
PHYSICAL REVIEW 0 VOLUME 48, NUMBER 7 1 OCTOBER 1993
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We calculate supersymmetric QCD corrections (squark and gluino loops) to quark pair production in

e e annihilation, allowing for mixing between left- and right-handed squarks and taking into account
the effects of nonzero quark masses. Corrections to the Z boson partial widths are generally small and
positive, except in the case of large b squark mixing, where they become negative. At high-energy e+e
colliders, larger corrections to the total cross sections are possible. Corrections to forward-backward
asymmetries are negligible except possibly for top quarks, where they are sensitive to t squark mixing.
We also comment on the possibility that the gluino mass is only a few GeV.

PACS number(s): 13.65.+i, 12.38.Bx, 14.80.Ly

I. INTRODUCTION

The introduction of supersymmetry [1] (SUSY) is one
of the most attractive extensions of the standard model
(SM). It not only stabilizes [2] the huge hierarchy be-
tween the weak scale and the grand unification or Planck
scale against radiative corrections, if SUSY is broken at a
sufficiently large scale, as is the case, e.g. , in supergravity
(SUGRA) models [3], it might allow us to understand the
origin of the hierarchy in terms of radiative gauge sym-
metry breaking [4]. Moreover, SUSY models offer a nat-
ural solution of the cosmological dark matter problem
[5], and allow for a consistent grand unification of all
known gauge couplings, in contrast with the nonsuper-
symmetric SM [6]. All these attractive features are al-
ready present in the minimal supersymmetric extension
of the SM (MSSM) to which we will stick in this article.

Unfortunately, no direct signal for the production of
superparticles has yet been observed; experimental
searches so far have only resulted in lower bounds on
sparticle masses, the most stringent ones coming from the
CERN e +e collider LEP [7] and the Fermilab Tevatron
[8]. It is therefore tempting to look for SUSY through
precision measurements, where quantum corrections in-
volving superparticles might alter SM predictions. The
potentially largest corrections can be expected from
corrections involving strong interactions, i.e., from
squark and gluino loops. Given the inherent uncertain-
ties of cross-section calculations as well as measurements
at hadron colliders, the most promising (and also the sim-
plest) process where such corrections can be probed is
quark pair production in e+e annihilation.

Squark and gluino loops also contribute to rare K and B
meson decays and oscillations. However, these corrections al-
ways involve flavor-changing couplings, which in the MSSM are
induced only through weak interactions. As a result, in the
MSSM supersymmetric QCD loops in K and B meson physics
are actually smaller [9] than loops involving electroweak gaugi-
nos or Higgs bosons.

In this paper, we calculate the supersymmetric QCD
corrections to quark pair production in e+e annihila-
tion, allowing for mixing between left- and right-handed
squarks and taking into account the effects of nonzero
quark masses. At LEP 1 energies, we find that these
corrections are small and positive for Z decays into light
quarks; however, for bb final states, mixing in the b
squark sector can affect the correction to the cross sec-
tion, and can even change its sign. In the case of top
quark pair production at high-energy e+e colliders, the
effect of mixing in the t squark sector on the total cross
section is less significant, since the dominant photon ex-
change contribution is not sensitive to it. The correction
to the top forward-backward symmetry does depend on
the details of t squark mixing but, unfortunately, the
correction is always very small and will therefore be
difficult to measure.

Supersymmetric QCD corrections to quark pair pro-
duction in e+e annihilation were first discussed in Ref.
[10] for LEP1 energies in the approximation of negligible
quark masses and squark mixing and of equal masses of
the superpartners of left- and right-handed quarks. In
Ref. [11]the effect of squark mixing has been included at
LEPI energies and found to be small. However, in that
paper only corrections to the Z-quark couplings present
in the SM at the tree level are considered, while we com-
pute all CP-conserving form factors for both the Z boson
and the photon (the latter are needed for c.m. energies
away from the Z resonance). In the limit of zero quark
mass and squark mixing, our results for the total cross
section fully agree with Ref. [10] both numerically and
analytically; we also find general numerical agreement
with Ref. [11]. Finally, we also compute corrections to
the forward-backward asymmetry, while the previous pa-
pers [10,11]focused on corrections to total rates.

The rest of this paper is organized as follows. In Sec.
II we set up the formalism and present our analytical re-
sults for the corrections to the most general set of CP-
conserving yqq and Zqq couplings. In Sec. III we show
numerical examples both for LEP1 and for a future
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high-energy e+e linear collider operating at &s =500
GeV. Section IV contains a summary and some con-
clusions. For the convenience of the reader explicit ex-
pressions for the scalar two- and three-point functions
appearing in our results are listed in the Appendix.

grams involving squark and gluino loops. As stated in
the Introduction, we will include effects proportional to
the mass of the produced quarks. As is well known [12],
the supersymrnetric partners of left- and right-handed
massive quarks mix, the mass eigenstates q &

and q2 being
related to the current eigenstates qL and qR by

II. FORMALISM
q )

=ql cosO+ qR sinO, q~
= —

qL sinO+ qR cosO . (4)

The most general Zqq and yqq vertices compatible
with CP invariance can be written as

r ~= —ie g '~ y V '~ —y y A '~+ P S1

2mmq

(V ) =U =2I —4s e (A ) =g
q q q 8' q& q q q

(Vy) =eq, (Ay) =0, (2)

with I =+—,
' the weak isospin and e the electric charge

of the quark. When loop corrections are included, S
terms appear and the bare vector and axial-vector cou-
plings are shifted by an amount

gVz, y Vz, y ( Vz, y)0
q q q

(3)
5A 'y= A 'y —(A 'y)

In previous work [10,11] only the corrections to V and
A were considered. We find that even for heavy (top)
quarks the corrections coming from the scalar form fac-
tors S '~ are indeed somewhat less important than the

q

corrections to the couplings that are already present at
the tree level.

Since we are interested in radiative corrections involv-

ing strong interactions, we only need to consider dia-
I

e (q; 8 q, +q~ B„q~)

where eo is the electric charge of the proton, P =p, —
p2

with p& and p2 the momenta of the quark and antiquark
and gy=1 and g =1/(4s~c~) with s~=1 —c~
=sin O+. Because CP is conserved by strong interac-
tions, terms proportional to P„y5 should be absent and
this fact provides a good check of the calculation. In
principle, one can also have scalar and pseudoscalar cou-
plings q„and q„y5 where q =p

& +p2 is the momentum of
the gauge boson; but in e+e collisions these terms give
contributions which are proportional to the electron mass
and are therefore totally negligible. At the tree level,
S '~ vanish, while the vector and axial-vector couplings
take the usual form

The mixing angle O as well as the masses m and m of
ql

the physical squarks can be calculated from the mass rna-
trices

m-, +m, +0.35Dz —I, ( A, +p cotP)
L

—m, ( A, +P, cotP) m,— +m, +0.16Dz
R

m- +mb 0.42Dz
fL

—mb( Ab+p tanp)

mb(—Ab+p tanp) mb +mb 0.08D—z
R

(5b)

where Dz =Mzcos2p, tan/3 being the ratio of the vacuum
expectation values of the two neutral Higgs fields of the
MSSM [1]. m-, ,— b

are soft breaking masses, Ab, are
L' R' R 7

parameters describing the strength of nonsupersymmetric
trilinear scalar interactions, and p is the supersymmetric
Higgs boson (Higgsino) mass, which also enters trilinear
scalar vertices. Notice that the off-diagonal elements of
these squark mass matrices are proportional to the quark
mass. In the case of the supersymmetric partners of the
light quarks mixing between the current eigenstates can
therefore be neglected. However, mixing between t
squarks can be sizable and allows one of the mass eigen-
states to be much lighter than the top quark. Sbottom
mixing can also be significant if tanp))1; even in super-
gravity models with radiative symmetry breaking tanP
can be as large as m, /mb [13].

The interactions of the photon and the Z boson with
squark current eigenstates are described by the Lagrang-
ian [1]

ieA" g —e q,*B„q,.
i =L,R

Z„g (Iq' —2e s~)q;*B„q,
SR CR i =I,R

(6)

After the introduction of nontrivial squark mixing, this
becomes [14]

le Z"[ Iq sin8cos8(q
&

Q—&q2+q2 d&q& )+(I cos 8 s~e )q & Q„q&+(I—sin 8—s2 e )q*Q q ] .

Finally, the squark-quark-gluino interaction Lagrangian in the presence of squark mixing is given by

i v'2g, T'q—(cos8q, —sin8q2 ) —(sin8q, +cos8q2 ) g '+ H. c. ,
1+@5 1 —

y5

e ignore generation mixing between squarks, which in the case of the MSSM is only induced radiatively by weak interactions.
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where g, is the strong-coupling constant and T' are
SU(3)c generators. Note that in Eq. (8) we have assumed
M &0.

g
Including the corrections due to the squark-gluino ver-

tex diagram shown in Fig. 1(a), and taking into account
the mixing between the left- and right-handed squarks as
well as the finite mass of the external quarks, the photon
couplings to quarks are shifted by

As eq
(5A r)„,=— cos2g(C" —C )3 ~ 2 3 3

4 cKs eq(&~) = —— [m (C" +C )q ve 3 2 q 2 2

—m M sin20(CI' —C, )] . (9c)

4a, e
(5V~) = — (C" +C )q ve 3 2 3 3 (9a)

The corresponding shifts of the Z boson couplings to
quarks are

4 CXs

(5Vq )„,=— [(2Iq cos 0—2sii, e )C3" +(2I sin 0—2s~e )C3 ], (10a)

(5Aq )„=— [(2I cos 0 2sii,e—)cos20C3" —(2Iq sin 0—2sii eq)cos20C3 +I sin 20(C3 +C3')],

(10b)

(Sq )„,= —— [(2I cos 0—2siie )(m C2' —m M sin20C,")
+(2I sin 0—2s~e )(m C2 +m M sin20C, )+I sin20cos20m M (Ci +Ci')] . (10c)

For i,j =1,2 the C'1'z 3 are defined as Ckj:—Ck(s, m, m, m, M ). We use the Passarino-Veltman reduction to scalar
q; qj

integrals [15], and the intermediate function C'+J and C'~ defined as (note that we use a slightly different notation than
in Ref. [16])

C'+i = [280(s,m, m ) Bo(m—,M, m ) —80(m, M, m )+(2M +2m —m —m )CIi'],

C J = [Bo(m,M, m )
—80(m, M, m )+(m —m )Cd'] .

1
0 g —. 0 q g q. q;

In terms of these functions, the C& are given by

C i' =C tl'
—2C'+~ (12a)

C2v =2C'+J — [Cg+ —,'(m +m —2M 2m )C'+i ——
—,'Bo(s, m, m )

q

+ 'Bi(m, M, m—)+—'8&(m, M, m )), (12b)

C3'= —,'[2M Cov+I+Bo(s, m, m )+(m +m —2m —2M )C'+1 +(m —m )C'1 ] .
g 0 0

q
7

q + q,. q. (12c)

Here, B, is given by

18, (s,m„mz)= [(s+m, —mz)80(s, m„m2)
2$

l

counterterm originating from the on-shell self-energies of
the external quarks [Fig. 1(b)]. Following the procedure
outlined in Refs. [16,18), one obtains

+ Ao(m2) Ao(m } )) (13)

and the functions A0, B0, and C0 correspond to the sca-
lar one-, two-, and three-point functions [17], respective-
ly, and are given in the Appendix.

The renormalized vertices are derived by adding the

(5Vi')„=e 5Zv, (5Ar)„=e 5Z~,
(5V )„=v 5Zv+a 5Z„,
(5A )„=a 5Z~+v 5Z„.

Here, 5Z& and 6Z~ are given by

(14)

[Bi(m~,M, m )+Bi(mq, M, m )+2m,'[(8&(mq', Mz m )+Bi(mq Mz -mq ))V 3 1 q g ql & q' g' q2

—2m, M sin20[80(m, ',M, m, ) 80(mq, M,—mq )]], (15a)

5Z„=—— cos20[8, (m, M, m ) 8, (mq, Mg, mq )] . —
3 ~

(15b)
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q;&
~ (7)

5Vr' =(5Vr' ) +(5Vr' )

5 Aqr, z (5 A r, z) +(5A r z),t (16b)

(a) The expressions (9)—(15) are rather cumbersome. For
many applications squark mixing can be neglected. If, in
addition, one assumes approximate degeneracy for the
squarks, m =m =m, the corrections simplify consid-

Cfi

erably, and one finds

z (p) (b)

4 a 4 a,5Vr'= — '(Vr )oC, 5Ar = — '(Arz)oC,

eSr = —— m2( Vr )C'~(s, mq, m, m, M ),
(17)

where C is given by

FIG. 1. (a) Vertex and (b) self-energy corrections to
e+e ~qq from supersymmetric QCD.

C—=C3(s, m, m, m, M ) 28&(mq, m, M )

—
—,'mqBI(mq, m, M ) .

g

The full SUSY-QCD correction to the vectorial and
axial-vector couplings is just the sum of the unrenormal-
ized vertex correction and the quark self-energy counter-
terms:

Furthermore, for massless final-state quarks the 5 term
vanishes and the correction to the axial-vector and vector
couplings can be expressed by a single two-dimensional
integral as

1 1 x(m —M )+M~
C =C3 ——8) —— x dx dp ln —sx y(1 —y)+x(m —M )+M

in agreement with Ref. [10]. For large squark and gluino masses, m, M »s, the correction is justg

I 2—(m —M )
——Mg(m —M ) +M (I —M ) —M ln

q g
(20)

If, in addition, the gluino mass can be neglected compared to the squark mass, one simply obtains C=s/(36m ).
In terms of the vertices (1), the differential cross section der(e e ~qq )/d cosO reads (we define 8 as the angle be-

tween the quark and the incoming positron)

dg 3
cV,P [D e, [(—2 —P sin 8)(V ) +P (1+cos 8)(Ar) 2P sin OVrSr—)

+Dz e, u, [(2—P sin 8)V V +P (1+cos 8)ArA —P sin 8(V S +S V )]

+Dzz(u, +a, )[(2—P sin 8)(V ) +P (1+cos 8)(A )
—2P sin OV S ]

+2Dzre, a,PqcosO( Vr Aq + Vq A r)+8Dzza, u, PqcosOVq A (21)

Here N, =3 is the color factor, and Pq=(1 —4m /s)'r the velocity of the final quarks. In Eq. (21) the leading elec-
troweak radiative corrections have been included by introducing the quantities D p, a,p=y, Z, which are defined in
terms of the Fermi coupling constant GF and the running QED coupling a(s):

Note that in this convention the vector couplings V~ and scalar couplings S~ do not reduce to their SM values even in the limit of
infinite squark masses; of course, very heavy squarks and gluinos do decouple from physical observables such as cross sections. Phys-
ically equivalent results can be obtained by ignoring the diagrams of Fig. 1(b}, and performing the renormalization by simply sub-
tracting the corrections at zero-momentum transfer, s =0; in this scheme separate counterterms for V~ and S~ can be defined, so that
each coupling by itself reduces to its SM value in the limit of large sparticle masses.
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4qra (s) GF
2 zs4

Dzz =
96qr (s —M ) +(sI /M )

GFa(s) Mz(s —Mz )

3&2 (s —M ) +(sr, yM, )'

(22)

At O(a, ), the deviations of the total cross section and the forward-backward asymmetry from the tree level values,
5o. =o.—o. and 5AFB= AFB —A„z, are then

5o =X,P Deere, [(3—
/3 )eq5V~~ 13—qe S~]+Dzz(u, +a, )[(3—Pq)uq5Vq +2Pqa 5A P—uqSq ]

+Dz ev
3

q

2 2

(uq5V~~+eq5V )+P a 5Aq~ — (eqSq +vqSq~)q (23a)

Dzze a (e 5Aq +aq5Vqr+vq5Ar)+4Dzza v (5Vq aq+5Aq uq)

Dz~e, a, eqaq+4Dzzaeve q q

(23b)

4 ~s
(V ) (V ) ~(V ) (V ) 1+—

2Pq

These expressions have to be supplemented by including the standard QCD corrections; the formulas for the cross sec-
tion and the forward-backward asymmetry in the massive case can be found in Ref. [19]. In the case of the cross sec-
tion, one can, however, use the Schwinger formulas [20], which provide a very good approximation to the exact result;
this is done by performing the following substitution (a,P =y, Z ):

3+P
(24a)

4 2 4

4 (g 2

(A ) (A~) ~(A ) (AP) 1+—
3 qr 213

19 22 7
10 5 ' 2' 3

2 4
(24b)

A similarly simple yet very accurate substitution also exists for standard QCD corrections to the forward-backward
asymmetry [21]:

(V ) (AP) ~(V ) (A~) 1+ (3—P )Ql —Pq q q q q q
q

(25)

5rq vq5Vq +aq5Aq

5AFB vq6Aq +aq6Vqz vq6Vqz+aq6Aqz

A FB q q vq+aq0 2 2

(26)

III. RESULTS

We are now in a position to present some numerical ex-
amples. In Fig. 2 we show SUSY QCD corrections to the
hadronic decay width of the Z boson; the solid (dashed)

Finally, on top of the Z resonance these expressions sim-

plify considerably. In addition to the fact that only the Z
exchange contribution has to be taken into account, one
can neglect to a good approximation the quark masses
(except possibly in the b mass matrix; see below) since top
decays of the Z boson are kinematically forbidden (to
achieve a better precision one can eventually include the
leading mass e6'ects in the Born term as well as the QCD
corrections in the case of the bottom quark; see Ref.
[22]). In this case, the S terms vanish and the deviation
of the decay width I =I (Z~qq) and the forward-
backward asymmetry A„z from their tree-level values are
simply given by

I

curves are for bb (cc) final states. We have set the A pa-
rameters in the squark mass matrices (5) to zero, and
have assumed equal SUSY-breaking masses for all
squarks, denoted by (m ). Moreover, in this figure we

q
have assumed that all parameters entering the squark
mass matrices, as well as the gluino mass, can be varied
independently ("global SUSY" scenario). The four upper
curves are for negligible mixing between I. and R
squarks. Even in this case the "D terms" [Dz in Eqs. (5)]
lead to a non-negligible mass splitting between squarks of
dift'erent flavor, if tanP&1. In particular, for tanP) 1

(which is favored by supergravity models [3]), u-type
squarks are lighter than d-type squarks; as a result, for a
given value of ( m ) the corrections to cc production are

q
larger than those to bb production.

The uppermost curves in Fig. 2 have been obtained by
choosing a very small gluino mass, M =3 GeV. A
gluino of this mass could have escaped all experimental
searches, provided squarks are heavier than 100 GeV or
so [23]. Although a careful study showed [24] that a GeV
gluino does not reduce the slight discrepancy between
values of az extracted from low-energy experiments and
those derived from event shape variables measured at
&s =Mz, present measurements cannot exclude its ex-
istence, either. It should also be noted that squark mass
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I I I I

I

I

0.4

p.=0, tanP=2, M =3 GeV

0.2

I

I I I I

1 a'
U' 0 0 @=0, tanP=2, Ma=160 GeV

—0.2—
p,=300 GeV, tanP

0 4 M~ 160 GeV

I I I I I I I I I I I I I

100 150 200
(rn-) [GeV]

300

bounds from hadron colliders [8] might be invalidated by
the presence of such a light gluino. This is because in
this scenario, squarks predominantly decay into gluinos,
which lose a considerable fraction of their energy in QCD
radiation prior to their decay, thereby leading to a rather
soft missing pT spectrum [25]. From Fig. 2 we conclude
that one-loop SUSY QCD corrections to the hadronic
width of the Z boson could amount to about 0.3%, or
about 8% of the standard QCD correction. For very
light gluinos, two-loop SUSY QCD corrections are also
not entirely negligible [10]; they amount to about —2%
of the standard QCD corrections [24]. Altogether, SUSY
QCD corrections to I h, d therefore amount to at most
+6% of the standard QCD corrections, for a gluino mass
of a few GeV and squark masses around 100 GeV. In
this scenario the value of a& extracted from the measure-
ment of I h,d would therefore have to be reduced by about
6%. At the same time, in the presence of light gluinos
the value of az derived from event shape variables has to
be increased by about 8% [24]. The net result is that the
present small discrepancy between these two determina-
tions of az is diminished.

If we chose gluino and squark masses above the region
excluded by hadron collider searches [8] the maximal size

~Strictly speaking the analysis of Ref. [24] is valid only for very
heavy squarks; however, we expect it to hold also for squark
masses around 100 GeV, since squark exchange diagrams con-
tributing to qqgg production are not enhanced by large loga-
rithms, unlike diagrams where a gluino pair is produced from a
gluon.

FIG. 2. Supersymmetric QCD corrections to the decay width
of the Z boson into cc (dashed) and bb pairs (solid). We have as-
sumed a "global SUSY" scenario, where all parameters of the
squark mass matrices can be varied independently. For c and b
squarks, the A terms are always negligible; the other parameters
are as indicated in the figure. Notice that ( m- ) is the common
SUSY-breaking diagonal squark mass, which is also the average
first generation squark mass, since D-term contributions cancel
after summing over a complete generation. The lowest curve
ends at (m ) = 180 GeV since for even smaller values, mb (45

q I

GeV.

of the corrections to Z partial widths drops by about a
factor of 2, as illustrated by the curves for p=0 and
M = 160 GeV in Fig. 2. Moreover, squark mass splitting
due to D terms becomes less important, so that to good
approximation the simplified expressions (17) and (20)
can be used.

Finally, the lowest curve in Fig. 2 demonstrates that
squark mixing can have sizable effects already for b
squarks. The off-diagonal elements of the b squark mass
matrix (5b) can be substantial if tanp)) 1 and p is not too
small. Indeed, for the parameters chosen in Fig. 2, the
lighter b eigenstate would be lighter than 45 GeV, in
violation of LEP bounds [7], unless (m ) ~ 180 GeV. In
this scenario the correction to the partial width into bb
pairs is negative. The corrections to the u, d, s, and c
partial widths for the same set of parameters are still pos-
itive, however, leading to a very small correction to the
total hadronic width of the Z boson. In order to test this
scenario experimentally one would thus have to measure
the bb cross section with a precision of a fraction of l%%uo,

which appears to be quite dificult.
In Fig. 3 we plot the correction to the total cross sec-

tion for the production of light quarks at &s =500 GeV.
In this figure we have switched off both squark mixing
(by setting Aq =@=0)and squark mass splitting through
D terms (by setting tanf3=1); however, the previous
figure showed that results for nonzero p and tanpW 1 are
quite similar unless the gluino is very light or tanp is very
large. We see that the corrections reach a maximum at
m =0.4&s =200 GeV, almost independently of the
value of M . If both m and M are much smaller than

qv's the corrections become negative; in the limit of exact
SUSY (m ~m, M —+0) one encounters logarithmic in-

frared divergencies. For I )200 GeV the size of the
q

corrections decreases rapidly. However, even if squarks
are not accessible to the accelerator we study, i.e., for
m )+s /2, the correction can be as large as +1%, or

q
about one third the standard QCD correction. We also
observe that the correction depends less sensitively on the
gluino mass than on the squark mass; this has also been
found in Ref. [10].

In Figs. 4(a) and 4(b) we present results for SUSY QCD
corrections to tt production at +s =500 GeV, for
m, =150 GeV. We have fixed the gluino mass to 250
GeV and chosen tanP=2. The dashed curves are again
valid for a "global SUSY" model, with I-, =rn-,

and p=500 GeV. In contrast, the solid curves are for a
supergravity scenario, where scalar masses are assumed
to be equal to each other, and also equal to the scalar tri-
linear interaction parameters 3, at the scale of grand
unification, Mz ——10' GeV. The parameters at the weak
scale have then been computed by solving a set of cou-
pled renormalization-group equations [4]; for simplicity
we have treated them using the analytical approximations

Note that hadron collider data do not exclude the existence of
a single light squark species, if the mass of the lightest neutrali-
no exceeds about 15 GeV [26].
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FIG. 3. Supersymmetric QCD corrections to the total cross
section for the production of light qq pairs at an e+e collider
with &s =500 GeV. In this figure we have switched off squark
mixing and chosen tang= 1, so that the superpartners of all five
light quarks have the same mass m .

q

given in Ref. [27]. Notice that in this model p is no
longer a free parameter, but determined by the require-
ment of correct SU(2) X U(1) symmetry breaking,
Mz=91. 1 GeV. Moreover, m- is considerably smaller

R

than m- at the weak scale, due to quantum corrections

involving the t quark Yukawa coupling.
The results of Fig. 4 are presented as a function of the

mass of the lighter t eigenstate. The mass of the heavier
eigenstate varies between 390 and 620 GeV in the global
SUSY model, and between 750 and 1100 GeV in the
SUGRA scenario we are considering. Moreover, in the
former case the t mixing angle is close to 45, since the di-
agonal elements of the t mass matrix (5a) are almost
equal, while in the latter case the angle is considerably
larger than 45', so that the light eigenstate is predom-
inantly tz. We see that the correction to the total cross
section, shown in Fig. 4(a), is not very sensitive to the
differences between the two models we are studying. The
reason is that the total cross section is dominated by the
photon exchange contribution, which does not depend on
t mixing, see Eqs. (9a) and (23a). The corrections are
smaller than for the production of light quarks (with
m = m- ) since in case of tt production practically only

one squark contributes in the loop, the heavier t eigen-
state being much more massive.

In contrast, the forward-backward asymmetry (23b) is
sensitive to the Z exchange contribution, and hence to t
mixing; Fig. 4(b) shows that for small m,— even the sign of

1

of the correction differs for the two models. Unfortunate-
ly, the absolute value of this correction is always less than
0.5%, one would probably need a dedicated "top factory"
to achieve this level of precision. SUSY QCD corrections
to the forward-backward asymmetries of light quarks are
always well below 0.1%, and can therefore safely be
neglected.
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IV. SUMMARY AND CONCLUSIONS

In this paper we have presented explicit expressions for
the yqq and Zqq vertices, allowing for mixing between
the superpartners of left- and right-handed quarks as well
as for unequal squark masses in the loop. We have found
corrections to the total cross section (or, on the Z pole, to
the hadronic decay width of the Z) to be usually positive,
unless both squark and gluino masses are much smaller
than the center-of-mass energy v's. In the limit of no
squark mixing and degenerate squark masses we repro-
duce the results of Ref. [10]. For massless quarks, correc-
tions are largest if m =0.4&s, i.e., just above the thresh-

old for open squark production, where they can reach
+2%; they fall below 1% at m =0.6Vs, the exact value

depending on the gluino mass. If the gluino mass is just a

FIG. 4. Supersymmetric QCD corrections to the (a) total
cross section and (b) forward-backward asymmetry for tt pair
production of a 500 GeV e+e collider, as a function of the
mass of the lighter t eigenstate. The dashed curves are for a
"global SUSY" model with p=500 GeV, while the solid curves
are for a supergravity scenario with radiative symmetry break-
ing, where p is a derived quantity, as described in the text. In
the former case we have assumed m- =m- = A, at the weak

L R

scale, while in the latter case these relations are valid only at the
grand unified scale.
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few GeV and squark masses are around 100 GeV, which
still appears to be allowed experimentally, supersym-
metric QCD corrections might help to improve the agree-
ment between values of az derived from event shape vari-
ables at &s =Mz and from the total hadronic decay
width of the Z boson. We also found that b mixing can
be important, and can even flip the sign of the correction.

The corrections to the total tt production cross section
are usually smaller than for the case of light squarks, for
a given mass of the lightest squark eigenstate of a given
flavor. The reason is that t mixing pushes the mass of the
heavier t eigenstate to such large values that its contribu-
tion is essentially negligible. We also computed correc-
tions to the forward-backward asymmetry, and found
them to be well below 0.1% for light quarks. In case of t
quarks these corrections are sensitive to the details of t
mixing, unlike the total tt cross section; however, even
for t quarks the forward-backward asymmetry is changed
by less than 0.5%%uo.

We conclude that, barring the existence of a very light

gluino, supersymmetric QCD corrections to the produc-
tion of qq pairs in e+e annihilation are probably only
observable at energies above the open squark threshold.
They will therefore not be useful as a tool to search for
supersymmetry; however, after the discovery of a "new
physics" signal they might allow us to confirm its inter-
pretation in terms of supersymmetry.
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APPENDIX: SCALAR LOOP INTEGRALS

In this appendix we collect expressions that allow to evaluate the loop functions that appear in Sec. II. The scalar
one-, two-, and three-point functions Ao, Bo, and Co are defined as [18]

(2vrp)" d "k
~omo =

2 2 ~

k mo+l6

(2~@)" d "k
2 k2 m21+l 6 k q

2 m22+l 6

(2vrp)" d "k

i~ [(k —p&) —m, +ie][(k —p2) mz+ie]—(k m3+—ie)

Here n is the space-time dimension and p the renormalization scale.
After integration over the internal momentum k, the function Ao is given by

2 2

A o ( m o ) =m o ( 1+b,o ), b, = —y E +in(4' ) + In
4 —n m;

(Al)

where yE is Euler's constant. The function Bo and its derivative with respect to $, Bo, are given by

2 2 2
1 m) m2 m2 x+ x x

Bo(s, m „m2)=—(b, , +62)+2+ ln + ln
2 2$ 4$ x+

BQ(s, m], m2) =—

with

m~ —m, m f 2 (m, —m~) —s(m, +m2) x
2+ ln

2
+— ln

2$ $ m2 $ X+ X X+

(A3)

x+ =s —m
~

—m2+Qs —2s(m f +m2)+(m ~

—m ~) (A4)

Note that the x+ can be complex. For (m, —m2) (s ((m, +m2), the logarithms appearing in Eqs. (A3) can be ex-
pressed in terms of an arctan of a real argument. When writing these equations we have ignored the imaginary parts of
Bo and Bo, they are not relevant for us, since to next-to-leading order we are only interested in the interference between
the (real) tree-level and one-loop amplitudes.

In this paper we need the three-point scalar function Co only for p j =p2 =m; in this case it can be written in in-
tegral form as

1

Co(s, m, m&, m2, m3)= — dy dx(ay +bx +c y+xdy+e +xf )
0 0

where

(A5)
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Q =mq, b=s, c= 5, g =my m3 mq, e=mi m2,2 2 2 2 2 f= rn 3
—i e .2

Co can be expressed in terms of a sum of Spence functions
1

Li2(x) = —f dt ln(1 x—t )/t:

Co(s, m, m„m2, m3)=—

where we have defined

3 X
( —1)' Li2

spq, ) + x; yI

x —1l—Li2 (A7)

—c —e++(c+e) 4b—(a+d+ f )

Zb

—d —e++(d+e )
—4f (a +b+c )

2(a+ b+c )

2d+e(1 —P )

2sP, 2
' + —(1—P ), yi+=

2d+e(1 —P )

sP (1+P )

2d +e ( 1 pq ) — d +Qd 2 4af
sP(1 —P )

' 2a

(AS)

The x; and y;+ can again be complex. Equation (A7) is only valid above the qq threshold, i.e., for s) 4m . Below the
threshold analytical continuation of complex logarithms requires the introduction of additional terms; see Ref. [15].
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