partons 1 and 2 separated by
an angle of approximately R, b, near the edge of the
region in which they can form an allowable jet. If parton
2 splits into partons 2a and 2b with a small angular sep-
aration, then the successive combination algorithm will
combine them together into a protojet 2' that approxi-
mates parton 2. As long as the angle separating partons
2a and 2b is not too large, the protojet 2' will have jet
parameters close enough to those of parton 2 that the al-
gorithm will then combine 2' with parton 1. On the basis
of this argument, we expect that order o., corrections to
jet cross sections calculated with the successive combina-
tion algorithm may be smaller than with the cone algo-
rithm. For similar reasons, we expect also that jet cross
sections calculated with the successive combination al-
gorithm will also exhibit smaller corrections attributable
to the final combination of partons into hadrons. Un-
fortunately, from the order o., perturbative calculation
we cannot determine the magnitude of these edge of the
cone effects.

Finally, we comment on the relative merits of the two
algorithms from the point of view of simplicity and def-
initeness. Here the cone algorithm appears at first to
have the advantage. With the cone algorithm, a jet con-
sists simply of all the particles whose momentum vectors
fit into an apparently well defined and regular cone cen-
tered on the jet axis. This is a simple and appealing
idea. The successive combination algorithm, in contrast,
takes more effort to define and does not yield regular jet
shapes in the q —P plane. However, in the application
of the cone algorithm, one quickly discovers that am-
biguous cases with overlapping jet cones arise. What do
you do when two or more jets contain particles in com-
mon'? The algorithm must be expanded to cover these
cases. Unfortunately, there are many ways to proceed,
and none of them is particularly simple. Thus the cone
algorithm actually consists of a simple part that works
beautifully for joining two partons into a jet and a com-
plicated part that one is forced to use in order to deal
with real-world multihadron events. With the successive

FIG. 3. Order u, inclusive jet cross section as defined by
the successive combination algorithm with A, b ——1.0 versus
the jet ET for +s = 1800 GeV, y, = ET /2, averaged over rtq
in the range O. l & ~rl~~ & 0.7 with the structure functions of
HMRS(B) [11].

This is clearly a subject for Monte Carlo study as in [4]. Un-
fortunately the cone algorithm used in that analysis is quite
difI'erent from that described here. In particular, the cone al-
gorithrn in [4] is not infrared safe so that the results presented
are diKcult to interpret.
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combination algorithm, the recursive steps require some
thought to de6ne, but once they are set, the whole algo-
rithm is complete.

V. SUMMARY

We have discussed a jet definition for inclusive jet mea-
surements in hadron collisions that makes use of ideas
previously applied to jet definitions for e+e collisions.
The algorithm identi6es a jet by successively combining
"nearby" pairs of particles or protojets. The concept of
"nearby" is measured in (Ez, rl, P) space and involves a
limit R, b on angular separations that is very similar
to the usual cone algorithm parameter B, „.We find
that, calculated perturbatively, the inclusive jet cross sec-
tion that results from the new algorithm with parameter
B, b is essentially identical to the cone algorithm re-
sult with B, „,= B, b/1. 35. While the final geometry
of a jet defined by the successive combination algorithm
is likely to be more complex than that from the cone
algorithm, the former definition has the advantage that

there is no problem with overlapping jets as there is in the
cone case. We have also presented a qualitative argument
that, due to "edge of the cone" effects, cross sections cal-
culated with the successive combination algorithm are
likely to exhibit smaller higher order and hadronization
corrections. Only further detailed experimental and the-
oretical studies can demonstrate whether the successive
combination type algorithm has quantitative advantages
over other algorithms.
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