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An extension of Weinberg s approach is applied to the m~-scattering amplitude of the leading order in

1/N, . The resulting sum rules (SR s) restrict the masses and widths of m~ resonances providing duality-
like properties of the ~~ amplitude and enable us to express constants of chiral Lagrangians in terms of
resonance parameters. The numerical verification of SR's displays agreement with present experimental
information and consistency with the results of some models.
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I. INTRODUCTION

The method of effective Lagrangians (EL's) is widely
used in modern particle physics due to the simplicity and
convenience of its applications. The low-energy dynam-
ics of hadrons is one of the areas where this method plays
an essential role because the problem of a correct descrip-
tion of the hadronization regime from the QCD stand-
point has not yet been resolved.

The standard way to obtain the EL for some "light"
degrees of freedom of a given theory consists of perform-
ing the integration over all the rest ("heavy" ) degrees in a
generating functional, the result giving one effective
theory, which, as usual, contains nonlocal interaction
terms. Expanding, further, nonlocal interactions in a
series of local operators and neglecting (if possible) higher
terms, one obtains the approximate EL for some selected
("light" ) degrees of freedom of the underlying theory.
The structure of its vertices corresponds to the peculiari-
ty of "low-energy" dynamics, while the information on
"high-energy" physics is contained in coefficients of the
expansion.

The EL technique is intensively applied now for the
description of low-energy strong interactions (see, for ex-
ample, [1—4]) as the long-distance QCD manifestation.
The main difficulty arising in this way in comparison
with the picture above is that, from the QCD point of
view, hadrons, while being the collective excitations, can-
not (in contrast with quarks and gluons) be treated as any
elementary degrees of freedom. So, the problem of the
direct derivation of EL's for light mesons from the first
principles of QCD is, on the whole, that of the descrip-

tion of the long-distance QCD regime. The latter task, as
mentioned above, is extremely hard and has not been
solved until now.

Nevertheless, there exist methods [5—8] (based on some
model assumptions) for the calculation of low-energy
EL's for pions, the results of these methods being close
enough to those obtained in experiments. For example,
the EL for pions to the fourth order in momenta has been
derived by the integration of the QCD nontopological
chiral anomaly [5,6]. One of the important features of
EL's provided by these methods is that their structure
corresponds to that of QCD in the limit of a large color
number N, . Keeping in mind this circumstance we shall
consider QCD in the leading order of 1/N, expansion
and obtain some relations between the parameters of the
resonance spectrum and those of low-energy interactions
of pions.

It is well known that in the limit of large color number
N, QCD is reduced to the theory of weakly interacting
mesons [9,10] one of which, namely, the pion, being
massless in the exact chiral SU(2)SU(2) symmetry limit
m„=md=0 (the so-called chiral limit). Thus, to obtain
the EL for pions [effective chiral Lagrangian (ECL)] in
the leading order of 1/N, expansion, one has to integrate
over all meson fields beyond that of the pion or, that is
the same, to express the low-energy pion coupling con-
stants in terms of heavy meson parameters. This latter
task may be solved with the help of the expansion of the
amplitude (calculated in the tree approximation, i.e., in
the limit of N, ~ ao) of an appropriate pion process in a
power series of external momenta and subsequent
identification of the corresponding coefficients with those
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extracted from the ECL.
Unfortunately, the coupling constants of the full meson

theory are unknown. To overcome this difficulty one has
to involve some additional information. It seems mean-
ingful to use the phenomenological information on the
asymptotic behavior of the scattering amplitudes at small
t and large s. Indeed, if one supposes that the full ampli-
tude for ~~ scattering does not change drastically its
asymptotic behavior in the limit X,—+(x), he must con-
clude that the sum of the graphs with an arbitrary fixed
number of loops cannot violate the asymptotics of the
physical amplitude. Hence, we arrive at the conclusion
that it is natural to demand the observance of the asymp-
totic restrictions (AR's): the amplitude of any given pro-
cess calculated in the limit of large color number X, (or,
the same, in the tree approximation) must not violate the
phenomenologically known (i.e., Regge) asymptotic
behavior.

Weinberg [11] (see also [12]) first recognized the
significance of AR's. In his own approach these restric--
tions (for the case t =0 and pion mass @=0)had been ex-
ploited for the investigation of some purely algebraic as-
pects of broken chiral symmetry SU(2)@SU(2) (see, also
[13—19] where Weinberg's results were generalized for
more complicated groups, and [20—24] where a similar
approach was used to study Reggeon couplings). In this
paper we shall take advantage of another, slightly
diFerent, approach [25] which is more convenient for our
purposes. The only assumptions on which our approach
is based are the following: (a) the equivalence of QCD in
the large-X, limit to the theory of weakly interacting
mesons (tree approximation); (b) Weinberg's suggestion
[11]that at t =0 the tree-level amplitude does not violate
Regge asymptotics is valid also in some small region of
t&0.

The result of the application of this approach to the
pion elastic-scattering process may be written in the form
of the sum rules (SR's) for the parameters of resonance
spectrum and coupling constants. This (in the case of
t =0) was shown in [25—28]; this paper is devoted to the
extension of corresponding results concerning the elastic
~~ scattering to the case of nonzero values of t. We show
that the SR obtained in this way can be divided in two
large groups. SR's from the first group express the low-
energy pion-pion coupling constants in terms of masses
and widths of mm. resonances. The second group consists
of SR's expressing the restrictions of the resonance spec-
trum themselves. The latter group of SR's originates
from a certain dualness property (i.e., some infinite sum
of poles in t and u turns out to be equal to another, also
infinite, sum of poles in s and u) of the neer amplitude
which, as we show, follows from the condition of the
compatibility of the AR's with requirements of exact
symmetries (Bose and crossing).

The results of our calculation of ECL parameters of
the p order (first group of SR's) are compared with the
experimental values as well as with the values obtained in
low-energy QCD models. Then it is shown that some
SR's of the second group (those which can be verified) are
confirmed by existing experimental data. This provides
extra confirmation of the reasonability of the approach.

Perhaps the most interesting result of this paper is con-
necting the values of some low-energy mm parameters
with those obtained with the help of Veneziano-type
models. This result may be treated as a hint on the close
relation between dual models and the large-X, limit of
QCD at low energy.

II. THE STRUCTURE OF ~m-SCATTERING
AMPLITUDE IN THE LARGE-X, LIMIT

where A, B,C are the scalar functions of Mandelstam
variables s, t, u

s =(k, +k2), t =(k, —k3), u =(k, —k4)

obeying the Bose symmetry requirements

A (s, t, u) = A (s, u, t),
B(s, t, u)= A (t, s, u),
C(s, t, u)=A(u, t, s) .

The amplitudes M

M =3B+A +C,
M'= A —C,
M =A+C,

with a definite t-channel isospin value I in accordance
with Regge theory prescriptions must possess (at fixed
value of t) the following asymptotics at s ~ oo:

a&(t j
M -Pt(t)s ' (4)

where

at(t) =at(0)+ tat

and

ao(0) = 1, a, (0)=0.5, a2(0) (0 . (6)

Thus, according to assumptions (a) and (b) (Sec. I) and
formulas (3)—(6) we demand the following behavior of the
amplitudes A, B,C at small t (the exact meaning of the
term "small" will be explained lower) and large s:

A (s, t) -+ 0,

B(s, t) ~ B,(t),
g —+ 00
t-0

C(s, t) ~ 0 .

Let us consider the elastic ~m-scattering process

vr, (ki )+7rb(k2) —+m, (k3)+md(k&) .

(a, b, c,d=l, 2, 3 are the isotopic indices and k„.. . , k4
are the pion momenta. ) Its amplitude M' ' can be writ-
ten in the form

M abed fiabfi c—d A +f acgbdB +gadgbcC
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It should be stressed here that we do not suppose that
functions A, B,C possess the correct Regge asymptotics
in the leading order of 1/N, expansion; we suggest only
that they do not violate it. This suggestion is quite
enough for the derivation of all of our subsequent results.

To proceed further we need to display the detailed
structure of the scattering amplitude in the tree approxi-
mation (or, the same, in the leading order in 1/N, ). The
isoscalar amplitudes A, B,C can be written in the form
(see, for example, [29])

PJ[zi(t)] PJ[z0(t)]
3 (s, t) =g V, (J =2l + 1 )

—g VD (J =2l ) +
Qdd u —Mi „,„s—Mo

(8)

B (s, t) = —g Vi(J =21+1)PJ[z, (t)]
Qdd

1 + +BD(t)+ .1

s M] u M$
(9)

PJ [zi (t) ] PJ [za(t) ]
C(s, t) =g V, (J =2l + 1) —g VQ( J=2l)

~
+

Qdd s M ) gyglI u M
(10)

where

z;(x)=1+2x/h;, h, =M, 4lj, (i—=0, 1),
p is the pion mass and constants VD( J) and Vi (J) can be
related to the decay widths of the corresponding reso-
nances:

M)Vi(J)=8~(2J+ I) I (R ~arm), .
k

Mo
V0( J)= —,'8~(2J + 1) I (R ~~~),

k

k being the pion c.m. system (c.m. s.) momentum.
In Eqs. (8)—(10) the summation is implied to be per-

formed over all resonances of the same (odd or even) spin
J (J =2l +1 or J =2l) and different masses Mt (I =0, 1

corresponds to isospin value) as well as over all values of
J (l =0, 1, . . . ). Later on we shall imply such summa-
tion, the corresponding symbols being sometimes omit-
ted.

The ellipses in (8)—(10) mean terms explicitly violating
the restrictions (7). Such terms may originate from the
pointlike 4~ vertices as well as from oA-shell ~~R in-
teractions. The graphs with t-channel poles are an im-
portant source of such terms. The unknown function
BQ(t) in (9) gives an example of a term exactly of this na-
ture.

In order to satisfy asymptotic restrictions (7), we
demand the sum of terms omitted in (8)—(10) to be equal
to zero; this implies that there must exist a fine mutual
cancellation among these terms. So, expressions (8)—(10)
(with ellipses being dropped out) provide the complete

form of the neer amplitude in the leading order of I/%,
expansion with the AR being taken into account.

III. BOSK SYMMETRY RKQUIRKMKNTS
AND SELF-CONSISTENCY SUM RULES

Even a short glance at formulas (8)—(10) is enough to
notice that they do not possess the Bose symmetry [Eqs.
(2)] required. The origin of the puzzle is obvious: start-
ing from symmetric expressions constructed of resonance
exchanges and pointlike 4~ vertices, we then take advan-
tage of asymmetric conditions (4) of the proper asymptot-
ic behavior at small t and large s which explicitly makes
the choice between s and t variables. Of course, we can-
not reconcile ourselves to the loss of such a fundamental
property of an amplitude as Bose symmetry; hence, we
are forced to consider the way to preserve it. It is not
dificult to understand that the only possibility consists of
imposing certain limitations on the resonance parameters
Vt( J) and Mt (J) appearing in expressions (8)—(10).

To obtain an explicit form of these limitations, let us
analyze at the beginning the first of Eqs. (2), which dic-
tates the function 2 (s, t, u ) to be symmetric under the in-
terchange of t and u. With the help of Eq. (8) one obtains

Pq[z, (y)] P~[z, (x)]
x —Ml y —Ml

= g VD(J =2l) P~ [za(y ) ] P~ [z0(x )]-
(x +y) —(MQ —4p )

g V, (J =2l+1)
Qdd

Similarly, the second equation in Eqs. (2), connecting the
amplitude B(s, t, u) with the function 2 (s, t, u), may be
written [with the help of (8) and (9)] in the form

g V, (2l +1) .PJ[z, (y)]
Ocld

1

x —Ml
1

x+y+(M, —4p )

PJ [z, (x)] PJ [z0(x) ]—g V0(2l) =Ba(y) .
x+y+(Mi —4p ),„,„y—M20

(12)

It can be shown that the substitution of Eqs. (8) and (10) into the last of Eqs. (2) results in the condition completely
equivalent to (11). Moreover, it is possible to prove that Eq. (11) is, in its turn, a direct consequence of (12).

Thus, Eq. (12) expresses the general form of Bose symmetry restrictions on the resonance parameters VI(J) and Mt
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(13)

appearing in the representation (8)—(10) of the irir-scattering amplitude (1) in the leading order of I /N, expansion. This
equation may be regarded as a compact record of an infinite series of self-consistency sum rules for the parameters men-
tioned above. Indeed, expanding both sides of (12) in a power series in x [this procedure is permissible because Eqs.
[(8)—(10) are correct at small values of x,y] and comparing the corresponding coefficients one obtains

Vi(2l + 1) V()(2l)

h 1 + t M() t—

and

b—5 o+g V()(21)vr'"'M +' h

m+k m+k

y V (2l + 1) (m)M —2(k+1)h —m +h —(m+n+1) y ( 1)l (m+n —l)ck+ y ( 1)l (m +n —I)Cl —m

1=k 1=m
(14)

and

B,(y)= g b„y
m=0

Here, m, k =0, 1, . . . ; C1 are binomial coefBcients; b are
defined as

V (2l)ir("0 I
~2(n +1)

even 0

V, (21+1)ni") Vo(2l)irJ"'
M2(n + 1) ~ M2(n +1)+ ~

Qdd 1 even 0

Vi(2l +1)rr'"
M2(n +1)

odd 1

(17)

2 () 1 (J+k)1

Vi(21+1) „V()(2l)
4 ~21+ 1 4 ~21
1 0

Vi(2l +1) „, V()(2l)
~21+ 1 6 ~21

1 0

Vi (2l +1), ,
„V()(2l)

[~21+ ) ~21+1+3] 2 6 ~21

(15)

(16)

Equation (13) expresses the previously unknown func-
tion Bo(t) in terms of resonance parameters only. So, the
functional dependence of the irir-scattering amplitude (1)
of its arguments s, t, u is now completely determined. All
unknown coupling constants of pointlike 4~ vertices
proved to be excluded.

The representation (14) of the infinite set of self-
consistency SR's is too complicated. Thus, for the sake
of visuality, it would be useful to write down some first
SR's explicitly. In the chiral limit )Lt =0 (which simplifies
considerably the form) these SR's (of order M and
M ) are

The remarkable feature of (17) is that all terms are pos-
itive definite. So, since ~J '-J and MJ —J at large J, we
conclude that the values of constants Vo(J) and V, (J)
must decrease faster than J " (for arbitrary n) to provide
the convergence in the usual sense of this latter SR.

Our next note concerns some characteristic features of
self-consistency conditions (11) and (12). From the for-
mal point of view they demonstrate the properties pecu-
liar for dual models: the summation of poles in one set of
variables results in a sum of poles in another one (or,
poles in some combination of both variables). In other
words, to satisfy the conditions of the large-N, limit of
QCD, AR, and Bose symmetry simultaneously, the re.
scattering amplitude must possess certain dual properties;
this means that (at infinitely large N, ) the spectrum of mn

resonances must be infinite and strongly restricted by
Eqs. (14).

It is our point here to explain the correct meaning of
the above-used term "small values of t." The best exam-
ple of an explanation is given by the second of Eqs. (7)
where, in accordance with (4), we admit the presence of
Bo(t). This term does not vanish at shoo, and, hence,
its presence coincides with the Regge theory prescrip-
tions only for

The relatively fast convergence of SR's (15) and (16)
permits one to check their validity numerically (with the
help of experimental data [30]). It should be noted that,
due to the presence of multipliers ~z'1', the right-hand side
(RHS) of these SR's contains no contributions of scalar
mesons (J=O), this circumstance being of importance
since the corresponding data are extremely unreliable.
The results of the numerical verification of Eqs. (15) and
(16) together with the detailed analysis of the infiuence of
possible corrections will be presented in the next section.

Considering Eq. (14) (in the chiral limit —for the sake
of simplicity) one obtains, after some algebraic transfor-
mations, the following set of SR's (n, k = 1,2, . . . ):

Similar limitations can be obtained from the considera-
tion of two other equations (7). Then, in the course of
our calculations we use the power-series expansions in t.
These expansions are valid only if

(ti &M2,

M being the mass of the lightest crier resonance (M ~0.5

GeV). Remembering that ai-(1 Gev) (IXO) and

ao —(0.5 GeV), one concludes that the term "small
value of t" stands for
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it~ ((0.5 GeV)' . (18)

Of course, (18) does not mean that Eqs. (8)—(10) be-
come invalid for larger values of ~t~. It means only that
to obtain the correct representation of 80(t) for

~
t

~

) (0.5

GeV) one must use a suitable power-series expansion in
(12), the SR (14) remaining unchanged.

IV. PARAMETERS OF THE EFFECTIVE CHIRAL
LAGRANGIAN AND mm. RESONANCES

Formulas (8)—(10) express the mvr amplitude in terms of
parameters of the resonance spectrum only. They are
valid for any values of s. Near threshold, however, it is
more convenient to deal with the low-energy expansion of
the form

2 (s, t ) =g a;,s't J . . (19)
/, J

The coefficients a; appearing in (19) can be related to the
parameters of the ECL. On the other hand, these
coefficients can be expressed in terms of resonance pa-
rameters; to do this one has to expand (8) in a power
series of s and t. So, it becomes possible to calculate nu-
merically at least some of the ECL parameters with the
help of experimental data [30] on err resonances.

We carry out this program in the chiral limit. The
main advantage of this limit is that, while being a correct
enough approximation to the real world, it simplifies con-
siderably the resulting formulas. We use the notation Fo,
L„L2, L3 of [2,4] for the low-energy constants of the
ECL; their relations with the coefficients a; of (19) in the
chiral limit are

1a~=0, aio=, , aors =0
F

Equations (20) have the form of the SR for the parame-
ters of the ECL. In contrast with SR (14) expressing the
consequences of our assumptions (a) and (b) (see Sec. I),
they are caused by an external (for our approach)
reason —the chiral symmetry restrictions. These equali-
ties (in addition to their being interesting by themselves)
provide the possibility to estimate numerically the values
of the above-mentioned ECL parameters and compare re-
sults with those obtained from experiment (see, for exam-
ple, [2]). Hence, both groups [(20) and (14)] of SR's can
be used for the verification of the correctness of our ap-
proach.

Before advancing the numerical calculations let us dis-
cuss possible sources of uncertainties. These are (a) the
uncertainties of experimental data, (b) the incompleteness
of information on heavy (M )2 GeV) mesons, (c) correc-
tions caused by the next orders of I /N„(d) insufficiently
fast convergence of the SR's under consideration, (e)
corrections due to nonvanishing light quark masses. To
avoid troubles caused by points (a), (b), and (d), one has to
deal with rapidly converging SR s containing contribu-
tions of well-established mesons only. Then, the strong-
est 1/N, corrections (strong violation of the Zweig rule)
are expected in the scalar channel which is the most
doubtful from the experimental point of view also.

Therefore one expects the results of numerical estima-
tions to be most reliable for those (rapidly converging)
SR's which do not obtain the contribution of the scalar
channel. With respect to the corrections of point (e) we
would like to note that they are commonly believed to be
small ( —5 —10 %).

Keeping in mind all the reasons expressed above, we
select for the numerical verification the following SR ob-
tained from (14) and (20):

Q ii =a02 =

Vi(21+ 1) V()(21)

1 0

V, (21+1) V()(21)
1/F() =g +g

Mi M40

4(2L2+L3) 8L2
ago F40 0

Thus, expanding (8) in power series (19) and comparing
the corresponding coefficients with those obtained with
the help of an ECL [2], one finds

V, (21+1) „, V()(21) „, Vi(21 +1)
1 0 1

V, (21 + 1) „, V()(21) „, V, (21+ 1)

1 0 1

V, (21+1) V()(21)
1/F() =g +gMi Mo

(21)

(22)

(23)

V, (21+ 1) „, V()(21)0= —g (~'"—I)+g
1 0

4(2L2+L3 ) Vi (21+ 1) VD(21)
(20)

F() Mi M

Vi(21+1), V()(21), , )8L~/F() = —g (m'(J —2)+g
M) Mo

V, (21+1)
8L /F — y (

( ) ( )+1)
1

V() (21)
~(&)

Mo

V, (21+1)
4L2/F() =g

Mi
(24)

Vi(21+1) V()(21)
4(2L2+L3)/F() = —g 6 +g

Mi Mo
(25)

(51+10) GeV =(38+10) GeV

(390+20) GeV =(370+20) GeV

FD=(90+5) MeV (94.3),

(21')

(22')

(23')

The corresponding numerical results (with contributions
of all the mesons placed in [30] being taken into account)
are
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L, /F,"=(23+1) Gev-' (23+8),

(2L2+L3)/Fo=(20+20) GeV (12+10) .

(24')

(25')

2L ) =L2, (26)

The underlined numbers on the RHS of (23') —(25') cor-
respond to the values derived independently (see [4]) from
the analysis of existing experimental information (scatter-
ing lengths, slope parameters, etc.); we would like to re-
call that in the course of our calculations we are using the
data on masses and decay widths only.

Thus, the confirmation of the results (21)—(25) of our
approach by experimental data on meson spectrum pa-
rameters demonstrated by Eqs. (21')—(25') looks to be
quite convincing. Therefore, it would be interesting to
draw this approach for the calculation of low-energy
coefficients of amplitudes for various processes (such as
ym. ~m.m. , mX elastic scattering, etc.). The corresponding
results will be published elsewhere; here instead we would
like to point another way to use the capabilities of the ap-
proach.

To calculate ECL coupling constants one can use mod-
els [5,6,8] based on consideration of the QCD chiral
anomaly. These models, however, tell us nothing about
the parameters of the resonance spectrum. Hence, it
seems natural to combine the capabilities of two ap-
proaches and, using our SR along with the values of ECL
parameters from the above models, to try to obtain some
limitations on low-lying meson masses. For example, us-
ing the results [5,6,8]

V. PARAMETERS OF KCL, DUAL MODELS,
AND THE QCD CHIRAL ANOMALY

As shown above, the spectrum of em resonances in the
large-N, limit must possess certain features to ensure the
dualness property of the mw-scattering amplitude. The
features expressed by SR (14) provide the possibility to
calculate the ECL parameters Fo, L „L2,L3 in an unam-
biguous manner. It would be interesting, therefore, to
compare our results for these parameters with those
given by Veneziano-type dual models (see, for example,
[29,32]) and some models [5,6,8] of low-energy regime in
QCD.

The Veneziano-type form of the mm-scattering ampli-
tude

A (s, t) = V(u, s)+ V(s, t) V(t, u—),
I (1—a (x))I'(1—a (y))

V(x,y) =A,
I (1—a (x)—a (y))

where

1 xa (x)=—+
2M

(31)

(32)

(33)

ensures the low-energy theorem

lim A (s, t)= +O(p ),
s, t~o

(34)

provided the constant A, is related to the pion decay con-
stant F =93 (MeV):

2L2+L3 =0,

12 16~'

(27)

(28)

M

mF„

Expanding (31) in a power series of pion momenta (up
to terms of order p ), one obtains the following expres-
sions for the ECL parameters L, to L3.

[Eq. (26) being the consequence of the large-X, limit] and
our SR (23)—(25), one can obtain the inequality

F 1 — /M
M ~ =(800 MeV)

4(3L2+L3)
(29)

where M is the mass of the lightest scalar (and isocalar)
meson. Thus, we arrive at the conclusion that the ex-
istence of a light scalar meson is the necessary condition
for the correspondence of results of approaches in ques-
tion. It is interesting to note that, if the approximate
equality in (29) is reached, this scalar meson would be
wide enough (g -g ). Further, if one drops out all con-
tributions but that of p and o mesons in our SR [see
the first of SR's (20) and (25)] and uses Eq. (27), he
obtains the famous Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin (KSFR) relation [31]

M =2F~ (30)

This example shows that corrections to (30) have their
origin in contributions of heavy resonances and those of
the next order in the 1/N, expansion.

(35)

L3= —2L~ )

2

L =— ln(2) = 1.25 X 10
—3

2 8~2
P

(36)

(37)

Equation (35) is identical to Eq. (26); it is equivalent to
the consequence of the large-N, limit. It can be shown
that this equation does not depend on the absence or
presence of satellites. Equation (37) expresses the conse-
quences of the particular form of the amplitude (32). It is
interesting mainly because of the numerical value of its
RHS. This value is close enough to that obtained in the
models based on a nontopological chiral anomaly:

N,
2L )

=L 2
= ——1.51 X 10

16m

The most remarkable is Eq. (36) which can [similar to
Eq. (35)] be shown to be independent of the satellites add-
ed. The nullification of the combination (2L2+L3 )

occurs due to the general property of the Veneziano-type
amplitudes —the existence of straight lines in the (s, t)
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plane where the amplitude V (s, t) has its zeros.
It is interesting to note that Eq. (36) follows from the

models of the low-energy QCD regime also. Careful
analysis (see [33,34]) shows that this equation is afFected
both by perturbative gluon corrections and finite cutoff.
It can be shown, however, that there exists the regulari-
zation scheme (inspired by the instanton liquid model
[8]), preserving the form of Eq. (27) even with the finite
cutoff. As for the inhuence of perturbative gluon correc-
tions, we would like to refer to [35], where it was shown
that they do not change the form of the equation in ques-
tion.

VI. CONCLUSION

The above results demonstrate that the extension of
Weinberg's approach [11,12] to the case of nonzero
values of I; gives one the possibility to connect unambigu-
ously the parameters of low-energy ~~ scattering with
those of m~-resonance spectrum. The latter parameters
must strongly correlate among themselves. The structure
of correlations of spectrum parameters is shown to be
similar to that appearing in dual models. So, we con-
clude that duality is the necessary condition to provide
the a~ amplitude with the desired properties in the
large-X, limit of QCD.

Then, because of the well-known dynamical chir al
symmetry of low-energy m.~ interactions, the threshold
parameters of the ~m amplitude obey some additional re-
strictions. The above-mentioned correspondence of low-
energy coupling constants with masses and widths of ~sr
resonances allows one to conclude that these latter quan-
tities must inherit certain features of chiral symmetry.
Possible ways of realizing this idea has been discussed in
Weinberg's original paper [11]. In that paper, however,
the author considered the case of t =0 only; this limita-

tion did not allow him to take into account the properties
of duality. It would be extremely interesting, therefore,
to combine the advantages of two approaches for the elu-
cidation of connections between duality and chiral sym-
metry. It should be noted that some authors (see, for ex-
ample, [36,37]) used the spectrum of the Veneziano mod-
el for the saturation of Weinberg's commutation relations
and obtained quite reasonable results.

The last point we would like to stress here is the fruit-
fulness of any kind of asymptotic conditions (unitarity,
Regge, Froissart, etc.) for the studying of low-energy dy-
namics and properties of resonance spectrum. In addi-
tion to Weinberg s original paper [11], this fruitfulness
was strikingly manifested by many authors, among which
we would like to single out papers by Ecker et al. [38]
(the equivalence of two difFerent kinds of spin-1 field for-
malism), Tiktopoulos [39] (Veneziano amplitude as a
consequence of meromorphy and Regge behavior), Levin
and Tiktopoulos [40] (the Salam-Weinberg model as a
consequence of "unitarylike" behavior of trees), Truong
[41],and some others.
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