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Polarized and unpolarized prompt photon production beyond the leading order
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We calculate the complete O(aa, ) corrections to the inclusive cross section for hadronic prompt pho-
ton production, both for the unpolarized case and for the case of longitudinal polarization for the incom-

ing hadrons. We present analytical expressions for all our results.

PACS number(s): 13.88.+e, 12.38.Bx, 13.85.Qk

I. INTRODUCTION

The production of large-transverse-momentum prompt
photons in pp or pp collisions has turned out to be an im-
portant tool to uncover the unpolarized gluon distribu-
tion of the proton [1—7]. The reason for this is the pres-
ence of the O(aa, ) qg —+yq Compton subprocess
through which the gluon distribution enters the cross sec-
tion already in the leading order (unlike the case of deep-
inelastic scattering) and which dominates the cross sec-
tion over a wide kinematical region. Since the European
Muon Collaboration (EMC) measurement of the spin-
dependent proton structure function g~~ [8] (as well as the
new Spin Muon Collaboration (SMC) results on the
neutron's g", [9]) has left us with the attractive possibility,
among others, that gluons inside the proton could be
strongly polarized [10], it is compelling to study prompt
photon production also for the polarized case, i.e., for
longitudinal polarization of both incoming hadrons, in
order to examine the sensitivity of this process to the po-
larized gluon distribution 66 in the proton. Indeed,
leading-order studies of this kind have been presented in
the literature [11], indicating that the process, if studied
experimentally, should provide a good opportunity to set-
tle the important question whether gluons inside the pro-
ton are or are not strongly polarized.

It is true quite, in general, that leading-order QCD cal-
culations can usually only give semiquantitative results
for high-energy hadron-hadron reactions. Firm predic-
tions should at least be based on next-to-leading-order
calculations. In the unpolarized case such corrections
have been calculated in numerous cases. Apart from
their importance for studying the perturbative stability,
one of the main properties of these corrections is to ap-
preciably decrease the scale dependence of the predic-
tions. In this way the comparison between theoretical
predictions and experimental results is put on a much
stronger foundation and is generally improved. It is
therefore also to be expected in the case of longitudinal
polarization that next-to-leading-order corrections to the
leading-order process are crucial for more precise predic-
tions. Furthermore, the question is interesting whether
the sizable corrections to the individual unpolarized and
polarized cross sections tend to cancel out when the ratio
of the cross sections, i.e., the asymmetry, is calculated.
This feature was recently observed for the asymmetry in

polarized deep-inelastic Compton scattering [12] and also
for the asymmetry in Drell-Yan dimuon production with
transversely polarized protons [13].

In this paper we calculate the complete O(aa, ) correc-
tions to inclusive hadronic prompt photon production,
both for the unpolarized and the polarized case. Of
course, the complete results for the unpolarized. case have
been obtained twice before: First they were calculated
analytically by the authors of Refs. [2,3], later on they
were determined numerically using Monte Carlo tech-
niques in Ref. [5]. Nevertheless, the unpolarized results
have never been published analytically in a closed form.
Since they can be obtained with not much extra effort as
a by-product in the calculation of the polarized correc-
tions, where they also serve as a good check on the calcu-
lations, we present them in this paper. As far as the
next-to-leading-order corrections for the polarized case
are concerned, the results are entirely new, and we be-
lieve our calculation to be the first fu11-Hedged higher-
order calculation in polarized hadron-hadron scattering.

The paper is organized as follows. In Sec. II we go
through the details of the calculation step by step. To be
more specific, we point out the general framework for our
calculations in Secs. II A and II 8 where we also specify
our regularization method which will be dimensional reg-
ularization, treating y 5 and the totally antisymmetric ten-
sor e„according to the original proposal by 't Hooft
and Veltman [14] and Breitenlohner and Maison [15]. In
Secs. IIC—IIE we present our results for the virtual
corrections, discuss the contributions from the 2~3 pro-
cesses and deal with the factorization of mass singulari-
ties. In Sec. III we arrive at our final results and discuss
some of their properties. Appendixes A —C contain some
calculational details. Finally we list our complete results
in Appendixes D and E.

II. THE CALCULATION

A. Leading- and next-to-leading-order contributions

At lowest order [O(aa, )] two 2—+2 subprocesses are
the dominant source for the hadroproduction of prompt
photons. These are the annihilation process qq —+yg and
the QCD Compton process qg~yq. The corresponding
Feynman diagrams are shown in Fig. 1.

At next-to-leading-order [O(aa, )] we encounter a
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FIG. 1. Born [O(aa, )] graphs for prompt photon produc-
tion. (a) Annihilation qq~yg; (b) Compton qg~yq.

large variety of new graphs, which can be classified as fol-
lows: virtual corrections to the Born graphs as shown in
Figs. 2(a) and 2(b); real-gluon emission 2—+3 corrections
to the Born graphs [Figs. 2(c) and 2(d)); photon brems-
strahlung corrections to any pure @CD 2~2 process
(other than qg~qg) involving a quark in the final state.
To be more precise, these are

qq~yq'q' [Fig. 3(a)],
yqq [»g 3(b)l,

where the last process also includes qq'~yqq'.
Figures 2 and 3 show representative Feynrnan dia-

grams for each of the subprocesses as well as ghost graph
contributions which (in the 2~3 case) have to be taken
into account if simply —g is taken for the polarization
sum for an unpolarized gluon and two unpolarized exter-
nal gluons appear in the process under consideration. Of
course, ghosts also have to be taken into account in the
gluonic self-energy contribution to the virtual corrections
[Figs. 2(a) and 2(b)]. Needless to say, the virtual contri-
butions in O(aa, ) only arise via the interference of the
graphs in Figs. 2(a) and 2(b) with the Born diagrams.
When calculating the helicity-dependent matrix elements
corresponding to Figs. 1 —3, which are needed to derive
the contributions to the polarized hadroproduction of
prompt photons, we have to project onto definite helicity
states of the incoming particles the momenta of which we
label by p j and p2. This is achieved by using the relations
[16]

u(p„h )u(pt, h ) = —,'p', (I —hy5)

for incoming quarks with helicity It (analogously for anti-
quarks) and

JWAV

gmn. nr r

d
FIG. 2. (a),(b) Some representative Feynman diagrams for

the virtual corrections to the Born graphs. The dashed lines can
stand either for a quark, a gluon or a ghost loop. (c),(d) Some
representative diagrams for the 2—+3 real gluon emission
corrections to the Born graphs. Dotted lines refer to ghosts,
which for qg~yqg (d) are only present in the unpolarized case.
All in all there are 8+2 ghost graphs for either process.

FICx. 3. Some representative diagrams for (a) qq~yq'q'
(four diagrams altogether), (1) gg~yqq. The dotted lines refer
to ghosts which are present only for the unpolarized case. All
in all there are 8+2 ghost graphs. (c) qq~yqq (eight diagrams
altogether), (d) qq~yqq (eight diagrams), and (e) qq'~yqq' (or
qq'~yqq') (four diagrams).
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e (p2, A, )e„(p2, A, ) = gp~ + l A e~~p~
=1 pP~0

(2)

IMI'=-,' [IMI'(++ )+ IMI'(+ —) ],
polarized

&IMI'=-,'[IMI'(++ )
—IMI'(+ —)],

(3)

(4)

where lMl (h&, hz) denotes the squared matrix element
for any of the subprocesses in Figs. 1 —3 for two incoming
particles (quarks or gluons) with helicities h, and h z.

As is well known, when calculating the contributions
of loop diagrams [Figs. 2(a) and 2(b)] or when performing
the phase-space integrations for the 2~3 processes [Figs.
2(c), 2(d), and 3], one encounters singularities. First of
all, the loop diagrams contain ultraviolet divergencies
which are removed by renormalization. Adding the re-
normalized loop and the corresponding 2~3 contribu-
tions, the infrared singularities which are individually
present in both ingredients also cancel out, and one is left
with collinear singularities which are finally removed by
the factorization procedure (of course, for the graphs in
Fig. 3 there are only singularities of the latter kind). All
these steps are standard by now. In order for them to
work one of course has to choose a consistent method of
regularizing the singularities so that they become mani-
fest. For this purpose we choose the concept of dimen-
sional regularization, i.e., we calculate Dirac traces,
phase-space integrations, etc., in n =4—2e dimensions
[14]. This way of regularizing is certainly the best and
most uncomplicated one in the unpolarized case, or,
more generally, if no chiral couplings of any kind are
present. Problems arise if quantities such as y5 and the
totally antisymmetric tensor e„enter the calculations,
which have to be regarded as of purely four-dimensional
origin with no simple analytic continuation to n&4 di-
mensions. Several ways of using y~ and e„ in n&4 di-
mensions have been proposed and discussed in the litera-
ture [12,14, 15, 17—19]. Those preserving the total an-
ticommutativity of y~ in n&4 dimensions [12,17,18] can
easily be shown to lead to algebraic inconsistencies
[20,21], unless extra conditions such as giving up the cy-
clicity of the trace [18] are met. On the contrary, the
original scheme of t'Hooft and Veltman [14], afterwards
systematized by Breitenlohner and Maison [15] (HVBM
scheme), was shown to be internally completely con-
sistent [22,23]. In this scheme explicit definitions for y~
and e„aregiven, which essentially correspond to the
usual four-dimensional ones, e.g. , y 5 =i y y'y y . In this
way the n-dimensional Minkowski space is explicitly di-

for incoming gluons with helicity A, . As stated above, the
inclusion of ghost graphs allows us to drop all terms oth-
er than —g„,in the symmetric part of e„e*.With the
help of Eqs. (1) and (2) we are in the position to calculate
the contributions of Figs. 1 —3 to unpolarized and polar-
ized prompt photon production at the same time by tak-
ing the sum or the difference of helicity-dependent
squared matrix elements:

unpolarized

vided into two subspaces, a four-dimensional one and an
(n —4)-dimensional one, each of them equipped with its
metric tensor. This means that any vector p is the sum of
p and p, where p contains the first four components of p
and zeros everywhere else and p vice versa. Of course,
this property of the HVBM scheme renders it algebraical-
ly much more involved, since, e.g., apart from n-
dimensional scalar products p q (Mandelstam variables),

their respective subspace counterparts p q and p.q can
also show up in calculations. As far as the actual calcula-
tion of the Dirac traces is concerned, helpful routines
such as TRACER [24], which we have used, allow for tak-
ing into account the algebraic peculiarities of the HVBM
scheme. Apart from this, terms such as p.q, etc. also
deserve special attention when performing phase space
integrations. This will be discussed in Sec. II D.

As has been shown in the literature [25], the presence
of chiral couplings in loop integrals may lead to anoma-
lous terms in the HVBM scheme, which are usually re-
ferred to as "spurious anomalies. " These originate from
ultraviolet poles encountered in loop integrations multi-
plied by e terms from trace calculations and are, there-
fore, of ultraviolet origin. They have to be subtracted by
hand by a finite renormalization using appropriate coun-
terterms [26,27]. Of course, the spurious anomalies again
make the HVBM scheme more complicated and less han-
dy. Fortunately, however, in the case of polarized
prompt photon production no spurious anomalies appear,
which is obvious since all self-energies and vertex correc-
tions can be calculated and renormalized independent of
any polarization before taking the interference with the
Born diagrams which only then gives rise to y~ traces.

As a consequence of the points discussed above, we
have chosen the HVBM scheme for our calculations
since, first of all, it is internally consistent unlike those
schemes which make use of a naive anticommuting y5
which are, of course, simpler algebraically. Nevertheless,
the HVBM scheme is not very much harder to deal with;
in particular, we find it simpler in our case than the
scheme suggested in Ref. [18] since in this scheme cyclici-
ty of the trace is given up, and all traces contributing to a
subprocess have to be read from the same vertex, the so-
called "reading point. " In the case of the virtual graphs
this inevitably leads to a reading point which is located
inside a loop (at least for some graphs) which means that
standard loop results can no longer be applied and the
calculation becomes more complicated.

Before concluding this subsection let us note that it is
well known that gluons can take n —2=2(1 —e) difFerent
spin orientations in n =4—2e dimensions. Therefore, in
the calculation for the unpolarized case one should aver-
age the spin of each incoming gluon with the factor
I/2(1 —e) rather than with —,'. This can be achieved by
the replacement

1 1
g v~

2 " 2(1 —e) g v

in Eq. (2) but leaving Eqs. (3) and (4) unchanged. In this
point we differ from the calculational method in Refs.
[2,3]. For the polarized case we are, of course, only in-
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terested in the difference of the matrix elements for the
two possible helicity states; therefore, no extra factor as
in Eq. (5) is needed there.

where

E~d cr" (hAAB)/d p~

denotes the invariant cross section for two incoming had-
rons 2 and B with helicities h~ and hz. Introducing the
polarized parton distributions b,f,"( )xby

&f, (x)=—(f, )+(x)—(f, ) (x), (7)

B. The inclusive cross section E~d o id p~

Before going into the details of the calculation let us
write down the invariant cross section Erd g /d pr for
inclusive prompt photon production, where Ez and pz
stand for the energy and the three-momentum of the pro-
duced prompt photon. We shall write down everything
in terms of the polarized quantities, the unpolarized ones
are then immediately obtained by removing the 6's,
which of course means taking the sum instead of the
difference in Eqs. (6) and (7) below. In analogy to Eq. (4)
the polarized invariant cross section E d b,o/d p is

given by the difference

d gg A
1 d g A (++) d3(7 AB(+ —)

dp 2 dp d pr r y

(6)

1 da&'b
su du dm

(8)

where g, b denotes the sum over the appropriate parton
combinations. Here we have introduced the partonic in-
variant variables u and m which are defined by

U =1+t,/s,
w —= —u, /(s+t, ) (9)

with t, =(x,P„pr),—u, =(x2PB —p ), and

s=(x,PA+x2PB) =x,x2S,

Pz and Pz being the momenta of the incoming hadrons.
Furthermore, db, g ' /du dw in Eq. (8) is defined in com-
plete analogy with Eq. (6), the b, now referring to the
difference of cross sections for definite parton helicities.
Since we shall present our final results for the subprocess
cross sections for the various processes depicted in Figs.
1 —3 in terms of the variables v and u, it is convenient to
write the integrations in Eq. (8) as integrations over these:

where (f,")+~ ~(x) denotes the distribution of parton
type a with positive (negative) helicity in hadron 2 with
positive helicity, we can relate the hadronic and the sub-
process cross section [28]:

d3g AB

E =—g f dx, f dx2bf, (x, )bfb(x2)
dPy ~ ab

d3g AB
E

r

1 i —(xTe
—

&)/2 dA& '
g f du f dw x,bf,"(x„M)x2hfb(x2, M )Uw(1 —U)s

~PT a b xTe "/2 (xT /2)e "/v dv de

where we have introduced the prompt photon's trans-
verse momentum pT and its rapidity g in the c.m. s. of the
colliding hadrons. In terms of these we have
xT ——2pT/&S, x, =xTe "/2uw, and x2=xTe "/2(1 —u).
Finally, we have also introduced an appropriate mass
scale in the parton distributions. It should be noted again
that in all cases the corresponding unpolarized results
can be obtained by replacing all polarized quantities by
their unpolarized counterparts„ i.e., 6& ' —+& ',
Af, ~f,", where g ' and f," are the usual unpolarized
cross sections and parton distributions.

For the two-body (i.e., Born and virtual) contributions
we have of course s+ t

&
+ u i =0, which is equivalent to

m =1. In fact,

d&2 2 d&2
5(l —w) .

dv dm du

In the case of the three-body processes we have
s+t, +u, =sz3 =su(1 —w), which is the invariant mass
squared of the two unobserved outgoing partons. The
2~3 cross sections also display singularities at m —+1
which have to be made manifest, as will be explained in

Sec. IID. The choice (9) for the variables U and w

guarantees that only the variable u will lead to singulari-
ties, which arise at its upper integration limit.

C. Born graphs and virtual corrections

In this section we deal with the two-body graphs. To
begin with, let us for completeness write down the results
for the Born cross sections. The unpolarized cross sec-
tions are given by (in four dimensions; see, e.g. , Ref. [29])

d&
du

(w
2CF vraa, e U~+(1 —„)~
&c U(1 —U)S

(12)

maa, e 1+(1—U) (13)

dA& d&
dU

(w rg)= (w rg), —
dU

(14)

where Nc is the number of colors, CF=(NC —1)/2NC,
and e denotes the quark's charge. For the polarized case
one has
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due to helicity conservation, and

dh& 1 qriz~seq 1 —(1—v)
(qg —&yq ) = . (15)

dU s 1 —v

Let us now turn to the virtual corrections to the Born
graphs which were already depicted in Figs. 2(a) and 2(b).
The unpolarized results have already been published in
Ref. [30] for the qq case and in Ref. [31] for the qg case.
Of course, the two results are related by crossing, and we
do obtain the same results. Since in the polarized case
the helicities of the incoming particles are involved, there
is no use in applying crossing symmetry, and we have to
present separate results for the qq and the qg virtual
corrections. Nevertheless, of course, the calculations for
the two processes proceed along quite the same lines. It
should be noted that if we used a totally anticommuting
ys in n&4 dimensions, the results for the virtual correc-
tions to qq annihilation would trivially be the same for

I

dao ~
v(1 —v )s (qq ~yg )

dV dW

the unpolarized and the polarized case apart from a sign,
since it would be possible to remove all yz from the traces
by using their anticommutativity and their property
y5=1. Of course, this does not work in the HVBM
scheme used by us, and we shall return to this point in
Sec. III.

The renormalization scheme we adopt is the modified
minimal subtraction (MS) scheme [32], which requires
the subtraction of all the ultraviolet poles together with
the attendant Euler constant yE and ln4m. In calculating
the loop integrals we have partially made use of the re-
sults in Ref. [33]. The renormalization procedure and the
results for the self-energy and vertex correction diagrams
are standard and can be found, e.g., in Ref. [34]. For
convenience we list the massless four-point functions
needed for the (ultraviolet-finite) box diagrams in Appen-
dix A. For the renormalized virtual corrections to polar-
ized qq ~yg [Fig. 2(a)] we find, in the HVBM scheme,

(2C~+ Nc )T
+— — T —NCT lnu+ Nc(23 —10uv, )+—C~(7—2uu, )

6 ««12 2

1 2 1 1
(4C —N )qr T ——T b ln + NCT lnv —lnui Nc(—2 u)(1—+u)lnu

12 F c qy 2 «o ~s 2 «

——(2C+ —Nc)(1+u )ln u —CF(3 —u )u, lnv+ —C~(15 —8vu, )
— (1+uu, )

+ Nc(14+ 1 lu—u, ) +(u~l —v ),1

6
(16)

where we have defined T—:(1—v) +u, u, =1—v, and bo—:11Ncl6 NF/3. Furt—hermore, for polarized qg~yq«
[Fig. 2(b)] our result is

dao v
u(1 —u )s (qg ~yq )

dU dW

«s(IJ )eqP (4qrp )

1 (1 —2e) r, Q,

(2C~+Nc )u b, TqsX
2E

1 5(l —w )
Nc

+ — ub, T + Ncvb, T lnvi+——(2C+ Nc)vAT lnu—&F
6 qg 2 c qg 1 2

1 z 1 z

12
N (22 —5u )u ——C (6—u )uF

1 3 1 z

2 12
——vb+ N qru(3 —2u —2u )

2 1 U1+ b ln vhT ———(2C —N )u(l —2v)lnu ln
2 0 ~ qg 4 F c

s
1

U

1 2 z 1 z 2 1 3
F

——C qr u(3 —4u —u )+—N u(u +u )lnu, —CF(7—2u)u + (2CF Nc)u lnu— —
C 1 1 F 2

(17)
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p, a, = —a, po p,

with [35]

Po =2bo =11'/3 —2%~/3,

+0(a, )

P, =34Xc /3 —10%cX~/3 2C~—N~,

and the number of active llavors XF. Of course, Eqs. (16)
and (17) still contain infrared and collinear singularities
which will only cancel when the contributions from the
inelastic (i.e., the 2~3) graphs are added and the factori-
zation of mass singularities is performed. These points
are the topics of the next two sections.

D. Three-body contributions

The 2~3 processes constitute the main task in this
calculation. The corresponding graphs were already
shown in Figs. 2(c), 2(d), and 3. We have evaluated the
traces arising from these using the program package
TRACER [24]. Note that our n-dimensional matrix ele-
ments for the unpolarized case for each process are in
complete agreement [36] with those published in Ref. [31]
after suitable crossing. For the polarized case we have al-
ways checked that our matrix elements reproduce those
in Ref. [29] in the limit n~4. The harder part to do
then is the phase-space integration. This is conveniently

I

with b, T =1—(1—v) . In Eqs. (16) and (17) a, (p ) is
the running strong-coupling constant renormalized at
scale p in the MS scheme which satisfies the
renormalization-group equation

2
kz = ( ko, ko sin 8,cos8z, k, kocos8„k),
k3 =(ko, —kosin8&cos8z, —k, —kocos8&, —k ),

where ko =Qsz3/2, k stands for the (n —4)-dimensional
part of k2, and k denotes the unspecified y component
which can be trivially integrated over since the matrix
element will not depend on it. This is not true for the k
components since, as explained in Sec. II A, in the
HVBM scheme such components will explicitly appear in
the matrix element. The other three momenta p„p2,and
k, can be oriented in such a way that they lie in the x-z
plane. Depending on the propagators appearing in the
process under consideration one of the three vectors can
always be chosen to have only a nonvanishing z com-
ponent and zeros everywhere else in its spatial part. The
resulting three sets of parametrizations for the momenta
are listed for convenience in Appendix B. In any case the
"sub"vector k is the only (n —4)-dimensional quantity in
the calculation [37]. We can express all ( n —4)-
dimensional scalar products by k

k ——k =k

k2 k3 k

(19)

k appears as an additional integration variable in the
2~3 phase space, which reads

performed in the rest frame of the two outgoing unob-
served partons. Denoting the momenta of the process by
p, +p2~k&+k2+k3, where k, is the momentum of the
prompt photon, we have, in this frame,

R3=
(4m. ) I"(1—2e) s

z'(1 —
U ) 'f 'dw [w(1 —w)] 'f "d8,sin' '8, f d8zsin '8z, f '

x (20)

where B(a,b ) is the P function and x is nothing but k divided by its upper limit:

4k
s 23 sin O, sin O2

Equation (20) is in agreement with the result of Ref. [27]. The last integral in Eq. (20) has been written in such a way
that it is unity if no k dependence occurs in the matrix element, which is the case for the unpolarized matrix elements
and for the vast majority of terms in the polarized ones. The remaining terms are proportional to k for which the last
integral gives

2E' 23
sin Oisin O2

1 —2e 4
(21)

After performing the x integration, the matrix element has to be integrated over O& and O2. For terms which do not
originate from k terms this procedure is quite standard and has been presented several times (see, e.g., Refs. [38,39]).
One has to make extensive use of relations between Mandelstam variables to reduce complex combinations of the vari-

ables to simple ones by partial fractioning. In the end, one is left only with expressions containing at most two Mandel-
stam variables which in turn demand the general integral of the type

f 1
d O, sin' 'O, d O2sin 'O2

o
' '

o ( 1 —cos8, )J( 1 —cos8, cosy —sin8, cos8zsiny )'

I (1—2e), , B(1 E j, l —e —) —.
I
—

1
zX=2m. 2 2F& J l 1 —e;cos

I (1—e) I (1—e)
(22)
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which has been evaluated in Ref. [40]. The angle y can
stand for g, P', and itj" which we define in Appendix B
and, of course, also for y=P+vr, etc. , depending on
which Mandelstam variables occur. For j=1 or l =1,
I/e poles appear in Eq. (22). Note that only the case
j +1, l~1 occurs, and that for j or I 0 the hyper-
geometric series zF, (a, b, c;z ) terminates and the integral
becomes very simple. The case j=l =1 is the only non-
trivial one. Here a double pole arises if g=g, g', or g",
since the right-hand side of Eq. (22) becomes

2F& 1 1 1 —e;cos
E

sin—2X
2

1+ L'
2 2

ln(1 —w )
E

1 —w
+o(e ), (23)

where the "plus" distributions are defined as usual, name-
ly, by

f(w) d
i f(w) —f(1)d

o (1—w)+ o 1 —w

and analogously for (ln(1 —w)/1 —w )+. Note that Eq.
(23) is also needed for I/sz3 =1/su(1 —w) terms in the
matrix element since these also diverge for w ~1.

Let us now briefly turn to the k terms in the matrix
element. According to Eq. (21) these yield an additional
factor sin O, sin 92 in the integrand in Eq. (22) which is
readily taken into account by changing e—+e —1 there.
With this simple trick all k terms can be integrated
over. Since k sets a new mass scale in the matrix ele-
ment it is not surprising that these terms are often ac-
companied by the inverse squared of a Mandelstam vari-
able. It is easy to see from Eqs. (21) and (22) that in fact
only such terms with at least either j =2 or I =2 give
nonvanishing contributions in the limit e—+0 [27], which

where Liz(z) is the dilogarithm function. From Appendix
B it can be seen that the term [sin (y/2) ]

' ' produces a
pole at w ~1. This can be made manifest using the iden-
tity [41]

(1—w )
'= ——5(1—w )+1 1

E (1 —w)+

is due to the factor of e in Eq. (21) and of course to the
shift e—+e —1. For the same reason and because of the
factor s23 —1 —w in Eq. (21) no pole terms arise from the
k terms. Finally, the only case where distributions as in
Eq. (23) can arise is when k /s23 terms are present in the
matrix element which give (finite) terms -5(1—w ) in the
final answer.

Equipped with all the above formulas we can integrate
all 2 —+3 matrix elements for the unpolarized and the po-
larized case. Adding the results for qq ~ygg and
qg —+yqg to the respective results for the virtual correc-
tions [which are proportional to 5(1—w)], all infrared
poles drop out (including those —1/e ), and we are final-
ly left with collinear singularities for all processes which
occur as simple poles at @=0.

E. Factorization of mass singularities

The factorization procedure based on the factorization
theorem [42] has been outlined in detail, e.g. , in Refs.
[38,31]. The mass singularities associated with collinear
emission arise when either an incoming particle collinear-
ly emits another particle or when a final-state quark is
collinear to the outgoing photon. The singular terms at-
tached to the initial legs are separated o6'at the factoriza-
tion scale M . For the final-state singularities we factor-
ize at the scale M' . In this way the scale-dependent
"dressed" (polarized) unpolarized structure functions
(6)f,"(x,M ) for a parton a in a hadron 2 and the unpo-
larized scale-dependent photon fragmentation function
Dq (z,M' ) are introduced which obey their respective
next-to-leading-order QCD evolution equations. Of
course, there is a we11-known freedom in choosing the
factorization prescription, i.e., in subtracting finite pieces
along with the pole terms. In general, we shall present
our results in the MS scheme in which only the pole
terms and, as above in Sec. II C, the y& and ln4~ terms
are subtracted. Only when dealing with the initia1-state
singularities in the polarized case shall we adopt a slight-
ly modified scheme, hereafter referred to as MS&, which
takes into account some subtleties connected with the
HVBM scheme which will be discussed soon.

As an example, let us brieAy discuss the factorization
of the qg —+yqg subprocesses. This is performed easiest
by adding a "counter cross section" [38] which, taking
into consideration all possible collinear configurations,
takes the form

1 dbo. s
d ~ (

2 dh&
dv dw 27' 0 dU

x,s, 1+—,e 5(x, (s+t, )+u, )
s

1 ding w xR
+ f dx2bHqs(x2 M )

0 dv
x2s, I+,e 5(x2(s+u, )+t, )

X2$

dh& ~g
+ f dx2bHss(xz, M ) xzs, I+,e 5(x2(s+ u, )+ t, )

X2$

& dX3
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~s 1
bH»(w, M ) (ws, u, e)+

sv dv s(1—uw )

I —
U 2 dAo' I —vLeLHqg, M s, vw, E

1 Uw dv 1 —Uw

+
s(1 —uw )

1 —u z dho'
gg 1 dU

1 —
U

S, UW, E'

1 —Uw

dye qg qg
H (1—u+uw, M' ')

s(1—u+uw)
UW

S, , E
1 —U+Uw

(24)

Again Eq. (24) has been written down for the polarized
case; it is again valid for the unpolarized case if the 6's
are removed. The

d(h)o ' ' /du(s, u, e)

are the n-dimensional 2~2 cross sections for the process-
es ab ~cd and are listed in Appendix C for the polarized
case, in which they of course also have to be calculated in
the HVBM scheme [37]. For the unpolarized case these
cross sections can be obtained from Ref. [31]. Further-
more, in Eq. (24),

+ (b )f;~ (z), (25)

where 1/e =—1/e —yz+ln4n(as us. ual in the MS scheme).
In Eq. (25) the (6)Pi(z) denote the well-known unpolar-
ized (polarized) one-loop splitting functions for the tran-
sitions j ~i [43]. The functions (6 )fi(z) represent the
above-mentioned freedom in choosing a factorization
prescription. In the MS scheme (which we adopt for the
unpolarized case) these functions vanish. In the polar-
ized case we shaH slightly deviate from this scheme. To
see the reason for this we briefly turn to the results for
deep-inelastic scattering (DIS).

The spin-dependent DIS structure function g~i(x, Q )

including O{a,) corrections in general reads

~dz.
g~i(x, Q )=—ge,' J ' l(1—z)+ bf (z) bq —, Q +by —, Q

z z

~i, ( ')
+2 b f (z)b, G —,Q (26)

with coefficient functions hf» s(z) which can be calculat-
ed from simple parton model graphs but which are sub-
ject to the factorization prescription chosen. The results
for such a calculation depend, of course, on the method
of regularization which is adopted. This has led to some
debate concerning the gluonic coefficient bf (z) in the
literature [44—49], mainly about the question whether its
first moment, hf ':—fob f (z)dz, vanishes or is finite,

hf '= —
—,'. In the latter case, gluons could significantly

contribute to the first moment of g~i(x, Q ), leading to an
attractive explanation of the surprising EMC result in
terms of a large b, G [10,44]. As has been shown in Refs.
[47,48], the HVBM scheme in MS yields b,f '=0. This
value, however, comes about because of an exact cancel-
lation of contributions from a region where the emitted
partons in the relevant process y'g~qq have a large
transverse momentum with respect to the incoming parti-
cles and a region where they are collinear with them [48].
This latter contribution should rather be absorbed into
the definition of the quark densities beyond the leading

I

order than be regarded as part of the hard gluonic contri-
bution to g~. In Bj5rken-x space we have in the HVBM
scheme in MS factorization [47,48],

Af (z)=T~ {2z—1) ln —1 +2(1—z)
g R 2

(27)

where T~ =
—,'. The term 2'�(1—z) is the one which has

a collinear origin and cancels the contribution of the first
term when the z integration is performed [48]. The first
term (which integrates to —

—,') comes entirely from the
noncollinear region and can, e.g. , be calculated using a
transverse momentum cutoff as the regulator [46]. It
therefore seems expedient to factorize the term -(1—z)
present in the HVBM scheme into the polarized quark
distributions. This view is supported when considering
the coefficient b,f (z) in Eq. (26). This coefficient has
been calculated by Ratcliffe [50] who used a totally an-
ticommuting y5. The result for the first moment,
b f» = —2, agrees with the one obtained by Kodaira et al.
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3 1

2 (1—z)+

1+z lnz+ 2+z
1 —z

[51] in the operator product expansion (OPE). It should
be noted that b,f'= —2 according to Eq. (26) corre-

q
2sponds to the well-established [1—a, (Q )/qr] correction

in the quark sector of the first moment of g~&(x, g ). In
the HVBM scheme one finds in MS factorization
Af '= ——", which in Bjdrken x space comes about due to
an additional term —4CF(1 —z) [52] when comparing
with the result of Ratcliffe [50]:

bf (z)=C~ (1+z )

which, according to the previous discussion is not unex-
pected. In Eq. (29) A~M~ denotes the n d-imensional

matrix element for the process qq —+yg which is propor-
tional to the corresponding n-dimensional cross section

date

«--/du(s, u, e) in Appendix C [Eq. (Cl)]. Analo-
gously, for k3 =(1—x )p, [outgoing gluon collinear to in-
coming quark, Fig. 4(b)] we can recover the splitting
function EP—

q (x)/e, together with the desired term
—4CF(1 —x ). The interesting case is now k3 =(1—x )p2,
when the outgoing gluon is collinearly emitted by the in-
coming one via the triple gluon vertex [Fig. 4(c)]. Here
we find „,-(—~) b,P (x) 4N (1 x)2 1

2 3
—+ 7r 5—(l —z) —4C (1—z) . (28)
9 1

F
XaM~ (30)

xa/Mf' (29)

Again the last term can be traced back to have a collinear
origin in the process y*q ~gq. For this reason we decide
to also factorize it into the polarized quark distributions.
Since the structure of the collinear terms in b fg(z) and
hf (z) in Eqs. (27) and (28) which appear in the HVBM
scheme is the same in both cases, namely, —(1—z), the
question arises whether terms of such a kind are also
present in the transitions q —+g and g —+g which are not
accessible in O(a, ) deep-inelastic scattering since there is
no coupling of photons to gluons. A possible way to
study this problem is to examine the behavior of our po-
larized n-dimensional 2~3 matrix elements in the limit
when one parton becomes collinear to another one. For
example, again regarding the process q (p, )g (li2 )

—+y(k&)q(kz)g(k3), we can study the case k2=(1 —x)pz
which means that the outgoing quark is emitted col-
linearly by the incoming gluon with the momentum frac-
tion 1 —x [Fig. 4(a)]. In this limit the polarized matrix
element reduces to

b ~M ~qg zqq ( e) bPqq(x )+2'�(1 x )
2 1

To study the transition q —+g, we have to turn, for exam-
ple, to the process

)'(ki )q(k2)q'(k3)

in the limit k3 =(1—x )p2 [Fig. 4(d)]. The result is

b ~M~qq rqq ( E) bPqq(x) 2CF(1 x)2 1

X a/M /'„„. (31)

Equations (29)—(31) strongly suggest that the presence of
additional terms —(1 —x ) is peculiar for the transitions
j~i in the HVBM scheme. In fact, no matter which col-
linear limit we study in one of our subprocesses, the
respective splitting function is always accompanied by
the amount of (1—x) terms shown in Eqs. (29)—(31),
which seems to render these terms in some sense univer-
sal in the HVBM scheme.

Summarizing the above discussion, we find it most
plausible to choose the finite pieces hf; (x) in the init.ial-
state factorization for the polarized case as (MS~ scheme)

P, ~mmTI, m
1 —x
a

k3

k,

bf, (z)=a,, (1—z),
where

qq CF ~ aqg R

a = —2C a = —4XW F'

(32)

(33)

Qk,

P2

k

k P—
3 2

—k
2

—k3

FIG-. 4. Collinear configurations in qg~yqg and qq' —+yqq'
{as examples) which reveal the amount of (1—x ) contributions
accompanying the splitting functions. (a) For the g~q transi-
tion, (b) for the q ~q transition, (c) for the g~g transition, and
(d) for the q —+g transition. The dotted boxes frame the n-
dimensional 2~2 processes which, when multiplied with the
appropriate splitting terms, give the collinear limit of the 2~3
matrix element under consideration. Crossed diagrams are not
shown.

The terms a;~(1 —z ) are thus absorbed into the definition
of the polarized parton distributions. For most of the
subprocesses the efI'ect of this choice on the final result is
nothing but an exact cancellation of all terms which orig-
inate from k terms in the 2—+3 matrix elements. This
does not happen by chance: It is well known [48] that in
the HVBM scheme calculation of the DIS coefficient
b f (z) the additional 2T~(1 —z) term [see Eq. (27)] also
originates from the (n —4)-dimensional scalar products
in the matrix element for y*g —+qq, and quite a similar
statement is true for the term —4C~(1 —z ) in hf (z) [Eq.
(28)]. Furthermore, the additional (1—x ) terms in Eqs.
(30) and (31) can also be shown to completely originate
from "hat" momenta integrations. Only in the case of
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the qq annihilation processes, some 5(1 —w) terms that
originate from k /sz3 terms in the matrix elements as de-
scribed in Sec. IID, survive after factorization and ap-
pear in the final result. It should be noted that in spite of
the attractiveness of the MS~ scheme any other choice is
possible. Of course, physical results must be independent
of the choice of the factorization scheme. Any change in
the functions (b, )f;.(z) leads to a corresponding
modification of the two-loop Altarelli-Parisi splitting
functions in such a way that physical results remain un-
changed. Unfortunately, the latter are not known up to
now in the polarized case.

A final remark is necessary concerning the function
Hy (z, M' ) appearing in Eq. (24) which we take to be

1 2

H (z, M' )= — P(z—)'Yq

with

P~ (z)=[1+(1—z) ]/z .

nI. neer. RESULTS

Before we point out the general structure of our Anal

results we have to make a short comment concerning the
cancellation of mass singularities. Since we are consider-
ing an inclusive photon cross section, the outgoing pho-
ton may be accompanied by different partons in the Anal

state, even for the same combination of incoming par-
tons. For qq scattering there are contributions from

qq ~ygg, qq ~yq'q', and qq —+yqq. Only when the
cross sections for all these processes are added can a finite
result be expected. Indeed, after adding all (i.e., virtual,
2—+3 and factorization counter term) contributions to
qq ~ygg the pole term

CFX~
T 5(1—w) (35)

remains in the unpolarized and (apart from the sign) the
polarized cross sections. This term is canceled by corre-
sponding terms from qq~yq'q' and qq —+yqq. This
works since the cross section for the process qq —+yq'q'
can be split up into contributions which are either -e

Note that even for the polarized case only the unpolar-
ized splitting function appears since the H term in Eq.
(24) belongs to a final-state collinearity. Equation (34)
shows that we do not subtract any finite pieces, i.e., we
stick to the MS scheme as for all unpolarized calcula-
tions. A transformation to any other scheme (e.g. , DIS&
scheme [53]) is straightforward.

We have now collected all technical details. Adding
the factorization counter cross sections to the previous
results we can eliminate all remaining singularities and
arrive at the final result which is presented in the next
section.

or -e' where e and e' are the charges of q and q', re-
spectively. The terms proportional to e simply lead to
contributions —(XF—1) when the sum over the different
possible quark Aavors in the final state is taken. Separat-
ing off the same terms from the process qq ~yqq (for
identical fiavors) therefore yields XF contributions.
There is a pole term among these which cancels the term
in Eq. (35). This procedure is not only suited for the
above pole term but also for all terms -e in the cross
section for qq ~yq'q'. We have absorbed all of these (al-
ways together with corresponding terms from qq~yqq)
as contributions -X~ into the qq —+ygg cross section.
This has several advantages. First of all, there are
5(1—w) and 1/(1 —w)+ terms among these terms, col-
lecting all these in one place makes them easier to handle
numerically. The remaining "truncated" cross sections
for qq~yq' 'q ' ' then no longer contain any 6 functions
or plus distributions. Note that this is also automatically
the case for all other processes shown in Fig. 3. Second,
we find that the final result for qq ~ygg for the polarized
case is (apart from the sign) exactly equal to the one for
the unpolarized case. This feature only develops after ab-
sorbing the e terms from qq —+yq' 'q' '. lt should be
noted that the equality of the polarized and the unpolar-
ized cross sections for qq~ygg is trivial in any scheme
which uses a totally anticommuting y5 since in such a
scheme all y~ can be removed from any of the traces (i.e.,
in the virtual as well as in the 2~3 or the factorization
piece), leaving a factor (1—hh') in front of the final
helicity-dependent result where h and h

' are the helicities
of the incoming particles. In the HVBM scheme the re-
sult comes about in a rather nontrivial way, namely, due
to a complicated interlude of the virtual corrections, the
2 —+3 contributions [including the surviving 5(1—w )

terms originating from the k integrations, cf. Secs. II D
and IIE], the factorization piece [including the absorp-
tion of the terms -(1—z) mentioned in Sec. II E], and
the e terms from qq~yq' 'q ' ', all of which are individ-

ually different from the corresponding unpolarized result.
Only in their sum do these differences drop out. The
same is true for the remaining terms (-e' ) in the final

result for qq ~yq'q' which are also the same (apart from
the sign) for the polarized and the unpolarized cases,
which is again trivial in a scheme with an anticommuting
y5. Of course, for our choice of factorization scheme, in

particular, regarding Eq. (32) and its preceding discus-
sion, the final results for the polarized cross sections
when calculated in the HVBM scheme or in a scheme
with an anticommuting y& must be the same. At this
point one might argue whether it was necessary to use the
more complicated HVBM scheme instead of using a
scheme with an anticommuting y5 which allows one to
obtain certain results in a trivial way. Nevertheless, we
think that it is much safer to use the HVBM scheme
when dealing with the other processes such as qg —+yqg,
where y5 really develops its algebraic peculiarities, since
this scheme, as mentioned above, has the property of be-
ing internally consistent.

As far as the unpolarized case is concerned, we have
been able to compare our results with those listed in the
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FQRTRAN code of Ref. [3]. We find complete agreement
in every detail, apart from the fact that we use a different
spin average for incoming gluons whenever they are
present in a subprocess, as discussed in Sec. IIA. This

leads to slight differences between the two results which
are, however, calculable and under control.

For all processes the final cross section can be cast in
the form

dh&
uw(1 —u )s

=aa, (p )
1 M M' 1Ac, 6(1—w )+Deb +hc, ln +bcdln +Ac, 5(1 —w )+hc2

(1 —w)+

ln(1 —w )+EC3
1 —w

+bc~lnv+bc~ln(1 —v)+hc6lnw+bc7 +bcsln(1 —w)
lnw

1 —w

+bc9ln(1 uw)+bc, 0 +bc„ln(1 u+uw)+hc +bc, 3 . (36)
1 w 1 —w

1

(1—w)+

ln(1 —w )

1 —w

1 +ln(1 —A )5(1—w ),(1—w)~

ln(1 —w )

I —w

(37)

+ —ln (1—A )5(1—w),1

2

where 1/(1 —w)„is defined for the lower limit A of the
w integration by

f(w) d
& f(w) f(1)d-

c (1—w)„w 1 —w

and analogously for

(38)

ln(1 —w )

1 —w

These latter equations are important for a numerical eval-
uation of our next-to-leading-order cross sections.

Let us finally note that first numerical calculations in-
dicate that the asymmetry

d 3g ABgd 3

d 3 AB)d 3p
(39)

y r
is stable under the O(aa, ) corrections, although the indi-

Again the unpolarized results are obtained by removing
the 6's from Eq. (36). The coefficients (A)c;(u, w) which
are rather lengthy even when abbreviations are intro-
duced are listed in Appendix D for the unpolarized case
and in Appendix E for the polarized [54]. Because of our
choice to absorb all e terms from qq —+yq'q ' into
qq~ygg the coefficients (b, )c, and (b, )cb and (b. )c~,
(5)c2, and (b, )c3 are nonvanishing only for the processes
qq —+egg and qg ~yqg. These coe%cients constitute the
so-called dominant part [55] of the next-to-leading-order
corrections. It should be noted that the "plus" distribu-
tions associated with them have to be modified if the
lower limit of the w-integration is different from zero [as
for our ease, cf. Eq. (10)] [38]:

vidual cross sections receive sizable corrections in some
kinematical regions. Furthermore, 3, in fact, turns out
to be strongly dependent on the size of the polarized
gluon distribution AG. It should be noted, however, that
the validity of the numerical results for the polarized case
is still limited since, as mentioned above, the polarized
two-loop splitting functions are not known up to now.
These are needed for a consistent Q evolution of the po-
larized parton distributions, unless one sticks to a fixed
scale M . Furthermore the numerical results depend on
further assumptions concerning the treatment of the
poorly understood fragmentation of a final-state parton
into a photon. As the content of this present paper is
completely untouched by these uncertainties (apart from
the choice of the factorization scheme which is trivial to
change), we want to keep it self-contained and reserve a
more detailed quantitative analysis to a forthcoming pub-
lication.

Note added in proof. After completing this work we
became aware of the recent paper [57] in which the
0 (aa, ) corrections for polarized prompt photon produc-
tion were calculated independently and quantitative re-
sults were presented for them. In contrast to the HVBM
scheme which we used the authors of Ref. [57] obtained
the corrections using partly the y5 scheme of Ref. [12]
and partly dimensional reduction [19).
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APPENDIX A: FOUR-POINT FUNCTIONS

In this appendix we present the results for the scalar,
vectorial, and tensorial four-point functions for massless
particles [33] which are needed to calculate the box-
graph contributions [see Figs. 2(a) and 2(b)]:
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d "r [1;r";r "r '; r "r'rt']
(2m. )" r (p —r) (q —r) (q+k r—)

~

( 4 )(4—n )/2

(4m. )

4—n n nr a ——1,——1
2 2 '2

X [2(n —3)A, ;

(n —3)(p~A~+k" A2+q" A, );
—,'(n —2)(p"p A3+k"k A3+q~q A, +[kq]~ A2)+ —,'(n 4)[p—q]" Az+ —,'[pk]" Aq+ —,'g" A5,

(n/4)(p&p p&A7+k~k k~A&+q~q q~A&+[kkq]~ ~A3+[qqk]~ ~A&)+ ,'(n —4)[p—qq]" ~A2

+ '(n —4) [pp—q ]"~ A 3 + ,' [ppk ]—" A 8 + ,' [pkk —]"'A 8 +—'( [pkq ]"~+ [pqk ]"~ ) A ~+ —,
' [gq I"'A 5

+ —,'[gp]~ ~A6+ —,'[gk]" ~A6+0((n —4) )],

(Al)

(A2)

(A3)

(A4)

where

[kq ]"—:k "q +k q",
[kpq P t'=k "p qc'+q"k pt'+p "q'k~,

and

s 1 —cv 1 1
ct (cv) ——

Q7 2

1 1+ ——
co (1 —E)

3

1 E

[gp]"'=g" p'+g—"'p +g'p" .

Defining s =2qk, t —= —2pq, and u = —2kp, the vectors p,
q, and k must satisfy the relations p =q =k =0 and
s+t+u =0. With

cv = 1+s /t, 0= 1+t /s = cv /(cv —1 ),
and n =4—2e the coefficients A, are given by [33]

18(&)—
s 0 0 1 —e

—1 —es

1 2 E 1+ (2 —e) 8(fl )
fl cod(1 —e) ADA

2 E 1 1+ + (2 —e) cF(cv)0

—1 —e

32= —+ (1—cv)8(co)
t e

t
—1 —e

8(Q),

s 1 co 1 1
A3 = 8(co)+ +-

t 0 cv(1 —e) e

t
—1 —e

18(Q)—
s 0 1 —e

1 e 1 1A4= —2 —+(1—e)—d(cv)
t co 0

—1 —e ——cod(co) + ——QP(Q)
t e S

and A, (s, t ) = A; ( t, s ). Here the function 8 is defined by

d(y) =—J dx
o 1 —xy

ln(1 —y) + 1 L. ( )+O( 2)
y 'y "'

APPENDIX 8:
PARAMKTRIZATION OF THK MOMKNTA

Note that the last equality is also valid for y & 1, using in
this case [56] ln(1 —y ) = ln(y —1)+i7r and

Li2(y) = —
Li2[y /(y —1)]——,

' ln (y —1)

+ —,'~ —2i~lny+inln(y —1) . .

As can be seen in Eqs. (16) and (17), all dilogarithms Li2
drop out in the final results for the virtual corrections.

A5=
—1 —es t

—1 —e
scAcv)+ tP(fl),

s
—1 —e

s cF( cv ) +1 1

Q cv(1 —e)

t
—1 —e

1—2 —+(1—e)—8(Q)
s cv In this appendix we give the parametrizations for the

vectors p, , pz, and k, introduced in Sec. II 0 in the rest
frame of k2+k3. There are three possible sets, depend-
ing on which vector is chosen to point in the z direction.
With p i =sv /2+sz3,

p ~
=s ( 1 —vw ) /2+s23,

t
—1—

1+ t 8(Q)——
s 1 6

and

k, =s(1—v+vw)/2+s23
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we have the following.
Set 1:

p, =p, (1,0,0, 1,0, . . . ),
p2=p2(1, —sing", O, cosg", 0, . . . ),
k

~
=k

&
(1,—sing, O, cosg, O, . . . );

Set 2:

p, =p, (l, sing", O, cosg", 0, . . . ),
p2=p2(1, 0,0, 1,0, . . . ),
k, =k, ( i, sing', O, cosg', 0, . . . );

Set 3.

p, =p, (l, sin, g, O, cosg, O, . . . ),

p2 =p 2 ( 1, —sing', 0,cosg', 0, . . . ),
k, =k, (1,0,0, 1,0, . . . ),

where the ellipses indicate n —5 zero components. The
angles P, g', and 1("are given by

2&w(1 —u )(1—w )sing=
1 —U+UW

2u&w(1 —u )(1—w )sing' =
(1—uw)(1 —u+uw)
2&w(1 —u )(1—w )sing" =

1 UM

Note that these expressions vanish for w ~ 1. It is
now easy to obtain the Mandelstam variables from these
sets of parametrizations. For example, defining s &2

=(k, +k2) and t2 —= (p, —k2) we conveniently choose
set 1 where we have, using Eq. (19),

Si2t2

4 1

s 2u(1 u+u—w) (1—cos8, )(1+singsinO, cos02 —cosgcos8, )

which leads to the integral of the type (22).

APPENDIX C: n-DIMENSIONAL CROSS SECTIONS FOR THE POLARIZED 2 —+2 PROCESSES

Here we present the polarized cross sections dh& ' ' /du(s, u, e) as calculated in the HVBM scheme [37] needed
for the factorization of mass singularities. Defining the common factor

p ' 4'
s 1 (1—&) su(1 —u)

we have, using t =(p, —p, ) = —s(1 —u) and u —= (pb —p, ) = —su,

ging qq 7& 2CF 2 + 2

(s, u, e) = — aa, e JV (1+e) +6e+2e
tu

(Cl)

axe «
(s, u, e)= aa, e A

QU c
s —t u

E
st

(C2)

ygy qq ~2+a 2

(s, u, e)= — a, JV +e
s

(C3)

( )
1 2g( 2+ 2)

Nc

dA& qg qg 1 ' Nc
(s, u, e) = a, JV(s —u +et )

CF

su
(C5)

gQgqq~qq CF S2—u 2

(s, ,u)e= a, JV
QU Nc

(C6)

ygyqq qq C ~2 ~ 2 ~2 ~2 2 s 2

( 1+e) —e(3+e)
tu

(C7)

d4& qq qq CF s —u t +u 2 u(s, u, e)= a, JV —e— + (1+e) ——[t(l+e)—u(1 —e)]
dv

' '
Nc '

t s st s
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APPENDIX D: COEFFICIENTS
FOR THE UNPOLARIZED CASK

Here we list the coefficients c; (i =a, . . . , d; 1, . . . , 13)
[to be used in the unpolarized version of Eq. (36)] for all
contributing subprocesses. We have introduced the ab-
breviations

T =(1—u) +u
qq

T g
=1+(1—v)

X=1—uw,

Y=1—v +uw,

u, =i —u (i=1, . . . , 5),
ho= —",Nc —

—,'NF
~

(D 1)

where NF is the number of active flavors. As usual we
have CF= —', and Nc=3. Furthermore, we have already
set Tz =

—,
' wherever it appeared. As discussed in the

main text, we have absorbed the -e contributions from

qq~yq'q' (together with the corresponding contribu-
tions from qq~yqq) into the cross section for qq~ygg
where they appear as NF contributions in the coefficients
c&, c2, and c&3. Therefore, the coe%cients for qq~yq'q'
are all proportional to e' which we have left explicitly in
the formulas for the sake of clarity. In all processes in-
volving only one quark flavor we omit the trivial charge
factor e . The cross section for qq'~yqq' can be ob-
tained from the one for qq'~yqq' by simply changinge'~ —e', where e' is the charge of the q'. Finally it
should be noted that the cross section for the process
g(p, )q(p2)~yqg can be obtained from the one for
q(p& )g(pz)~yqg presented below by making the replace-
ments

U~ 1 UW

1 —vW~
1 —uw

and introducing the Jacobian u /(1 —vw ) in the integrand
in Eq. (10).

ca

2 2 2CF ut CF Cz
2 (1 —2u)u vv,

T 3 —21n, cb = —4 T, c, = (1—2u) — + +(3u +v f )w, cd=0,
C v

CF P2 CFNF
c, = T boln — T (5 —31nv)

qq o ~ 9N qq

CF+ [ (7 n)T ——2T—lnu lnv, +u(2+u)lnv, +u, v3lnu+(3v +2v&)ln u+(2u+3v f )ln v, ]
C

(67—6n )T
qq —vu&lnv&—

18

11—16vu
&

6
lnv—

2v+3v ) vu

2 ' 2
ln u — ln u

CFNF
2 qq

CF CF v ) CF2

(11—12lnu, ) —4 ln, c3=2 (4C~ Nc)T, c~=——c, ,

1+U C2 V2+ 2 2

c5 =CF 1 —u — +uv, w +2
X Nc X c6 c5y c7 CF T

1+v i C Uv i
c =C —1 —2vv + —(1 —2v)uw + 1+SuvF c

3u+4v
& —(1 —4v+Su )wX

CF
c = —4 u(u, —uw)+CF (u2 —uw), c,o= (4CF Nc)T, c„—=c,2=0,

Nc Nc

CFNF CF
ci3 v(v2 Uw )+

C C

+C u(1 —4v)
2X2

VV i UV]—4uv + + +(1+v —4v )wX

2 —1 lv, (u3 —1 luv, )w

6 6
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2 W rq'q'

CF 4U 1 2U2 4V1U2
2

Cd= eq U U1M 1 + +
XC q Y4 Y Y3

CF 2U V1 6UU1 N3

c = e' (1 —w)w —1+
Y2 y2C
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CF
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X X
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X
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CF
C4= V

C
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X 2
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U 2

NC 2V1
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6
C Z X
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2XC
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—u

CF 2

C

gg uw
(4 3 )

u w

X 2 2
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cia= —(1+v2)+ v(u +v, ),
C

F U1U3
2

C11 — U 4U1 +
c

2v1v3 2V1
2 3

1] 2V1U4

Y2 Y3
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2 Y
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2V1 3UW U W2+ +
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5. W XW
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APPENDIX E: COEFFICIENTS FOR THE POLARIZED CASE

Here we present the b,c; (i =a, . . . , d; 1, . . . , 13). We use the abbreviations (D 1 ) of Appendix D, but with T re-
placed by

AT =1—(1 —v)
qg

as in Sec. II C. The coefficients for the processes qq~ygg and qq~yq'q' need not be repeated, they are exactly the
negatives of the corresponding unpolarized ones. All remarks made at the beginning of Appendix 0 also apply to this
appendix.
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Y

2
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CF
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C
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8 4 Y
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C C C
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&
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