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We study the incorporation of @CD effects in the basic electroweak corrections Dr", Ar~, and Dr.
They include perturbative O(na, ) contributions and tt threshold effects. The latter are studied in
the resonance and Green-function approaches, in the framework of dispersion relations that automat-
ically satisfy relevant Ward identities. Refinements in the treatment of the electroweak corrections,
in both the modified minimal subtraction (MS) and the on-shell schemes of renormalization, are
introduced, including the decoupling of the top quark in certain amplitudes, its effect on e (mz)
and sin giv(mz), the incorporation of recent results on the leading irreducible O(n ) corrections,
and simple expressions for the residual, i.e. , "nonelectromagnetic, " parts of Ar", Ar~, and Ar. The
results are used to obtain accurate values for mdiv and sin Oiv(mz), as functions of m~ and mH.
The higher-order effects induce shifts in these parameters comparable to the expected experimental
accuracy, and they increase the prediction for m, t derived from current measurements. The MS and
the on-shell calculations of Ar, in a recently proposed formulation, are compared and found to be
in excellent agreement over the wide ranges 60 GeV & m~ & 1 TeV, mz & mt & 250 GeV.

PACS number(s): 11.10.Gh, 12.10.Dm, 12.38.—t, 14.80.Er

I. INTRODUCTION

It has been recently shown [1] that the modified
minimal subtraction (MS) method of renormalization
provides a very convenient framework to incorporate
higher-order corrections to Ar [2] arising from resum-
mation of one-loop effects. These include not only
leading logarithms of O([nln(mz/rnf)]"), where mf is
a generic fermion mass, and subleading logarithms of
O(n ln(m, z/mf )) [3], but also terms of O((n mt /rnL )")
[1,4, 5]. The reason can be traced to the fact that in this
method one essentially subtracts the divergent parts of
the amplitudes. In contrast with other approaches, this
procedure circumvents the introduction of mass singular-
ities and O(n m~2/mL, ) terms via the finite parts of the
counterterms. As a consequence, the renormalized per-
turbative expansion has a structure very similar to that of
the bare theory, where resummation of one-loop efFects is
easy to implement [1,4]. There are, of course, irreducible
two-loop contributions of O((a mtz/m~~)z). As discussed
in Refs. [1,4, 5], these can be gleaned from Ref. [6] and
the more recent work of Ref. [7] on the O(nz) corrections
to the p parameter.

It has also been recently shown [8] that it is possi-
ble to derive a simple and accurate expression for Ar,
within the on-shell method of renormalization [2], which
contains the same leading and subleading contributions
described above. On the other hand, the irreducible two-
loop contributions of O(nzrn, /mdiv) have not been com-

puted, so that both the MS and on-shell calculations of
Lr become uncertain at this level of accuracy. In fact,
one can see that the difference between the two calcula-
tions and their inherent theoretical uncertainty due to the
neglect of higher-order electroweak corrections start with
subleading terms of O((n/mrs )(cz/s )xq), where zq is the
leading correction to the p parameter [cf. Eq. (17b)], or,
equivalently, of O((c /s )(ci2/2vr)(rt/2m)), where nz =
gz/4vr and rt = (Gt)z/4m. are the SU(2) and the Yukawa
couplings of the top quark, respectively. These are very
small for low mq and are expected to be = 8 x 10 for
mq ——250 GeV. (As we will see, over the large ranges
mz & m~ & 250 GeV, 60 GeV & mH & 1 TeV, the
actual numerical evaluation of the on-shell expression
of Ref. [8] and the MS calculations show a very small
difference, reaching a maximum value of 2.5 x 10 4 at
m& ——250 GeV and m~ = 1 TeV, a very precise agree-
ment which may be somewhat fortuitous. ) This un-
certainty is to be compared with an estimated error of
+9 x 10 4 originating in the O(n) contributions of the
first five quark fiavors [9, 10].

In order to set the stage for our discussion, it is con-
venient to recall at this point some of the basic relations
of the on-shell and MS frameworks [1—3, 11,12],

2=
rnz (1 —dr) '
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2

mdiv (1 —Argl )
A2

"2~2
m'(1 —b,r) '

where mdiv and mz are the physical masses, A
[xa/(v 2G~)] = (37.2802+0.0003) GeV, s, sz, and cz

are abbreviations for sin 8~ = 1 —m~/mzz and the MS
parameters sin e~(mz) and cos~8iv(mz), respectively,
and Lr, Lr~, and Lr" are radiative corrections. The
't Hooft mass p has been set equal to rnz in Eqs. (2) and
(3).

It follows from the analysis of Ref. [13] that mz and
mdiv. in Eqs. (1) and (2) can be identified, phenomenolog-
ically, with the masses measured in current experiments
and, theoretically, with the definition mi = m2 + I'z,
where s = mz —i mzI'z is the relevant complex pole
position [14]. The latter is given by s = mo + A(s),
where mo is the bare mass and A(s) the conventional
self-energy, which includes tadpoles, tadpole counter-
terms, and, in the Z case, pZ mixing effects that start
in O(n ) On g.eneral grounds, it is expected that m2
and I'z, and therefore m, i, are gauge invariant to all or-
ders [13,15]. Over a large class of gauges, including those
in which explicit calculations have been carried out, mi
differs from the "field-theoretic" or "on-shell" definition,
m2 = m~~+ReA(mz), by gauge-dependent terms of O(ns)
[13]. Because contributions of this order are well beyond
the accuracy that may be achieved in the foreseeable fu-
ture, the replacement of m by the more rigorous defini-
tion mq does not require a modification of the radiative
corrections Ar, Ar~, and Ar". Using the expression

4Az

mzz(1 —Ar)

equivalent to Eq. (1), the analogous one with sz —+ sz

and Ar ~ Ar", equivalent to Eq. (3), and the accurately
known value mz = (91.187+0.007) GeV [16],the correc-
tions Ar and Ar" lead to precise evaluations of sz and s2,
as functions of m~ and mH. These, in turn, can be com-

pared with other determinations of s and s to constrain
the value of mi and, in the future, that of mH. They
are also important input parameters in the prediction of
the Z partial widths and on-resonance asymmetries, as
some of these observables depend very sensitively on the
weak mixing angle (see, for example, Ref. [17]). More
generally, the basic corrections Ar, Lr~, and Lr" are
frequently employed to verify the standard model (SM)
at the level of its quantum corrections and in searches
for signals of new physics [18—21]. It was also explained
in Ref. [1] how Ar" and Ar~, relevant corrections in the
MS framework, can be employed to evaluate the on-shell
quantity Ar.

The aim of the present paper is to incorporate the lead-

ing @CD corrections in the calculations of the radiative
corrections Lr, Lr", and Lr~. We also introduce some
refinements in our previous treatment of the electroweak
corrections [1].

The relevant @CD contributions occur in the vacuum-

polarization functions associated with the W+ and Z
bosons and have been extensively discussed in the litera-
ture [22—31]. In particular, the @CD corrections involv-
ing the (f,, b) isodoublet are known to be significant for
large m&. There are actually two types of effects that
may be classified as perturbative O(aa. ,) and thresh-
old contributions. In the literature, the latter are fre-
quently referred to as "nonperturbative. " The pertur-
bative O(nn, ) components have been studied with two
different methods: (i) direct evaluation of the two-loop
Feynman diagrams in dimensional regularization, an ap-
proach that goes back to the pioneering work of Djouadi
and Verzegnassi [22]; (ii) calculation of the imaginary
parts and computation of the full amplitude by means
of suitably defined dispersion relations (DR's) [23—26].
It has been shown [30, 31] that the two approaches are
equivalent in the evaluation of the perturbative contribu-
tions to Ar and Ap, a welcome fact. On the other hand,
the MS scheme is implemented in the framework of di-
mensional regularization and, for a full determination of
the subtraction constants, one must appeal to method
(i).

Threshold effects on the absorptive parts of the self-
energies have, in turn, been discussed in two different
approaches: (a) in Ref. [24] the contributions of densely
spaced, narrow quarkonium resonances were taken into
account on the basis of a specific quark-antiquark poten-
tial; (b) in Refs. [27, 28] one considers the imaginary part
of the Green function for the nonrelativistic Schrodinger
equation that characterizes the tt system near threshold.
The latter formulation effectively resums the contribu-
tions of soft-gluon exchanges in the ladder approximation
(see also Ref. [29]).

For sufficiently low mi there should be, near threshold,
a rich spectrum of distinct nonrelativistic states bound
by strong long-range forces and the approach (a) is very
natural. For increasing mz, however, the weak decay of
a single top quark inside the bound states becomes im-
portant and, for mi & 130 GeV, the partial width of
t ~ W+ b is so large that the revolution period of a tt
bound state would exceed its lifetime. As a consequence,
the individual resonances lose their distinctiveness and
are smeared out to a coherent structure [27—29]. In that
regime, the Green-function method is more appropriate.
In summary, one expects approaches (a) and (b) to be
preferable for lower (& 130 GeV) and higher (&130 GeV)
values of mq, respectively. Both formulations deal di-
rectly with the absorptive parts of the amplitudes. To
obtain the real parts it is then necessary to employ DR's.
This was done in detail in Ref. [31] using DR's for the
vacuum-polarization functions directly constructed from
relevant Ward identities [30]. In conjunction with very
plausible assumptions concerning the asymptotic behav-
ior of the threshold effects for large q2, this procedure
leads to specifi results for the real parts.

In Sec. VII, we compare four different calculations of

mdiv and sin e~(mz), as functions of mi and rnH (i).
only electroweak corrections; (ii) electroweak plus pertur-
bative O(o.o.,) corrections; (iii) the above, plus threshold
effects in the resonance approach; (iv) same as (iii) with
threshold effects in the Green-function framework. This
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allows us to demonstrate the magnitude of the @CD cor-
rections and, at the same time, to separate the threshold
effects from the more established perturbative O(nn, )
contributions. Although the two approaches to treat the
threshold effects are certainly not identical, we find the
encouraging and fortunate result that their overall effects
on mph' and sin 8~(mz) are quite close over the entire
range mz & mq & 250 GeV.

As mentioned before, aside from incorporating the
@CD effects in the relevant self-energies, we introduce
some refinements in our treatment of the O(a;) elec-
troweak corrections. Conceptually, the most interesting
modification is a slight change in the definition of the fun-
damental couplings e (mz) and sin 8~(mz) of the MS
scheme, which is introduced in order to make them es-
sentially independent of heavy particles such as the top
quark or unknown massive excitations. In the case of
sin 8iv(mz), we follow a convention recently proposed
at the one-loop level by Marciano and Rosner [32, 33],
and explain how to extend it when O(na, ) corrections
are included. We emphasize that these modifications in
the definitions of the fundamental MS parameters do not
acct, to the order of the calculations, the relations be-
tween physical observables because they are compensated
by corresponding changes in the appropriate radiative
corrections. A second change is that we use an updated
calculation by Jegerlehner [10] for the contribution of the
first five quark flavors to the photon vacuum-polarization
function. A third modification is that we incorporate
the very recent results of Ref. [7] concerning the irre-
ducible two-loop corrections of O((am, /mdiv) ). In the
rest of the calculations, as we did in Ref. [1], we treat
the u, d, and s quarks as massless but we now include
terms of O(nm2f/mdiv), where f = c, b, r, . . . . Although
they are very small —they contribute to Ar only at the
& 1 x 10 level —their incorporation may facilitate de-
tailed comparisons with calculations by other authors.

The plan of the paper is the following: in Sec. II, we
discuss the definitions of the basic MS parameters e (mz)
and sin 8iv(mz) in the presence of the O(an, ) correc-
tions, with emphasis on the decoupling of heavy particles.
In Sec. III, we incorporate the perturbative O(o.n, ) con-
tributions in Ariv and Ar". We emphasize the important
fact that the magnitude of the O(o.a, ) effects depends
sensitively on the precise definition of mq. Our detailed
calculations, as well as the other papers in the literature,
employ the "on-shell" definition of mi. In the discussion
we give a brief argument to indicate why this choice is
useful and appropriate. In Sec. IV, we present a simple
method to separate the residual, i.e. , "nonelectromag-
netic, " parts of Ar", priv, and Ar. In Sec. V, we include
the perturbative O(an, ) corrections in the calculation of
Lr in the on-shell scheme, using the formulation of Ref.
[8]. In Sec. VI, we discuss the incorporation of threshold
efFects in Ar", Ar~, and Ar. We include estimates, based
on a simple "Bohr-atom" model, of the contribution of
the 1S toponium resonance to the imaginary part of the
self-energies. We find that this simple model gives values
roughly similar to the calculations carried out with more
realistic quark-antiquark potentials. In Sec. VII, we use

the theoretical results to carry out precise calculations of
mdiv and sin 8~(mz), in the manner explained before.
We find that the @CD and other higher-order corrections
induce shifts in m~ and sin 8iv(mz) comparable with
the expected experimental precision. Interestingly, all of
them increase the value of mq derived from current mea-
surements. We also compare the MS and on-shell calcu-
lation of Er, in the formulation of Ref. [8]. We find that,
as was the case in the absence of perturbative O(no, ,)
corrections, the MS and on-shell calculations of Ar are
very close over a large range of m& and mH values. The
Appendixes discuss basic expressions for the perturbative
O(nn, ) corrections, the effect of top-quark decoupling in
Drive and Ar , an"d the very small contribution from finite
fermion masses.

II. THE PARAMETERS e (mz) AND sin gw(mz)

In our previous treatment [1] we defined these param-
eters, at the one-loop level, by simply subtracting from
the radiatively corrected cofactors the terms involving

1 1
b = + —[p —1n(4vr)],

n —4 2
(5a)

and setting the 't Hooft mass scale, p„equal to mz. Be-
cause at one loop 6 always occurs in combination with
—lnp, , this is equivalent to subtracting only the pole
terms, (n —4) i, rescaling p according to

(5b)

and then setting p' = mz. The second formulation can
be conveniently generalized to higher-order corrections
and one can define the MS renormalization procedure as
the subtraction of pole terms of the form (n —4)™,where
m is an integer & 1, and the identification of the rescaled
't Hooft parameter p' with the relevant mass scale, in
this case rnz. As is well known, the factor e r~2(4vr)
is appended in Eq. (5b) to cancel relatively large numeri-
cal constants that are an artifact of dimensional regular-
ization [34].

In Ref. [1] we applied this procedure uniformly, inde-
pendently of whether the top quark is more or less mas-
sive than mz. On the other hand, it is desirable to treat
heavy particles, as much as possible, as decoupled. For
example, when mq ) mz it is convenient to subtract from
the amplitude terms involving in(mi/mz) and to absorb
them in the coupling constants. In Ref. [1] we did not
follow this route for two reasons: (i) sin 8~(mz) appears
as a cofactor in several important radiatively corrected
amplitudes and it is not possible to absorb completely
the ln(mq/mz) terms occurring in all of them; (ii) some
important relations, such as Eq. (3), contain terms pro-
portional to m~~, which certainly do not decouple. Re-
cently, however, Marciano and Rosner [32, 33] proposed
to implement the decoupling idea, at the one-loop level,
by absorbing in sin 8iv(mz) all ln(m/mz) terms with
m ) mz occurring in a specific amplitude, namely the
pZ self-energy evaluated at q = mz, ReA~z(mz). Here
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1+ e', II~~&(0)

2
—1

7ep 1 m~ 1+ + ln
8+2 n —4 p' 21 (6)

where II~~~~ (0) is the usual fermionic vacuum-polarization
function evaluated at q~ = 0 and the last term repre-
sents O(e02) bosonic contributions to charge renormaliza-

m is the mass of the top quark or any unknown heavy
particle with m & mz. With this convention, a heavy
top or a heavy unknown particle decouples in the limit
m/mz )) 1 from the cofactor r(q~) multiplying s2 in
most neutral-current processes; as a consequence, this
parameter can effectively be determined from the on-
resonance asymmetries without hindrance from unknown
"heavy physics. "

We now explain how we implement the decoupling idea
in the presence of the O(nn, ) corrections. It is conve-
nient to start with e (mz), which we frequently abbrevi-
ate as e2. We recall the relation between the bare charge
ep and the conventional renormalized charge e,

tion that must be included in the SM. The latter can
be gleaned, for example, from Ref. [2]. As explained
in Refs. [1, 2], because of the existence of mass singu-
larities associated with the light quarks, it is not pos-
sible to calculate perturbatively the contribution of the
first five quark flavors to II» (0). Calling this contri-(f)

button II»(0), the problem is circumvented by writ-(5)

ing II~~~l(0) = Re[II~~~l(0) —rl~~~(mz)] + Re11~~~1(m2z).
The first term represents the five-flavor contribution to
the renormalized photon vacuum-polarization function at
q = mz and can be evaluated using dispersion rela-
tions, experimental data on e+e —+ hadrons and @CD
corrections [2, 9, 10]. The presence of a large invariant
momentum, q = mz, in the third term prevents the
occurrence of fermionic mass singularities and, as a con-

sequence, ReII»(mz) can be analyzed perturbatively.(5)

The same is, of course, true for the leptonic and bosonic
contributions and, because of its large mass, for the top
contribution II~~(0). Including irreducible two-loop con-

tributions of O(c).n„6 ) to e II~~ (0) arising from virtual
gluon and photon interchanges, we obtain (see Appendix
A)

8c). p,
' ( c)., 6 ') 15 c);, a ')+» (1+—'+ )+ ——'+ —

)

9vr m, ), vr 3~p 8 vr 3~p3~, - mi ), 4vrp 32vr

/

+—).Q,
' »n 1 + —' + Q', I

+ fi(r, ) + —' + Q', ~ f~(r, )mz vr 4~ 'P ~ ~ 4~

+"Re[II~",(0) —11~",(mz)] —— (7a)

where the l and q sums run over leptons and quarks, respectively, the color factor 3 is henceforth explicitly included,

r. = ~z/(4~,')

5 1
cosh ~r + —+—

3 r
1 ) f' 1')

f&(r) = I~(4r) —(2+ —
I ~

1 ——
~rj ( r)

f2(r) = ln(4r) + ReVi(r) 55
r

-4&(3)+—
12

55 3 &ln'r ~= —4),'(3) + ———ln(4r) + 0
~12 r )

(7b)

((3) = 1.20206. . . , Vi(r) is a complicated function defined in Ref. [25], and I = 16/3+ 5a, /(37r) + llew)/(9x). The
first and second terms in Eq. (7a) are the finite parts of the leptonic and top contributions, while the sum over

q is the finite part of the perturbative evaluation of e Re11~~~1(m~z). In the latter the terms proportional to r
are extremely small and we can replace the functions fi(r) and fq(r) by their asymptotic values fi(oo) = 5/3 and

f2(oo) = 55/12 —4((3) = —0.22491. The last term in Eq. (7a) represents the divergent part up to terms of O(c). , nc).,).
As is well known, up to two loops II»(q2) is linear in (n —4) i and ln p'. We note that the cofactors of (n —4)
are equal to those of ln(1/p, ') at one loop and to one-half those of ln(l/p') at two loops.

In order to obtain the relation between e2 and e2, one writes e~o ——es/Z, in Eq. (6), uses the counterterms present

in Z, to cancel the (n —4) i terms in Eqs. (6) and (7a), and sets p' = mz in those equations. The mass scale
employed in 6, is discussed in greater detail at the end of this section. With the exception of the top quark, all the
particles contributing to Eqs. (6) and (7a) are less massive than mz and their contribution is retained. To implement

decoupling in Eq. (6), we also subtract the finite top contribution when m& ) mz, so that Z, in that case contains
an additional finite counterterm and reads
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Z, = 1+ — I ——
~

—e II»(0) 8(m~ —mz),
Q,' 7 \ 1 „2 (g)

vr 2p n —4 MS
(7d)

where MS denotes the "finite part" after the MS renormalization has been carried out, i.e. , the remainder after the
(n —4) poles have been subtracted and p,

' has been set equal to mz, and the superscript (t) refers to the top-quark
contribution. Specifically,

e'II"'(0)
MS

86 mz f n, e). b 15 (n, n')
ln 1+—+ + ——+

9vr rnid 0 ~ 3
(7e)

The term proportional to (n —4) i in Eq. (7d) cancels the divergent parts in Eqs. (6) and (7a). The other term
subtracts the finite top contribution, i.e. , the second term in Eq. (7a), when mq )mz. Because this contribution does
not exactly vanish at m& ——mz, the above prescription leads to a small discontinuity at mz = mz An»«»ative
that would ensure continuity would be to do the matching at the point where the finite top correction vanishes, which
is mq ——]..073 mz = 97.8 GeV. However, because the decoupling at mz & mz is easy to implement and is analogous
to what is done in some @CD calculations [35], we will adopt it as our convention.

As the inass range mz ( 91 GeV has been excluded at the 9&o confidence level [36], we will henceforth assume
that m& ) mz, in which case Eqs. (6), (7a), and (7d) lead to

where

g2

1 + (n/vr) A~
' (8a)

7 2 1 5 mz ( 55(mz) ) 455(mz) 55 1lt5, (mz) 555'(mz) 5 (55
)A~ = —inc ——+ — ln 1+ + + —+ +

4 6 3, mt ( 4vr p 32+ 27 9' 108~ p q12

+4~'Re[II,",'(0) —11&',&(m', )], (8b

g 2

1 —(o./vr) A~
' (8c)

In (n/ir)A~ we have retained very small terms of O(o2)
arising from virtual-photon interchange. We have done
this because of the analogy with gluon contributions and
the fact that they contain interesting leptonic mass sin-
gularities. It should be understood, however, that this
does not represent a complete O(a2) calculation as there
are other irreducible two-loop contributions of this order
arising from the bosonic sector and from TV+, Zo, and
H interchanges in the fermionic sector.

Equation (8c) allows us to compute e~ in terms of o, ,
independently of mz or unknown particles heavier than
mz. Using mz = 91.187 GeV [16], mdiv = 80.22 GeV

[37, 38], c)., = e),,(mz) = 0.118 [39], and e Re[11~~ (0)—
II~~(mz)] = 0.0282 + 0.0009 [10], we find (o./~)A~ =
0.0668+0.0009 or n = (47r/e2) = 127.9+0.1. The ex-
pression for (o./vr) A~ difFers from the quantity —2t)%~Ms
in Ref. [1] by the exclusion of the ln(mt, /mz) terms, a
more accurate description of the @CD corrections, and
the updated calculation of the five-Qavor contribution.
Numerically, however, 6 is very close to the value
127.8 + 0.1 reported in Ref. [1] for mi ——mz, the small
difference essentially arising from the change in the five-
flavor contribution [10].

Concerning s:—sin 8~(mz), we recall that in the

and c is an abbreviation for eos 8~ = mL /mz. Solving
for e, we have

neutral-current amplitudes this parameter is multiplied
by the electroweak form factor K, which contains the pZ
mixing term —(c/s)A~z(q )/q [17, 40]. Here A~z(q )
is the unrenormalized pZ transverse mixing amplitude
as defined in Ref. [41], expressed in terms of the MS
couplings e, s, and c. In order to implement the
decoupling, we apply the Marciano-Rosner convention
[32, 33], according to which the 1n(mq/mz) terms in
ReA~z(mz)/mz are subtracted for mi ) mz. At the
two-loop level there is also an mq-independent term,
which must be subtracted, too. More generally, the idea
is to subtract all contributions to ReA~z(mz)/m2z that
involve particles of mass m ) mz and do not decouple in
the limit m —+ oo. This can be implemented by adding a
finite counterterm in the s2 renormalization, in analogy
with Eq. (7d). Up to terms of O(nn, ) we find, in the
case of the top quark,

const
(9a)

)r

where so is the bare parameter, A & 0

(d/dqz)A z(qz), and MS and the superscript (t)
have the same meaning as in Eq. (7d). Again, const/(n—
4) is the divergent part of the counterterm and the last
term is a finite contribution necessary to implement the
decoupling of the in(mq/mz) and constant terms in the
top contribution to ReA~z(m2z)/m2z. Specifically, we
find.
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—(A i) (0) (9b)

In Eqs. (9a)—(9c) we have neglected all terms of O(n ).
We must still discuss the mass scale employed in n, .

Following Refs. [22, 24—26, 31], in the present paper cor-
rections arising from the (f„ti) isodoublet are computed
with n, (mt, ). The reason is that the dominant contribu-
tions due to this isodoublet involve mass scales of O(mi)
[31,42]. This choice can also be justified by arguments
based on efFective-field theory [43]. On the other hand,
the perturbative contributions from the two light-quark
isodoublets involve self-energies evaluated at q = m~ or
q = mz and, for that reason, are calculated with n(mz).
As an example, in Eqs. (7e) and (9c), which involve top-
quark contributions, we identify n, with n, (m&), while in
the perturbative part of Eq. (8b), which includes light-

where

8 m, ( n. i 15n,d= —
i

—„2 —— ln
~

1+—'
i

— ' . (9c)3(s' 3 mz ( vr) 8~

quark isodoublets, we employ n, (mz). [In the latter
equation we make a slight and negligible change to the
above isodoublet rule by also evaluating the very small
bottom contribution with n, (mz). ] Numerically, the fi-
nite counterterms in Eqs. (7d) and (9a) are quite small:
for mi ——150 GeV, they are 1.0 x 10 in Eqs. (7d)
and (7e) and 6.1 x 10 4 in Eqs. (9b) and (9c); for
m~ ——250 GeV, the corresponding values are 2.2 x 10
and 1.5 x 10 s, respectively. As we will see, when s2 is
defined according to the decoupling convention explained
above, the finite counterterm in Eq. (9a) introduces small
compensatory shifts in Arw and Ar. Similarly, Z„
defined in Eq. (7d), will introduce small compensatory
changes in radiative corrections whenever e2 is employed
as the zeroth-order parameter.

III. PERTURBATIVE O(aa, ) CORRECTIONS TO
Lv"w, bf, AND Ar

When the decoupling of the top quark is implemented
according to the discussion of Sec. II, the expression for
Arw [cf. Eq. (2)] becomes (see Appendix 8)

e (Aww(mw) —Aww(0) & 2 (f) n ('7

m~
e lncz 7 5 2 2( 3c' n+ „2 6+ ———s —s2~5 — „~ ——d,16~282 s2 2 2 ( 2c~ ir

(1Oa)

where Aww(q2) is the unrenormalized WW transverse self-energy with the coupling e /s factored out [1],d is defined
in Eq. (9c), and the MS symbol has the same meaning as in Sec. II. The quantities Arw, Ar", and Ar are gauge
invariant but some of their partial bosonic contributions are not. In Eq. (10a) and henceforth all explicit expressions
and partial contributions are given in the t Hooft —Feynman gauge. In particular, the expression involving curly
brackets represents vertex- and box-diagram corrections to p decay, evaluated in that gauge.

Except for the last term, Eq. (10a) is the same as Eq. (8b) in Ref. [1]. As s enters Eq. (2) as a zeroth-order
parameter and is de6ned in the present paper according to the decoupling convention explained in Sec. II, there is
now an additional contribution —(n/ir)d arising from the finite contribution in Eqs. (Qa) —(9c).

We now discuss the evaluation of Eq. (loa). The quantity ezII~~ (0) can be obtained from Eq. (7a). We have
- MS

(f) n (7 z li n 8 mz ( n n i 15 n ne'lI» (0) + —
]

—inc' ——
i

= — A~+ — ln
i
1+—'+

Ms & (4 6p ir ~ 9 m, i 7r 37r) 8 ~ 3~) (1ob)

where A~ is defined in Eq. (8b) and the other terms on the right-hand side (rhs) represent the top contribution.
Inserting Eq. (lob) into Eq. (10a) and neglecting small terms of O(n ), we obtain

e2 ('Aww(mw) —Aww(0)) n e inc 7 5 2 „z ( 3c n-
Arw = —„Re

~
+ —A~+ „~ 6+ ———s —s 5—

2 m~ ) Ms 7l 1670 s s 2 2 ( 2c 7r

(loc)

where

1 —8s2/3
(lod)

The bosonic contribution (ez/s2mzw)[Aww(mw) —Aww(0)]Ms is given in Eq. (A.6) of Ref. [1]. In order to study
the fermionic contributions, denoted by a superscript (f), we define

~(f) R Aww(mw) ww(0)(f) 2 g(f)
S

—-2 m gf
2

- MS



48 INCORPORATION OF QCD EFFECTS IN BASIC. . . 313

and write

B = Bo + BgcD(f) (f) (f) (lib)

where Bo(f) and B&~&)D stand for the O(n) and O(aa, } corrections. If we neglect very small terms proportional to

a mz/m~ (q = d, s, b), the mixing angles in the quark sector are irrelevant [41] and to zeroth order in a, we have (ef.

Eq. (A.5) of Ref. [1]}

Ld —1Bill = 2
~

ln c ——
~
+ + —(1 + 2tc, ) + (1 + —

) ln
~

1 ——
2irs ( 3) 2 8 2 2 ( cup)

(1lc)

where we have included the lepton and quark contributions and cuq
——m&~/mL. As a refinement, in Appendix C we

discuss the contributions of O(mz/m~), where m stands for a lepton or quark mass other than m&. As these terms

are very small, we may neglect in their evaluation the squares of the mixing angles. In that case one obtains a sum

of isodoublet contributions, which, for arbitrary masses, is given in Appendix C. One finds that the corrections of

O(mz/m~~) to Bc(f) are indeed very small, of order 10
The contribution of O(an, ) in Eq. (lib) is given by (see Appendix A}

1»e +44(3) ——
~

+»c + 4((3) ———4cu (+~(1/~ ) —F (0})+ incr,f) a 2a, (mz) I a(mr) 55

4~s' 12) vr 12

(lid)

&r"w 2 ~

1+ '
I
» (mt && mz).

a f' a, (m~) ) mg

67rs ( ir ) mz
(i2)

This exhibits a smaller coefBcient than the correspond-
ing expression in Ref. [12], a feature that is due to a
partial cancellation with the finite counterterm —(a./a)d
in Eq. (10a). The asymptotic behavior for mH )) mz is
the same as in Ref. [12], namely

where Fi(2:) is defined in Ref. [25]. In Eq. (lid) we have
neglected all quark masses other than mq. The first term
in Eq. (lid) arises from the (u, d) and (c, s) isodoublets,
while the second is associated with the (t, b) doublet. In
Eqs. (10c), (10d), and {lid) the mass scale of 6, has been
chosen according to the prescription explained at the end
of Sec. II.

The asymptotic behavior of Ariv for large m& can be
obtained from Eqs. (9c), (10c), (10d), (llc), and (lid)
and is given by

[

form as Eq. (15b) of Ref. [1]. It is understood, how-

ever, that Ariv, e, and s2 in Eq. (14) are defined ac-
cording to the prescriptions of the present paper, namely
Eqs. (10c), (8c), and (2). In Appendix B we show how
Eqs. (10a)—(10c), and (14) can be derived from the re-
sults of Ref. [1] by neglecting very small contributions
of O(a ) without logarithmic or m2/mz enhancements,
as well as terms of O(o.s). As pointed out in Ref. [1], if
one neglects also subleading corrections of O((n/7rs )2:q),
with xq being defined in Eq. (17b), one can replace
e [1—Ar~ —(n/vr)d] ~ e in the second term of Eq. (14).
As in Ref. [1],we have retained such subleading terms in

Eq. (14) because the resulting expression describes very
accurately the resummation of one-loop eKects, which is
particularly simple in the MS framework.

We now turn our attention to the evaluation of the
self-energies in the second term of Eq. (14). The bosonic
contribution

Q mH4rgr z ln
24m s2 m, z

(m»& m, ). (13)
(e /s mz) Re A~ (mL-) /c zz (mz)

We now turn our attention to Ar". When the top decou-
pling is implemented according to Sec. II, the expression
for Ar" becomes (see Appendix B)

ez [1 —Ariv —(a/~) d ]
T — TgJ "2 2s mz

xRe ™~l—X
c

0,' S+ ——d
MS C

(14)

where d and d are defined in Eqs. (9c) and (1()d) and
&zz(g ) is the unrenormalized ZZ transverse self-energy
with the coupling e /s factored out [1]. Except for

the terms involving d and d, which arise from the fi-
nite counterterms in Eqs. (7d) and (Qa) associated with
the decoupling of the top quark, Eq. (14) has the same

is given in Eq. (A.9) of Ref. [1]. To study the fermionie
contributions, we write

e'
O(f) Re ww( w) )l(f) (

g
)2 2 2 ZZ

z

and expand

C —C + C@~(f) (f) (f)

MS

(15b)

where Co(f) and C&&D are the O(n) and O(a.n, ) correc-
tions, respectively. If the small terms proportional to
nm /mdiv (q = d, s, b) are neglected, the mixing angles
are once more irrelevant and, to zeroth order in o;„we
have (cf. Eq. (A.8) of Ref. [1])
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( z 5l lncui (cup —l)2 (' 1 )
2vrs c I, 3) 2 8

2
I

inc ——
I
+ + —(1+2ui) + (1+wi/2) ln

I
1 ——

n 5 (7 1o, 40.,& 1 ( 8,1'+, , —
I

———s'+ —"
I

—— 1+
I

1 —-"
I

»S +-+2(1+2~i)(~(Di) —1)2~s~c~ 3 (4 3 9 P 8 ( 3

+4 .g gui I 4+ ~(Di) —1
I

3n
4vrs~c (4 (15c)

Di = 4p, —1, and p(D) = D ~ tan (D ~ ) for D & 0. In analogy with our discussion of
in appendix C we give the expression for Co for arbitrary fermion masses in the approximation of neglecting(f) ~ ~ e ~ (f)

the squares of mixing angles. We find that the corrections of O(m /mdiv) to Co are also of order 10
The contribution of O(nn, ) in Eq. (15b) is given by

(fl ~ 2n, (mz) ~ 2 ( 55) ( g .2 (
C@cD—,, ' c'»c'+

I
4((3) ——

I

—s'+»'
I

1 ——s'
I4~c2 ~ & 12& ( 4 9 )~

~.(m, )+ ' c inc +
I 4((3) ——

I

—s +2s2
I

1 ——s
~

—c 4uiFi ——lnui
I12) I, 4 9 ) g (~i )

8,)' ( (1 in',+
I

1 ——s'
I pi&ii .

— ' +viAi) ( k4P, 4 ) 4
(15d)

where the functions Fi(2:), Vj (r), and Ai(r) are defined in Ref. [25].
The leading asymptotic behavior of Co for large rnid is (3a./16vrs c )(mi2/mz), which arises from the last term of

Eq. (15c). In the O(o;a;, ) corrections the leading contribution is contained in the combination

[na, (rnid)/47r s c ](piAi [I/(4@i)] —4c cuiFi(1/~i)),

which asymptotically becomes

—[n6, (mi)/8~ s28](vr /3+ l)(mi~/m~z).

Combining these contributions, inserting the result in Eq. (14) and neglecting there the subleading O(n ) contribu-
tions, we have

167rs c mz 3vr g 3 ) (m, » mz), (16a)

while the leading asymptotic behavior for large mH is
the same as in Ref. [12], namely

(5 3 ~) mH——-c~ ln
2+s~c2 (6 4 ) mz

(rn»& rnz).

(16b)

mt

a.,(mi)
~~

—+1
I
= 0.455n, (mi),

3% 3
(16c)

which amounts to Ami —(4.9, 7.5, 9.6, 11.7) GeV for
mi ——mz, 150, 200, 250 GeV. It should be stressed that,
as is obvious from the structure of Eq. (16a), these results
depend sensitively on the precise definition of mt. The
quantity that appears in Eq. (16a) and the various ex-
pressions of this paper is the zero of the real part of the in-

The term involving 6, in the last factor of Eq. (16a) rep-
resents the most important O(o.n, ) correction. Indeed,
the contribution of Eq. (16a) depends very sensitively on
mi and the coefficient of a, /n in the last factor, namely
—2.86, is quite large. The presence of this 6, correction
induces an increase in the value of mt read from experi-
ments of approximately

verse propagator. In the literature it is variously referred
to as the "physical, " "on-shell, " or "dressed" mass. In
the approximation of neglecting the s dependence of the
imaginary part of the top-quark self-energy, it coincides
with the real part of the comple~ pole position [13—15]. It
is also the mass that occurs in the Balmer formula for the
toponium levels in the nonrelativistic bound-state picture
and the parameter that governs the start of the tt cut in
perturbation theory [44]. All the recent calculations of
O(an, ) contributions and tt production [22—31] employ
this definition or slight modifications thereof. It is worth-
while to notice that the O(6, ) corrections become much
smaller if one employs other definitions of mass [45]. For
example, mi and the running mass, mi(mi), are related
by [44]

m, = mi(m, )[l + 46, /(3~) + O(6', )].

Inserting this into Eq. (16a), we get a contribution in-

volving

( )]'[1—2( ./ )( '/9 —1)l

and we see that the coefficient of n, /vr has changed from
—2.86 to —0.19. Similarly, if one expresses the cor-
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rections in terms of the Georgi-Politzer mass, M( —m2)
[46], which is gauge dependent and usually evaluated in
the Landau gauge, the coefficient of a, /vr becomes even
smaller, namely +0.09. Because the perturbative eval-
uation of the (t, 5)-isodoublet loops involves high mass
scales, of O(mq) or O(rnz), both the on-shell and mq(mq)
definitions are in principle suitable, although the for-
mer is the natural choice in the DR approach [23—25,
30, 31]. The relevant question, of course, is what mass
parametrization is more adequate to describe the physi-
cal issues at hand, namely the production and detection
of the top quark. In this connection it a)so appears that
the on-shell mass is the most appropriate parameter be-
cause, in the propagation of t and t between the "produc-
tion" and "decay" vertices, configurations near the "mass
shell" will be greatly enhanced kinematically (resonance
effect). Another consideration, of a more practical na-
ture, is that the mq parametrization of the radiative cor-
rections should be consistent with the one employed in
the calculation of tt production [27—29] and, as mentioned
before, this is again the "pole" or "on-shell" definition.

Returning to the evaluation of Li, we must still con-
sider the irreducible contributions of O(o. (m, /miv) ).
As mentioned before, these ean be gleaned from the two-
loop irreducible corrections to the p parameter. The very
recent work of Ref. [7] leads to a significant change in
the magnitude of these corrections. Indeed, these au-
thors And for the leading high-mq contributions to the p
parameter an expansion of the form

where

1 —ArP=
1 —Ar"g (18b)

Neglecting very small terms of order (Rx~2/3)~, one in-
deed verifies that when the second term in Eq. (18a) is
inserted in Eq. (18b), it leads to an additional contri-
bution of —R(mH/mq)x~/3 to 1/p, in conformity with
Eq. (17a).

We have given all the elements necessary to evaluate
the basic radiative corrections Ariv [cf. Eq. (10c)] and Ar"

[cf. Eqs. (14) and (18a)] including O(ao.,) corrections. In
conjunction with

1 4A~

2
' ' m'(1 —~r) (19a)

which follows from Eq. (3), Dr" can be employed to calcu-
late s—:sin Hiv(mz) in terms of the accurately known
quantities G„, mz, and n, as a function of mq and mH.
The parameter s~ = 1 —m~~/mz can be computed from
(cf. Eq. (19) of Ref. [1])

„~ ( e2 b,r~ —Ar")
s 1 —Ar~

and Ar (cf. Eq. (22) of Ref. [1]) from

(19b)

Ar"~ —Ar"
dr =dr

s 1 —(c /s )(Ar~ —Ar)/(I —Ar~)
(19c)

Alternatively, writing p—:1/(1 —Ap) we have (cf.
Eqs. (17a), (17b), and (20) of Ref. [1])

3a„m,'
8~'~2 (17b) (19d)

~p( )

3 i m, ' 1 —Arg
(18a)

The rationale is the following. In the MS scheme the
p parameter is naturally identified with p = e~/c~ and,
from Eqs. (2) and (3), we see that (ef. Eqs. (17a) and
(17b) of Ref. [1])

is the one-loop term [47] and R is a negative function
of m~/mq. When m~/mq ——0, R equals 19 —2vr
—0.7392, the result of Ref [6], bu. t as mH/mq increases,
R rapidly becomes more negative, reaching a minimum
of ——11.8 for m~/mq —5.8. In current discussions
mH/mq ranges from = 0.24 (corresponding to mH
60 GeV and mq = 250 GeV) to —11 (corresponding to
mH —1 TeV and mq —91 GeV). Noting that R(0.24) =
—3 and R(11) ——10, it is clear that, although Refs.
[6] and [7] agree in the limit mH/mq ——0, for realistic
values of this ratio the results of Ref. [7] tell us that
these corrections are considerably larger in magnitude.

Calling Ar~ l the "one-loop" expression for Ar" given
in Eq. (14), we include the two-loop irreducible contribu-
tions by writing

(19e)

Again, the

mdiv

—mz interdependence can be expressed
in two equivalent forms (cf. Eqs. (24) and (25) of Ref.

m~ 1

m2
p(,

4A21—
mz(1 —ar)

4A
m', p(1 —Zr )

(19f)

(19g)

The W mass can be evaluated from (19b) or (19f) or
(19g). Equations (19a)—(19g) have the same structure
as in Ref. [1] because they follow from the same basic
relations, namely Eqs. (1)—(3). In this paper, however,
the explicit evaluation of priv and Ar" via Eqs. (10c),
(14), and (18a) is somewhat different because we have
included the O(no. ,) corrections, updated the contribu-
tions of e2Re[II~~~l(0) —II~~l(m~z)] and the two-loop irre-
ducible parts, and implemented the decoupling of the top
quark. By inference the same holds true for Lr and Lp
when they are evaluated from Ariv and b, r" via Eqs. (19c)
and (19d), respectively. It should be observed, moreover,
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that, except for very small effects of O(c), ), i.e. , of the
same order as those we have neglected, the decoupling of
the top quark should not affect physical observables such
as the radiative correction Ar and the predicted value of
mgJ ~

As shown in Appendix C, the corrections of
O(m2&/mL, ) to Ar are also very small. However, they
are enhanced relative to those of Ariy(y and Ar", and for
mz & mq & 250 GeV they vary from = —7 x 10 to
=8x10

IV. RESIDUAL PARTS OF Ar~, Ar", AND Ar

Factoring out [1 —(a;/vr)A~] and recalling Eq. (8c), we
have

S (20b)

It is a simple matter to derive expressions relating m~
and mz to G„, s, c, and e (rather than e2). To see
this, we write Eq. (2) in the form

1

~2G„m 1 —(a/~) &~ —[&riy(y
—(a./~) &~]

(20a)

where

(22b)

is the residual part of Lr. One readily finds that this
quantity can be obtained by simply substituting Ar~ —+

(priv)„, and Ar" —+ (Ar)„, everywhere on the rhs of
Eq. (19c). Of course, Eq. (22b) can be directly used for
numerical evaluations.

As illustrations, for mH = 250 GeV and mq

150 GeV we have Arv(y = 7.02 x 10 2, Ar" = 6.34 x 10
and Ar = 4.74 x 10 2, while (Arv(y)„, = 3.6 x 10
(Ar)„„= —3.6 x 10 s, and (Ar)„eg = —2.08 x 10
The corresponding values for mH = 250 GeV and mq ——

200 GeV are Ari)(y = 7.08 x 10 2, Ar" = 5.88 x 10
and Ar = 2.90 x 10, while (Ariv)„„= 4.3 x 10
(Ar)„, = —8.5 x 10 s, and (Ar)„, = —4.05 x 10
Unlike (Ari)(y)„, or (Ar)„„(Ar)„, is quite large for
mq = 200 GeV.

A correction similar to (Ar)„, has been recently em-
ployed in Ref. [20]. The two quantities are, however,
not identical because 6, defined in the MS scheme, dif-
fers somewhat from the effective parameter cb(mz)
(128.8) used in that work. This illustrates the rather
obvious but important fact that running couplings are
scheme dependent.

where
A2

(drw). ..= (diw ——dr} —. (20c)

The correction (Ariy(y)„, represents the "residual part"
of Lr~ after we have subtracted the large contribution
(a/vr)Az, evaluated with the coupling e2 rather than e2.
As (Arv(y)„, (( Ari)(y, we see that the dominant part of
Lr~ can be absorbed by employing 6 rather than o. as
the zeroth-order coupling.

Starting with Eq. (3), the analogous argument leads to

„2„2 7to.' 1

~2G~mz 1 —(y"gr)„, '

where

(21a)

(d')„., = (d' ——d,}—', . (21b)

7TH 1

&2G, ' 1-(& )-.' (22a)

Again (Ar)„, is the "residual part" of Ar" In connec-.
tion with the inclusion of the two-loop irreducible con-
tributions of O(a.2(m~2/m2iiy)2) [cf. Eq. (18a)], it is easy

to see that the "one-loop" Lr" can be obtained
res

by replacing Driy(y —y (Ar~)„„(a/~)d —+ (a/vr)d, and
(c)./n)d ~ (6/m)d on the rhs of Eq. (14), and the final

(dr), , follows by substituting dri i (d ri i snt)
res

Ar~ ~ (Ar~), e, on the rhs of Eq. (18a). Of course,
once Ar" is known, one can directly use Eq. (21b) for the
numerical evaluation of (Ar)„,.

The corresponding expression from Eq. (1) is

V. br IN THE ON-SHELL SCHEME

In this section we discuss the incorporation of the per-
turbative O(ac);, ) corrections to Ar [2, 3] in the on-shell
scheme of renormalization [2]. We follow the formulation
proposed recently in Ref. [8], based on the expression

C2
Ar = An ——AP (1 —An) -t (Ar)„S2

where Aa; = 0.0597 + 0.0009 represents the contribution
of the charged leptons and the first five quark flavors
to the photon vacuum-polarization function evaluated at
q~ = m2z, i.e. , e2Re[11»(0) —11»(m2z)],

(23b)

xq is defined in Eq. (17b), and R(mH/mq) [7] is the
function discussed after Eq. (17a). The result for Aa
quoted above includes the recent calculation of the first
five quark fiavor contributions [10] and, for this reason,
it slightly difFers from the central value of 0.0602 em-
ployed in Ref. [8]. The second term in Eq. (23a) involves
the leading mq-dependent correction Ap to 1 —1/p [cf.
Eq. (17a)] and we see that, in the case of Ar, it is en-
hanced by a factor c /s . Its importance for large mq in
the m~ —mz interdependence was pointed out in 1980, in
the work of Marciano and one of us (A.S.) [41]. Since that
time, this potential efFect has been discussed by several
authors [4, 5, 22—26, 48, 49].

The separation into leading contributions [the first two
terms in Eq. (23a)] and a "remainder" (Ar) „ is the
same as was proposed in Refs. [4, 5, 26], except that we
have included the recent results of Ref. [7] on the two-
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loop contribution to AP. It is important to note that
(Ar)„~ difFers from the quantity (Ar)«s introduced at
the end of Sec. III. Whereas in the latter we subtract the
large logarithmic corrections, in (Ar)„we also exclude
the leading mt-dependent contributions. The formula-
tion of Ref. [8] provides also a very specific prescription
to calculate (Ar)«~, namely

Q2

(A~),. = A.&'~ —A~+ —,X
c2 ~2G„m2~ (1 —Aa) s~

+—xi —X (24a)

where Lr is the familiar one-loop expression of Ref.
[2], expressed in terms of a and n/s~ as expansion pa-
rameters,

3A mt
l&r8~ m2

e2 Aiviv(m2~)
2m, w

Azz (m2z)

mz - fin

(24b)

(24c)

and the subscript "fin" means "finite part, " i.e. , that
the pole terms have been subtracted and p' has been set
equal to mz. We also note that 2C is a gauge-invariant
quantity. In Eq. (24c) we follow the notation of Ref. [1],
which difFers from that of Refs. [2, 41] in that an explicit
coupling e /s has been factored out in the A~~ and
Azz self-energies. The term —Aa. in Eq. (24a) subtracts
from Ar~ ~ the large logarithmic corrections which are in-
cluded as part of the leading contributions in Eq. (23a).
The quantity (c2/s2)X subtracts another important part
of Lr, which is then treated more accurately in the sec-
ond term of Eq. (23a) and the last term of Eq. (24a),
according to the following prescription. Decomposing
—(c /s )X = —(c /s )x, + (c /s )(xi —X), the domi-
nant part, —(c /s )xi, is included in the second term of
Eq. (23a) with the effective coupling constant changed
according to a./s ~ ~2G„mdiv(1 —An)/n. The non-
dominant part, (c /s ) (xi —X), is treated with the same
coupling modification but it is retained as part of (Ar)„
[the last term of Eq. (24a)]. The rationale for this treat-
ment of (c /s )(x& —X) was explained in Refs. [8, 50]
and reflects the fact that a careful analysis of the resum-
mation of one-loop efI'ects leads to an expression of the
form of Eq. (23a) in which X, rather than its dominant
part xq, is multiplied by ~2G„s rnid(l —An)/(vra) =
(1—Aa)/(1 —Ar). This is natural because, since Ar is the
radiative correction in the relation between m~, mz, G„,
and a, it should involve quantities evaluated at q = mz
and q = m~ such as X, rather than amplitudes evalu-
ated at q = 0 such as AP. We also point out that the
neglect of this effect in Eq. (24a), namely the replace-
ment ~2G„m~8 (1 —Aa. )/(era. ) ~ 1 in the last term,
would induce a change —(c /s2) (xq —X)(c /s2) AP =
O((n/ms2) (c /s~) 2Ap); although formally subleading,
this is enhanced by two powers of c /s2 and is, therefore,
significantly larger than the expected theoretical error.
It was already pointed out in Ref. [8] that Eqs. (23a)
and (24a) include correctly not only the leading terms of
O(n (mi /m~ ) ) and O(n ln (mz/mf )), where mf is a

generic fermion mass, but also the subleading contribu-
tions of O(n in(rnz/my)).

VA now turn our attention to the incorporation of
the perturbative O(an, ) contributions. We first consider
Eq. (24a). The amplitudes modified by the @CD correc-
tions are X~f~ in the last term and the self-energy con-
tributions (e /s mdiv)Re[AIPiv(m~) —Aiviv(0)]s„and
e2 II~~~~(0) contained in Ar~ l, where the superscript

fIn

(f) denotes again fermionic contributions. The first two
are obtained from C&~& [cf. Eqs. (15a)—(15d)] and B&f i [cf.
Eqs. (1la)—(lid)], respectively, by simply changing ev-
erywhere s2 ~ s~ and c2 ~ c2. In particular, their @CD
corrections are derived from Eqs. (15d) and (1ld), respec-

tively T.he correction e~ II&~& (0) can be read from
- fin

Eq. (7a) by removing the pole terms, setting p' = mz,
and substituting o. —+ a. It is not necessary to consider
(c~/s~)XE~~ in the third term of Eq. (24a) because, as
explained before, it cancels an identical contribution in
Ar&i&. The value of An is not modified, as @CD correc-
tions have already been taken into account in its evalua-
tion.

In the above discussion, the quantities x& in Eq. (24a)
and Ap in Eq. (23a) have not been altered, so that, except
for An, all the @CD corrections are contained in (Ar)«~.
We may wish, however, to incorporate the leading @CD
corrections in the second term of Eq. (23a). To achieve
this, we subtract them from Eq. (24a) by replacing

3a mi2 M, (m, ) far~xt ~x', = —+1
167rs2 miv 37r q 3 ) (25a)

in the last term of that equation and, at the same time,
we substitute

2a, ,(mi) (vr2 l (mHI xi=~t 1 —+1 +R
3~ (3 p ymir 3

(25b)

in Eq. (23a). The overall evaluation of Ar is, of course,
the same whether we employ Ap in Eq. (23a) and xi
in Eq. (24a) or the modified quantities, Ap' and x', . In
the second formulation, however, the first two terms of
Eq. (23a), with AP ~ Ap', describe more accurately the
leading rn&-dependent corrections.

The contributions of O(n n„an, ) are unknown at
the present time and for this reason we have not made
any attempt to include them. However, the structure of
Eq. (25b) gives a hint about what their magnitude might
be. Suppose, for example, that the leading @CD efFects
are always very small when the electroweak corrections
are expressed in terms of the running mass, mi(m, &), as it
happens with the O(ao.,) corrections. In that hypotheti-
cal case, the discussion after Eq. (16c) indicates that the
modified Lp parameter would be obtained approximately
by appending a factor (I —[2a, (mi)/37r](~~/3 + I))
to each xq in Eq. (23b). For rnH = 600 GeV and
m& ——200 GeV, the difference with Eq. (25b) would
lead to an aditional contribution to Lr of —3.4 x 10
This is of the same order of magnitude as the sublead-
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ing terms of O((o./vrs )(c2/s )xq), discussed in Sec. I.
The surprisingly large size of these possible corrections
of O((c /s )a,x, ) is due to the m, dependence and the
considerable magnitude of the function B. This obser-
vation illustrates the fact that, for large mq values, the
theoretical error due to unknown higher-order corrections
may arise from very different sources,

finite range, i.e. , they have compact support. As a con-
sequence, the corresponding unsubtracted DR integrals
for A and 4v are convergent and, moreover, van-
ish as lsl —+ oo. In using the DR approach, we self-
consistently assume that the threshold contributions to
A and 6 ' tend to zero as lsl —+ oo, so that these
quantities satisfy unsubtracted DR's. Thus,

VI. THRESHOLD EFFECTS

The fermionic contribution to the vacuum polarization
of the intermediate vector bosons can be expressed in
terms of the amplitudes

A (s, mi, mg) =—V,A

7r

(s, mi, mg) =-VA 1

, ImA (s', mi, m2)
ds )

8 —S —lC

, ImA (s', mi, m2)
ds

8 —8 —'EE

(28a)

(28b)

II„(q,mi, m2)

d'x e'& *(0 l&*[J„'"(x)J. "t(o)]
I o), (26a)

II„' (q, mi, m2) =II ' (s, mi, mq)g„
+X~"(s, m„m, ) q„q. , (26b)

where, throughout this section, s = q .
Threshold effects involving the tt, tb, and bb channels

can be expressed as contributions to the imaginary parts
of the functions IIV+ and Av+ [24, 27—31]. A number
of papers [23, 24] have made use of DR's to express the
physically important amplitudes IIv in terms of their
imaginary parts. In Refs. [30, 31] two of us (B.K. and
A.S.) proposed to use DR's directly constructed from the
Ward identities. We recall the basic strategy: contracting
both sides of Eq. (26a) with q&, one derives the relation

II ' (s, mi, mz) = —s& '"(s, mi, m2)
+Z~ "(., m„m, ), (27a)

where T* is the covariant time-ordered product and

j„=pip„gq and J„=@ip~psg2 are the vector and
axial-vector currents, constructed with the spinors fields

@i and Q2 endowed with masses mi and m2, respectively.
Thus, except for vector currents with m~ ——m2, the con-
servation of the currents is explicitly broken by mass
terms. In turn, the tensors Hv have the well-known
structure

+ImA ' (s', m„m )

11v "(., m„m, ) = —'
jr

d" Imnv "(.', m„m, )
8/ 8 —8 —cc/

(29a)

d8
, Imh ' (s', mi, m2).

8

(29b)

In Eqs. (28a)—(29b) and henceforth it is understood that
, and II represent the excess threshold con-

tributions relative to the perturbative O(na;, ) correc-
tions. As explained in Ref. [31], Eq. (29b) can be di-
rectly derived from the following assumptions: (i) IIV+
satisfies a once-subtracted DR; (ii) the subtraction con-
stant is determined from the Ward identity (27a), so
that II ' (0) = 4 (0); (iii) 4 (s) satisfies an un-
subtracted DR, so that 4 ' (0) can be calculated from
the second integral in Eq. (29b). The fact that IIV+
must satisfy a subtracted DR can be clearly seen by con-
sidering the particular case of vector currents with equal
masses. In that case A+(s', m, m) = —II+(s', m, m)/s'
and A+(s', m, m) = 0, so that Eqs. (29a) and (29b) re-
duce to

Inserting these expressions into Eq. (27a) and using the
same equation to relate the imaginary parts, one obtains
the two equivalent representations [31]

IIV,A ~ 1, ImII (s', mi, m2)II ' js, mq, mqj = — ds'
7r S —8 —lC/

where Av+(s, mi, m2) is defined by
n~(s, m, m) = —'

jr

ds' ImII+(s', m, m)
8 / 8 —8 —lC/

~ ) (3Oa)

d'x e"*(0 l&[~"J„'"(x)J.'"'(0)]
l o)

"(., m„m, ) q. . (27b)

The idea then is to write DR's for Av' and 6 A and
to obtain IIV+ by means of Eq. (27a). This approach
has been employed in Refs. [30, 31] to discuss both the
perturbative and the threshold contributions in the on-
shell scheme of renormalization. The aim of this section
is to extend the discussion, so that the threshold effects
can also be included in the MS calculations.

We recall that in our analysis the threshold contribu-
tions to the imaginary parts are nonzero over a small,

which vanishes at s = 0, in conformity with the Ward
identity (27a). If, instead, II (s, m, m) were to satisfy an
unsubtracted DR, the condition II (0, m, m) = 0 would
imply Jds'ImIIv(s', m, m)/s' = 0, which is manifestly
false, as ImIIv(s', m, m) ) 0. In summary, Eqs. (29a)
and (29b) are the simplest possible DR's consistent with
the Ward identity (27a). As mentioned before, the latter
is a crucial requirement. We also see from Eq. (29a) that
the threshold effects modify the asymptotic behavior of
the full II (s) as lsl —+ oo by constants, i.e. , by sublead-
ing terms. [We recall that the perturbative contributions
to II ' (s) grow as s, modulo logarithms. ]

Threshold effects associated with the tb channels are
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+ImA (s', m, m), (30b)

in accordance with Eq. (29a). The amplitude
Imil+(s', mq, mq) receives contributions from J+ = 1+
states, i.e. , l = 1, which are suppressed near thresh-
old by centrifugal barrier effects. On the other hand,
ImA (s', mq, mq) also receives significant contributions
from 0 states, i.e. , t = 0. A detailed discussion of
Imll+(s', mq, mq) and ImA (s', mq, mq) in both the res-
onance [24] and Green-function [28] approaches is given
in Ref. [31]. In both cases one finds [31]

ImA (s', m|, mq) = ImA (s', m~, mq)

30c
Imlli'(s', m„m, )

s'

The second equality is, of course, an e~act consequence
of the Ward identity (27a).

We now discuss the specific threshold contributions to
the basic radiative corrections studied in the paper. The
corrections A~ and Ariv contain e211~f~l(0) [cf. Eqs. (10a)
and (lob)]. The top contribution to this amplitude is
obtained from Eq. (A7),

e'll" (0) = e'-', (ll )'(O, m„m, ),

where (II )'(0, mq, mq) = (0/Os)llv(s, mq, mq)], =p. Re-
calling Eq. (30a), we have

(llv)'(0, m„m, ) =— ds
2ImrI (s, m„m~).s/2 (31b)

There are no additional significant threshold effects
in Ariv, because those involving Re[Aiba~(mii, )
A~~(0)]/mi2v [cf. Eq. (10a)] are suppressed by reduced-
mass effects. In the ease of Ar" [cf. Eq. (14)] the same
holds true for the term involving ReA~~(m2iv)/(c2m~z);
there are, however, significant threshold contributions to
ReAzz(mz)/mz. According to Eq. (A13)

2mz

1 f 8.2l v
2 Re

]
1 ——s

~

II (mz, mg, mg)
16e mz ( 3

greatly suppressed because they are proportional to the
squared reduced mass of the quarks [24] and can be
neglected. Those involving the bb channel, i.e. , "bot-
tomiurn resonances, " give significant contributions only
to e211»(0) and are already included in the evalua-

tion of e2Re[II~& (0) —II&~ (m2z)]. Thus, only the case
m~ ——m2 ——mq is significant. For vector currents with
equal masses, the relevant DR is given in Eq. (30a). For
axial-vector currents, we employ1, ImII (s', m, m)

s, m, m = — ds'
7t s —S —'E E'

Rell (mz, m„m, )
2mz mz2

j.

~mz2

ds'ImA (s', mg, mg)

ds
, ImII (s, mg, mg),

(32c)

where P denotes the principal value of the integral. We
note that, as explained earlier, the threshold behavior
of Imll+(s', m&, m&) is suppressed by centrifugal bar-
rier effects and its contribution has been neglected in
Eq. (32c). As the support for the threshold contribu-
tions to ImII (s', mq, mq) is located in the neighborhood
of s' —4m&, the dominant effect for m~ )) m& is given by
Eq. (32c), with Eqs. (3lb) and (32b) being relatively sup-
pressed by a factor m2z/ (4m~2). Furthermore, the term
involving Rell+(m~~, mq, mq) in Eq. (32a) has a small eo-
factor (1 —8s /3) = 0.14. In the range mz & mt &
250 GeV, Eq. (32c) increases more rapidly than linearly
with mq, while the contributions of Eqs. (31b) and (32b)
to Ar" and Ar remain very small, at most a few times
10 5. As discussed in Ref. [31], the sign of Eq. (32c) can
be understood with an argument reminiscent of the one
employed in technicolor theories to explain the genera-
tion of the vector-boson masses: 0 states contribute to
the functions A (s) and 4 (s) and, via the Ward iden-
tity (27a), to II+(s). In technicolor theories this gives
rise to mz Azz(0). In our case, when Eq. (32c) is
inserted in Eq. (32a), it leads to a positive contribution
to the Z mass shift, bmz ——ReAzz(mz).

Inserting into Eqs. (31b), (32b), and (32c) the detailed
evaluations of ImIIv(s', mq, mq) and ImA (s', m&, mq)
[31] derived from the analyses of Refs. [24, 28], we obtain
the additional contributions to Ar~ and Ar" associated
with the tt threshold. Because the threshold contribu-
tions in e II~f~l(0) and ReA~z(m2z)/m~z are very small,
we have not subtracted them from A~ or the latter ampli-
tude. Consequently, they do not affeet the counterterms
of Eqs. (7d) and (9a).

Analogous considerations are valid in the on-shell eval-
uation of Ar (see Sec. V and Ref. [31]). The threshold
corrections that are not suppressed by reduced-mass ef-

fects occur again in II~~(0) and ReAzz(mz)/mz, the
latter being by far the dominant contribution for large
mt. Here one sets s —+ s and c —+ c everywhere. We
also recall that in Ar the contribution of Eq. (32a) is
enhanced by a factor c /s .

We end this section with the observation that the mag-
nitude of the lS contribution to Imllv(s, mt, , mq)/s can
be roughly understood on the basis of a simpli6. ed "Bohr-
atom" model. We recall that, neglecting hard-gluon cor-
rections, this contribution is approximately given by [24,
31]

Using Eqs. (30a)—(30c), we have

ReII (mz, m&, m&) 1 ds' ImII (s', m&, m&)

mz2 I I )

(32b)

+II (mz, mg)mg) (32a) ImII (s, mg, mg) ]Xi p(0)] 6 s —Mgs Me
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where Ri p(0) is the radial wave function at the origin
and Ms —2m' is the mass of the 1S resonance, e. In
Ref. [24], [Ri p(0)~ and Ms have been studied in de-
tail on the basis of the Richardson potential. Suppose
now that we attempt to estimate this effect using the
"Bohr-atom" picture. In the case of the one-electron
atom, [Ri p(0)] = 4(ap)s, where p is the reduced mass.
For toponium we set p = mi/2, Ms = 2m', and replace
n ~ 4n, (ki)/3, where ki = 2n, (ki)mi/3 is the inverse
Bohr radius [27]. This leads to 3~Bi p(0)

~ / (Msmz) =
(16/9)(n, (ki)) m&/mz, which is to be compared w&th

3m'((mq)/ (8mz), obtained from the Richardson poten-
tial [24, 31]. Here g(mz) is a monotonically increas-
ing function of mz, which is evaluated numerically and
varies from 1.95 to 3.08 GeV for m~ & mq & 250 GeV.
For mq ——mg, 250 GeV, the Richardson potential gives
0.0080 and 0.0347, respectively, while in the Bohr-atom
model the corresponding values are 0.0096 and 0.0428,
which are about 20'%%uo larger. This may be partly due
to the fact that the Richardson potential is softer than
Coulombic near the origin. Interestingly, the ratio of the
values at mg ——250 GeV and mi ——mz, which gives
an indication of the mq dependence, is almost the same
in both cases. In the Bohr-atom model, for the nS
states, ~~,p(0)~ scales as n . However, as the radii
of the higher orbits increase as n2, the momentum k„
at which 6, is to be evaluated becomes smaller. For
suKciently high n, the relevant 6, falls in the nonper-
turbative regime and the "Coulombic" picture becomes
increasingly doubtful. The evaluation based on a realis-
tic, "confining" potential is clearly preferable. However,
it is interesting that a simple Coulomb potential gives a
similar answer, at least in the case of the 1S state.

VII. NUMEB, ICAL CALCULATIONS

In the previous sections we have discussed the theo-
retical background necessary for the incorporation of the
leading @CD effects in the basic corrections 6r~, Ar",

and Ar. At the same time, as explained in Sec. I, we
have introduced a number of refinements in the analysis
of the electroweak corrections.

In this section we apply the previous results to numeri-
cally evaluate Ar~, 6r", and Ar, and, most importantly,
to derive precise values for m~ and s—:sin 8~(mz),
as functions of mq and mH. irking first in the MS
scheme, the basic strategy is the same as in Ref. [1]. We
employ Eq. (10c) and Eqs. (14) and (18a) as the basic
expressions for Ar~ and Ar", respectively, and iteratively
evaluate these corrections in conjunction with Eq. (19a),
leading to accurate values for s Then A.r ean be eval-
uated from Eqs. (19c) or (19e), s from Eq. (19b), and
m~ from either s2 or Eq. (19f). We use as input values
o = (137.0359895) i, G„= 1.16639 x 10 s GeV [38],
mz = 91.187 GeV [16], leading to A = (vra/y 2G&) i~2 =
37.2802 GeV, and n, (mz) = 0.118 [39]. As shown in Ap-
pendix C, the effects arising from finite fermion masses
are very minor. Nonetheless, we include them as follows:
the u, d, and s quarks are treated as massless, while
we employ m, = 1.5 GeV and mb = 4.5 GeV. The lep-

tons are given their physical masses [38], including the re-
cent value m = 1.777 GeV [51]. In order to incorporate
the new results on the leading irreducible corrections of
O(n ) [7], it is very convenient to use a precise analytical
representation of the function R(mH/mi) in Eqs. (17a),
(18a), and (23b). In the range r = m~/mq ) 4, the au-
thors of Ref. [7] give the accurate asymptotic expansion

B(r) = —+ vr —271n r + 61n r
49 2

+ (2 —12vr —241nr —1081n r)
1 2 2

3r2

+ (1613—240vr +30001nr —28801n r).48r4
(34a)

In the complementary domain 0 & r & 4, only numerical
values are available [7], which we have fitted with the
expression

R(r) = —0.7392088 + r(—11.5315 + 0.382497 ln r)
+r (5.31338 —3.055 lnr + 0.5230391n r).

(34b)

The maximum deviation of Eq. (34b) from the original
data [7] is & 0.025 and occurs near the matching point,
r =4.

In Tables I—V we display the calculated values of
m~ and s2, as functions of mi for mH = (60, 100,
250, 600, 1000) GeV. Currently, a fit to all data, us-
ing the electroweak radiative corrections of the SM and
n, (mz) = 0.120+0.006, gives mi = 145+&s+&& GeV [51].
The central value corresponds to mH = 300 GeV and the
last error refiects the theoretical uncertainty associated
with the range 60 GeV & mH & 1 TeV. This implies
mi & 173+i& GeV at the 95'%%uo confidence level, where
the error is again due to the m~ uncertainty. Although
this strongly suggests that m~ + 200 GeV, in the tables
we present values up to mi ——250 GeV. One of the rea-
sons is that it is theoretically interesting to study and
compare the high-mq dependence of the various radia-
tive corrections. Moreover, there is always the possibil-
ity of a statistical surprise or that unknown new physics
may alter the predictions of the SM, so that scenarios in
which mi is found at higher values are not completely
excluded. For comparison purposes, we list in the tables
the results of four difFerent calculations: (i) only elec-
troweak corrections, wit;h all @CD corrections turned ofF
(columns labeled EW for "electroweak"); (ii) electroweak
plus perturbative O(nn, ) corrections (columns labeled P
for "perturbative"); (iii) the above, plus threshold ef-
fects calculated in the resonance approach according to
Sec. VI (columns labeled P+R for "perturbative plus res-
onance"); (iv) the same as in (iii) but with threshold ef-
fects evaluated in the Green-function approach (columns
labeled P+G for "perturbative plus Green function").
In order to keep the tables compact, we have displayed
only the quantities of greatest physical interest, namely
mdiv and s, rather than the radiative corrections Ar~,
Ar", and Ar, or the derived parameter s2 of the on-shell
scheme. The interested reader can readily glean these
important quantities from the tables. Thus, inserting
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TABLE I. Calculated values of sin 8~(mz) and m~, as a function of mi, for mz = 91.187 GeV, 6, (mz) = 0.118, and
m~ ——60 GeV. The EW column includes only electroweak radiative corrections. The P column incorporates perturbative
O(no, ,) contributions (see Sec. III). The P+R and P+G columns contain also tt threshold effects (see Sec. VI) in the resonance
and Green-function approaches, respectively. The on-shell parameter sin dr~ and the radiative corrections Ar~, Ar", and Ar
can be gleaned from this table, as explained in Sec. VII.

mt
(GeV)

mz
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

EW

0.23307
0.23287
0.23262
0.23235
0.23207
0.23176
0.23144
0.23110
0.23074
0.23036
0.22997
0.22955
0.22912
0.22867
0.22820
0.22772
0.22721

P
0.23321
0.23303
0.23280
0.23255
0.23229
0.23201
0.23172
0.23140
0.23108
0.23073
0.23037
0.22999
0.22959
0.22918
0.22875
0.22831
0.22785

82

EW + @CD
P+R

0.23327
0.23309
0.23287
0.23263
0.23238
0.23211
0.23182
0.23152
0.23120
0.23087
0.23052
0.23015
0.22976
0.22936
0.22895
0.22851
0.22806

P+G
0.23326
0.23307
0.23285
0.23261
0.23236
0.23209
0.23180
0.23150
0.23118
0.23085
0.23050
0.23013
0.22976
0.22936
0.22895
0.22853
0.22809

79.979
80.029
80.085
80.141
80.200
80.260
80.323
80.389
80.457
80.528
80.603
80.680
80.760
80.844
80.930
81.020
81.114

P
79.947
79.996
80.050
80.103
80.158
80.215
80.274
80.335
80.398
80.463
80.532
80.603
80.677
80.754
80.833
80.916
81.001

m~ (GeV)
EW + @CD

P+R
79.938
79.986
80.038
80.091
80.144
80.199
80.256
80.316
80.377
80.441
80.507
80.576
80.648
80.723
80.800
80.881
80.964

P+G
79.941
79.989
80.041
80.094
80.148
80.203
80.260
80.319
80.380
80.444
80.510
80.578
80.650
80.723
80.799
80.878
80.959

the value of s2 in Eq. (3) and those of s and m~ in
Eq. (2), one finds Ar" and Ar~, respectively. Using m~,
one calculates s2—:1 —mL, /m2z and, in conjunction with
Eq. (1), Ar. We have kept enough decimal figures in s2

and rn~, so that Ar~, Ar", b,r, and s~ can be accurately
evaluated. The tables allow us to separate the threshold
effects from the more established perturbative O(no. , )
contributions. Although the resonance (R) and Green-
function (G) approaches are quite difFerent conceptually

and technically, the tables reveal the welcome and rather
surprising result that their eKect on m~ and 82 is very
similar over the entire range m~ & mq & 250 GeV,
60 GeV & mH & 1 TeV. Nonetheless, for reasons ex-
plained in Ref. [31] and Sec. VI, in our specific applica-
tions we use the resonance method for mq & 130 GeV
and the Green-function approach for mq & 130 GeV.

It is also a curious and rather surprising fact that most
of the new eÃects we have considered relative to Ref.

TABLE II. As Table I, for mH = 100 GeV.

mq

(GeV)

mz
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

EW

0.23332
0.23312
0.23287
0.23260
0.23232
0.23201
0.23169
0.23135
0.23100
0.23062
0.23023
0.22982
0.22939
0.22894
0.22848
0.22800
0.22750

P
0.23346
0.23328
0.23305
0.23280
0.23254
0.23227
0.23197
0.23166
0.23133
0.23099
0.23063
0.23025
0.22986
0.22945
0.22903
0.22859
0.22814

82

EW + @CD
P+R

0.23352
0.23334
0.23312
0.23289
0.23263
0.23236
0.23208
0.23178
0.23146
0.23113
0.23078
0.23041
0.23003
0.22964
0.22922
0.22879
0.22835

P+G
0.23351
0.23332
0.23310
0.23287
0.23261
0.23234
0.23206
0.23175
0.23144
0.23111
0.23076
0.23040
0.23002
0.22963
0.22923
0.22881
0.22838

EW

79.952
80.002
80.058
80.115
80.173
80.234
80.296
80.361
80.429
80.500
80.574
80.651
80.730
80.813
80.899
80.988
81.080

P
79.921
79.969
80.023
80.077
80.132
80.188
80.246
80.307
80.370
80.435
80.503
80.574
80.647
80.723
80.801
80.883
80.967

m~ (GeV)
EW + @CD

P+R
79.912
79.960
80.012
80.064
80.118
80.172
80.229
80.288
80.349
80.412
80.478
80.547
80.618
80.692
80.769
80.848
80.930

P+G
79.914
79.962
80.015
80.068
80.121
80.176
80.233
80.292
80.352
80.416
80.481
80.549
80.619
80.692
80.767
80.845
80.925
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TABLE III. As Table I, for mH ——250 GeV.

(GeV)

mz
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

EW

0.23380
0.23360
0.23335
0.23308
0.23280
0.23250
0.23218
0.23185
0.23149
0.23112
0.23073
0.23033
0.22991
0.22947
0.22902
0.22855
0.22807

P
0.23394
0.23376
0.23353
0.23329
0.23303
0.23275
0.23246
0.23215
0.23183
0.23149
0.23114
0.23077
0.23039
0.22999
0.22958
0.22915
0.22871

82

EW+ QCD
P+R

0.23401
0.23383
0.23361
0.23337
0.23312
0.23285
0.23257
0.23227
0.23196
0.23163
0.23129
0.23093
0.23056
0.23017
0.22977
0.22936
0.22893

P+G
0.23399
0.23381
0.23359
0.23335
0.23310
0.23283
0.23255
0.23225
0.23194
0.23161
0.23127
0.23092
0.23055
0.23017
0.22978
0.22937
0.22896

EW

79.894
79.944
80.000
80.056
80.114
80.174
80.236
80.301
80.368
80.437
80.510
80.585
80.663
80.744
80.827
80.914
81.003

P
79.862
79.911
79.965
80.018
80.072
80.128
80.186
80.246
80.308
80.372
80.439
80.508
80.579
80.653
80.730
80.809
80.890

m~ (GeV)
EW+ QCD

P+R
79.854
79.901
79.953
80.005
80.058
80.113
80.169
80.227
80.287
80.349
80.414
80.481
80.550
80.622
80.697
80.773
80.853

P+G
79.856
79.904
79.956
80.009
80.062
80.116
80.172
80.230
80,290
80.352
80.417
80.483
80.552
80.622
80.695
80.771
80.848

[1], namely (a) the incorporation of the recent results
on the leading irreducible corrections of O(n~), (b) the
perturbative O(nn, ) corrections, and (c) the threshold
contributions in the formulation of Sec. VI, increase the
values of Ar and Ar for given mq and mH. Thus, they
have a sign opposite to that of the leading mq-dependent
part of the one-loop corrections and, therefore, they in-
duce an increase in the mq upper bound. For large
mq, they are only partially compensated by the shift of
—5 x 10 in Ar" and b,r arising from the new calcu-
lation of e2Re[II~~(0) —II~~(m2z)] [10]. It should also
be remembered that most of the corresponding shifts in
Ar" and Ar increase with mq. (a) behaves as m, [cf.

Eqs. (17a), (18a), and (23b)], the dominant (6) contri-
butions as m, [cf. Eqs. (16a) and (19c)], and (c) more
rapidly than linearly in mq [31].

The @CD eKects on m~ and s are visible in the ta-
bles. For example, for the intermediate value mH
250 GeV and mq ——mz, 130, 150, 180, 200, 250 GeV,
the perturbative O(nn, ) corrections lead to the shifts

Dm~ = —(32, 42, 50, 65, 77, 113) MeV
As =+(1.4, 2.3, 2.8, 3.7, 4.4, 6.4) x 10

(35a)

The threshold contributions lead to further shifts

TABLE IV. As Table I, for mH ——600 GeV.

mq

(GeV)

mz
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

0.23430
0.23409
0.23384
0.23358
0.23329
0.23299
0.23268
0.23234
0.23200
0.23163
0.23125
0.23086
0.23045
0.23002
0.22958
0.22913
0.22867

P
0.23444
0.23425
0.23403
0.23378
0.23352
0.23325
0.23296
0.23265
0.23234
0.23200
0.23166
0.23130
0.23093
0.23054
0.23014
0.22973
0.22931

82

EW + QCD
P+R

0.23450
0.23432
0.23410
0.23386
0.23361
0.23335
0.23307
0.23277
0.23247
0.23214
0.23181
0.23146
0.23110
0.23072
0.23034
0.22994
0.22953

P+G
0.23448
0.23430
0.23408
0.23384
0.23359
0.23333
0.23305
0.23275
0.23244
0.23212
0.23179
0.23145
0.23109
0.23072
0.23034
0.22995
0.22956

EW

79,828
79.8?8
79.933
79.990
80.047
80.107
80.168
80.232
80.298
80.367
80.438
80.511
80.587
80.666
80.747
80.830
80.916

P
79.796
79.844
79.898
79.951
80.005
80.061
80.118
80.177
80.238
80.301
80.367
80.434
80.503
80.575
80.649
80.725
80.803

m~ (GeV)
EW+ QCD

P+R
79.787
79.835
79.887
79.939
79.991
80.045
80.101
80.158
80.217
80.278
80.342
80.407
80.475
80.544
80.616
80.689
80.765

P+G
79.790
79.837
79.890
79.942
79.995
80.049
80.104
80.162
80.221
80.282
80.344
80.409
80.476
80.544
80,615
80.687
80.760
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TABLE V. As Table I, for mH ——1000 GeV.

mg

(GeV)

mz
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

EW

0.23460
0.23439
0.23414
0.23388
0.23359
0.23329
0.23297
0.23264
0.23229
0.23193
0.23155
0.23116
0.23075
0.23033
0.22990
0.22946
0.22900

P
0.23474
0.23455
0.23432
0.23408
0.23382
0.23355
0.23326
0.23295
0.23264
0.23230
0.23196
0.23160
0.23123
0.23085
0.23046
0.23006
0.22965

82

EW + QCD
P+R

0.23480
0.23462
0.23440
0.23416
0.23391
0.23365
0.23337
0.23307
0.23276
0.23244
0.23211
0.23176
0.23141
0.23104
0.23066
0.23027
0.22987

P+G
0.23479
0.23460
0.23438
0.23414
0.23389
0.23362
0.23334
0.23305
0.23274
0.23242
0.23209
0.23175
0.23140
0.23104
0.23066
0.23028
0.22990

EW

79.786
79.836
79.892
79.948
80.006
80.065
80.127
80.190
80.256
80.325
80.395
80.468
80.543
80.621
80.700
80.782
80.866

P
79.754
79.803
79.856
79.910
79.964
80.019
80.077
80.136
80.196
80.259
80.324
80.390
80.459
80.530
80.602
80.677
80.753

m~ (GeV)
EW+ QCD

P+R
79.745
79.793
79.845
79.897
79.950
80.004
80.059
80.116
80.175
80.236
80.299
80.363
80.430
80.499
80.569
80.641
80.715

P+G
79.748
79.796
79.848
79.900
79.953
80.007
80.063
80.120
80.179
80.239
80.302
80.366
80.431
80.499
80.568
80.638
80.710

Am~ = —(8, 14, 14, 20, 25, 42) MeV haps (bm~), »t —50 MeV. The above shifts can also be

+(0 7 p g 0 g 1 2 1 5 2 5) Ip —4 (threshold) compared with the theoretical uncertainties

(35b)

The departure from the monotonic behavior between
mq ——130 GeV and mq ——150 GeV is due to the tran-
sition from the resonance to the Green-function ap-
proach. The effect of the leading irreducible corrections
of O((n m, /m2~)~) cannot be seen in the tables because
they have been included in every column. However, they
can be estimated from the relations

Amp c2 f'mHI x2

m~ c~ —s2 —2c~xq ( mq y 6 '

s c ~)™H
c' —s' ( m, ) 3(1 —x,)"

(36a)

(36b)

where xq is defined in Eq. (17b). The term 2c xq in the
first denominator of Eq. (36a) and the factor (1 —xq)
in Eq. (36b) take into account the fact that some of the
leading one-loop contributions to Ar and Ar" depend on
s and 8, respectively, and are therefore affected by the
shifts in these parameters. For the same values of mH
and mq as employed before, Eqs. (36a) and (36b) give

Eme = —(1,5, 8, 16, 24, 52) Mev

)As~ =+(0.1,0.3, 0.5, 0.9, 1.4, 3.0) x 10

(36c)

Equations (35a), (35b), and (36c) can be compared with
the experimental uncertainties (6m~),»t —100 MeV
and (6s ),», = 4 x 10 4 expected at the end of 1993
[51]. We see that, in general terms, they are of the same
order of magnitude. Of course, in the long run, even bet-
ter experimental accuracies are envisaged, reaching per-

mar s bdr
c' —s' —2c'x) 1 —b.n

+16 MeV,

—4(6p)„h= 2 2
-+3x 10

c2 —s2 1 —A~

(~mw) th =—
(37a)

(37b)

arising from the error (6'Ar)t, h
—(M.r)t, h = +9 x 10

in the calculation of e Re[II~~(0) —II~~(mz)] [10]. We
recall that the theoretical error arising from the neglect
of higher-order electroweak corrections is expected to be
of O((n/mrs )xq) in Ar~ and Ar" and further enhanced
by a factor c /s in b,r (see Sec. I). Moreover, the error in
the overall @CD corrections (perturbative and threshold
efFects) has been estimated to be +20% [31]. Incidentally,
Eq. (37b) shows that, if the experimental accuracy in s is
improved in the future well beyond 4x 10 4, a meaningful
theoretical interpretation will require a decrease in the
above-mentioned theoretical errors.

As pointed out before, the higher-order corrections we
have considered lead to an increase in the mq values ob-
tained from experiments. As an example, we consider
the case mH = 250 GeV and call mq the parameter de-
rived from (m~),»q when the perturbative O(nn, ) cor-
rections are included. Table III shows that the possible
values m~ ——mz, 130, 150, 180, 200 GeV are larger than
those obtained in the purely EW calculation by

Amq ——+(5.8, 7.5, 8.3, 9.7, 10.8) GeV [O(nn, )]. (38a)

The values of mq derived from (s2),»& are shifted by
slightly higher amounts, the differences with Eq. (38a)
being & 0.8 GeV. The bulk of Lmq arising from the
perturbative O(nn, ) corrections can be understood with
the simple formula (16c), which describes the dominant
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TABLE VI. Comparison between the values of Ar and
m, w obtained using the MS approach of Sec. III [(Dr)r,
(mw) q] and the on-shell formulation of Sec. V [(Ar) qq,

(mw)gg], as a function of mg, for m~ = 91.187 GeV and
mH ——60 GeV. Nonperturbative tt threshold eR'ects are not
included here.

mg

(GeV)
mz
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

(Ar) y (Dr) yy

x10
6.003
5.735
5.437
5.135
4.823
4.498
4.159
3.801
3.425
3.029
2.611
2.170
1.705
1.214
0.697
0.151
-0.424

6.006
5.738
5.440
5.138
4.826
4.502
4.162
3.805
3.429
3.033
2.615
2.173
1.708
1.217
0.699
0.153
-0.423

(mw)r
(GeV)

79.947
79.996
80.050
80.103
80.158
80.215
80.274
80.334
80.398
80.463
80.532
80.603
80.677
80.754
80.833
80.916
81.001

mW' ll

79.946
79.995
80.049
80.103
80.158
80.214
80.273
80.334
80.397
80.463
80.531
80.602
80.676
80.753
80.833
80.915
81.001

TABLE VII. As Table VI, for mH ——250 GeV.

mg

(GeV)
mz
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

(b,r)r (Dr)n
x10

6.461
6.199
5.907
5.612
5.309
4.994
4.665
4.320
3.959
3.579
3.179
2.760
2.319
1.855
1.369
0.858
0.322

6.462
6.200
5.908
5.613
5.309
4.994
4.665
4.320
3.957
3.577
3.176
2.756
2.313
1.848
1.360
0.846
0.307

(mw) i
(GeV)

79.862
79.911
79.965
80.018
80.072
80.128
80.186
80.246
80.308
80.372
80.439
80.508
80.579
80.653
80.730
80.809
80.890

mw rr

79.862
79,911
79.964
80.018
80.072
80.128
80.186
80.246
80.308
80.372
80.439
80.508
80.580
80.654
80.731
80.810
80.892

contribution. Similarly, we see from Table III that, when
threshold contributions are included, the values of mq
derived from (mw), »t are larger than those obtained in
the EW+P calculation by additional shifts of

Am& ——+(1.7, 2.7, 2.7, 3.3, 4.1) GeV [threshold].

(38b)

The corresponding variations arising from the irreducible
O(n~) corrections are

Am& ——+(0.6, 1.2, 1.6, 2.5, 3.3) GeV [O(a.~)].

(38c)

TABLE VIII. As Table VI, for m~ = 1000 GeV.

(GeV)
mz
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

(b,r)q (b,r)rr
x 102

7.036
6.779
6.494
6.206
5.910
5.604
5.286
4.954
4.607
4.244
3.865
3.469
3.056
2.625
2.175
1.707
1.220

7.037
6.780
6.494
6.205
5.910
5.603
5.284
4.951
4.603
4.239
3.859
3.461
3.045
2.612
2.159
1.687
1.195

(mw)i
(GeV)

79.754
79.803
79.856
79.910
79.964
80.019
80.077
80.135
80.196
80.259
80.324
80,390
80.459
80.530
80.602
80.677
80.753

mm rr

79.754
79.803
79.856
79.910
79.964
80.020
80.077
80.136
80.197
80.260
80.325
80.392
80.461
80.532
80.605
80.680
80.757
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Thus, for m~ = 250 GeV and mq = 200 GeV, the com-
bination of O(o.o.,), threshold, and leading irreducible
O(o. ) corrections increases the value of m& derived from
(mw), »t, by = 16.8 GeV.

Another topic of considerable interest is the com-
parison of calculations carried out in the MS and on-
shell methods of renormalization. This is illustrated for
mH = 60, 250, 1000 GeV in Tables VI—VIII, where we
show the evaluation of Lr, a physical observable, ob-
tained on the basis of the MS approach of Sec. III and
the on-shell formulation of Sec. V. For the purposes of
this study, we have included the electroweak and pertur-
bative O(o.a, ) corrections, leaving aside the threshold
effects. We also display the derived values of mw and
s~. Inspection of the tables shows that the two calcu-
lations of b,r are in excellent agreement over the entire
range 60 GeV & m~ & 1 TeV, mg & mq & 250 GeV,
with a maximum discrepancy of = 2.5 x 10 occur-
ring at mq ——250 GeV and mH = 1 TeV. Although
such accurate agreement may be somewhat fortuitous,
it is roughly of the expected order of magnitude, i.e. ,
O((n/7rs~) (c~/s~) 2:~).
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APPENDIX A

+—11, ' (s, mi, m2),
o's vi A (Al)

In this appendix we discuss the perturbative correc-
tions of O(a, ) to the vacuum polarization functions in-
volving quarks. Defining IIv (s, mi, m2) according to
Eqs. (26a) and (26b), we expand

II ' (s, mi, m2) = II&' (s, mi, m2)

where s = q and mi and m2 are the masses of the virtual
quarks in the loop. The functions IIO' (s, mi, m2) have
been extensively discussed in the literature. They can be
gleaned, for example, from Ref. [41]. In the O(a, ,) terms
we consider two limiting cases: mi = m2 = m (as occurs
in the pp, ZZ, and Zp self-energies) and mi = m, m2 = 0
[as applies, to a very good approximation, to the (t, b)
contribution to the WW self-energy].

Comparison of Refs. [22] and [25] leads to the following
expressions:

7r2

,II~(s, m, m)
m
7r2

IIi (s, m, m)

1= r
~

— —l - 4((3) + —
~
+ V, (r),n —4 122

6 2 (+ ]
3l ————]+31' — r+ —

/
l

(n —4)2 n —4 l 2 4p 2 2
55 ll+r

~

—4((3) + —+ 6((3) + 3((2) ——+ Ai(r),12 8

(A2)

( 3)

V, A 1 6
, II, ' (, , 0) =— 2 z 11& ~ 11

3l ————
]
+ 3l' — x+ — l

n —4 2 4) 2

551 11+
I
-44(3)+ —I+6((3)+3((2)——+F ( ),l 12) 8 ( 4)

11(t,) (0) = II(i) (0) + 11,(') (0) + RelI(5) (mz)
+Re[II (0) —II (mz)], (A5)

where the superscripts (l), (t), and (5) refer to the con-
tributions of the leptons, the top quark, and the first
five quark Bavors, respectively. It is easy to see that the
contribution II~~ (s) of quark q to II»(s) is

(,) q', II~(s, mq, mq)
II~q~ s = q

)
S

(A6)

where Qq is the charge of the quark in units of the
positron charge e, and rn~ is its mass. In particular,

II,",)(0) = q,'(IIv)'(0, m, m ), (A7)

where the prime on the rhs denotes differentiation with
respect to s. Using our Eq. (A2) and Eq. (18) of Ref.
[25], we find that the O(a, , ) part of II~'~(0) is

(2a., /9vr )(ln(p'/mi) + s
—[2(n —4)] ).

The finite part of this result is included in the second
term of Eq. (7a), while the pole contributes to the last.
Similarly,

where r—:s/(4m ), x—:s/m2, l —= ln(m2/p') (p' is
the rescaled 't Hooft mass discussed in Sec. II), Vj(r),
Ai(r), and Fi(x) are complicated functions studied in
Ref. [25], and the color factor appropriate to N, = 3 has
been explicitly included. We recall that ((2) = vr2/6 and
g(3) = 1.20206. . . . The above expressions can be used
to evaluate the O(a, , ) corrections employed in the text.
Thus, the quantity II~~ (0) in Sec. II can be written as

(5)( g
) ) 2RelI (mz mq q)

V 2

ReII» mz
z

(A8)

where rq and f2(r) are defined in Sec. II. The finite and
pole parts have been included in the third and last terms
of Eq. (7a), respectively. As mentioned in Sec. II, for

e Re[II~~ (0) —II~~ (mz)] we employ a recent evaluation
[10]. The contributions of O(a;) within the square brack-
ets in the second and third terms of Eq. (7a) are sim-
ply obtained from the O(6~) ones by dividing by the
quadratic Casimir coefficient 4/3 for the fundamental
representation of SU(3)c, multiplying by an additional
factor of Qq, and replacing 6, ~ a. . The contributions

of O(n) in II~~(0) [first term in Eq. (7a)] can be obtained
from those in II~~(0) by changing mq —+ mi and dividing
by 3Q4, where the 3 stands for the color factor.

In the approximation of neglecting the squares of mix-
ing angles, the quark contribution to A~~ is

AIi, iv (s) = —— ) [II (s, mi, m2)
- quarks 8

doublets

+II (s, mi, mg)]. (A9)

In the O(a, ) part we approximate mi = m2 = 0 in the
(u, d) and (c, s) contributions and mi = mq, m2 = 0
in the (t, b) contribution. In this limit, II (s, mi, mq) =

Using Eq. (A2), we see that the O(a.,) part of Eq. (A8)
1s

(a, /4vr ) ) Q [21n(p, '/mz) + f2(rq) —(n —4) ],
qgt
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IIv (s, ml, m3) and we see that the O(a, ) part of Eq. (A8)
1s

1
[26,(mz)IIv(s, 0, 0)

+a, (mi)IIi (s, mi, 0)], (Alo)

where the first and the second terms correspond to the
contributions of the light and (t, b) isodoublets, respec-

tively. The choice of renormalization scale in 6, was
explained at the end of Sec. II. Employing our Eq. (A4)
and Eq. (20) of Ref. [25], we find

ReIIl' (s, o, o) = —
~

+ ln 2 +4((3) ——
4+2 qn —4 p'2 12

(A11)
and

A~ i
( ) —A~ i (0)Re 2m~ - @CD

a, (mz) ( 1 m~w 55)
8+3 (,n —4 p'3 12)

a, (mi) 1 m2w 55+ '
~

+ln 2 +4((B) ———4ws Fs
~

—
l

—F'y(0))+In'&16+~ n —4 p'2 12 k~~)
(A12)

Subtracting the pole term, setting p,
' = mz, and multiplying by e2/s~, we obtain Eq. (lid).

Similarly, the quark contribution to Azzl(s) is

~(zfzl(s)
quar ks 16c2„2 ) (1 —4s C3qQq) II (s, m~, mq) +II (s, m~, m~)

where Cs~ = +1 (—1) for up (down) members of the doublet and the sum is over quarks. In the O(c)., ) part we neglect
all masses other than mq and find

4

zz( ) = — „2 ) (1 —4s CsqQe) + 1 Hi (s 0 0)
@CD 16vrc

@=1

~(m&) & 8 2') vIIl (s, mq, m&) + IIl (s, mi, m&) +
~

1 ——s
~

+ 1
16vrc ( 3 )

~h~re the first and second terms are the contributions of the light and (t, t)) jsodoublets,
Eqs. (Alo) and (A14) and recalling Eqs. (lid) and (A2) —(A4), we obtain

II (s, o, o) (A14)

respectively. Combining

m'WW( W) g(f) (
2

)mz c
- @CD

n, (mz) ~ 2 ( 1 mz 55) (, , ( 10,11c inc +~ +ln 2+4((3) ——
~

—s +2s (1 ——s
8vrsc2 (n —4 p' r)
n, (mg) 2 2 ( 1 msz 55& &, , 10,) &+ '

„2 c inc +~ +ln 2+4((3) ——
~

—s +2s 1 ——s
16m sc2 4+ —4 p 12)

~
9

(1') ) ( 8„') ~ 1 &

input

1—c' 4(u, F,
]

—
/

—in~, )+ I
1 —-s'

/
pi&a I

— ' + pi~i
) ( 3 ) ( 4p&) 4 ) 4p~)

(A15)

A z(s) = —
I

———s
~

II (s)m„m, ),
(~) e /1 4 3~ v

3sc (2 3 (A16)

and, therefore,

a. e' /' 1—d= ——
i3 &2s' mg (A17)

Subtracting again the pole terms, setting p,
' = mz, and

multiplying by e /s, we obtain Eq. (15d).
Finally, in order to implement the decoupling of the top

quark, we need the quantity (n/vr)d, where d is defined
in Eq. (9b). From Ref. [41] we find

2
e' 11,",(0) ——d =, (11 )'(O, m„m, )

Ms 7T 6s

Q= ——d )
It

(A18)

where d is defined in Eq. (lod).

The O(a, ) part of Eq. (A17) is evaluated as in the case
of II~(~l(0) [cf. the discussion after Eq. (A7)]. A relevant
combination that occurs in Arw and Ar is
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APPENDIX 8
In this appendix we outline the derivation of the ex-

pressions for Arw [cf. Eq. (10a)] and Ar" [cf. Eq. (14)],
corresponding to the strategy in which the decoupling
of the top quark is implemented. As s (1 —«w) and
s2c2(1 —«) are physical observables [cf. Eqs. (2) and
(3)], we define Krw and Ar" in such a way that

s~(1 —Erw) „
s2c2(l —6r)

s2(l —«w)
s2c2(1 —Ar)

(B1)

(B2)

Here the subscript "old" labels the quantities obtained
when the MS counterterms cancel only the divergent
parts involving 6 [cf. Eq. (5a)], as in Ref. [1],while "new"
denotes the corrections employed in the present paper,
where the MS counterterms contain small finite parts
necessary to implement the top-quark decoupling in rel-
evant amplitudes. Our strategy is to retain, in Eqs. (Bl)
and (B2), terms of O(a ) when they involve large log-
arithmic or mi/mz enhancements, but to neglect them
otherwise. We also neglect certain corrections of O(n3).
Recalling e02 ——e2/Z, and Eqs. (7d), (Qa), (Qb, ) and
(A18), we have

As the only large correction in Arw is (a/7r) A~ and n(1—
nA~/a) = n [cf. Eq. (8c)], we obtain

A
(4rw) „,„=(Arw)oid ——d.

7r
(B6)

-2 = -2 ac« ——c 1 —— —„d~o new ir c

into Eq. (B2), we have

A
(Ar")„, = («) i~ d —1—— —„2 ~

[1 —«] «.
'7t C new

The expression for («w)o« in terms of II» (0), ~W
self-energies, and the vertex- and box-diagram correc-
tions to p, decay, is given in Eqs. (7b) and (8b) of Ref. [1).
The only contribution to (Arw) id with large logarithmic
enhancement is e II&z (0) ~Ms and, to O(n), this does
not involve s . Therefore, we can replace s ld
everywhere in (Arw)o«, neglecting very small terms of
O(n ). Inserting theexpression for (Arw)oig in Eq. (B6),
we obtain Eq. (10a).

The derivation of Eq. (14) is more subtle. Inserting
Eq. (B3) and

A2e

old

e2

s2

~2 ~2
Sold —Snew 1+—di,

vr

a. -
i

1 ——d
new

(B3)

(B4)

(B8)

We first consider the second term in Eq. (BS). Using
Eq. (18b), this contribution can be written as

—(~/~)d(1 —[s /c'1 ~ ) [1 —«w]»d / old

where d and d are defined in Eqs. (9c) and (10d), respec-
tively.

The derivation of Eq. (10a) follows almost immedi-
ately. Inserting Eq. (B3) into Eq. (Bl), we find

which, neglecting small O(n2) terms, becomes

—(n/7r)d(l —[s /c ]„, )c /c„,

( 6
I
1+ —d

I [1 —arw].„=[1 —arw]„,„. (B5)
Next we analyze the first term on the rhs of Eq. (B8).
According to Eq. (15b) of Ref. [1], it is given by

A2

(«),)d = (Arw)»d — (1 —Ar )s c - Old

Aww(m2w) —c2Azz (m2z)
Re 2mz - MS

(BQ)

Examination of Eq. (A.8) of Ref. [1] shows that

Aww(mw) —c Azz(mz)Re 2mz - MS

(3m,' 1 m~
2 + —ln +

87rz (Sm2z 2 mz ) ' (Blo)

where the ellipses represent nonleading terms [some of which involve in(m&/mz) with very small coefficients propor-
tional to s2, s2, or s4]. The significant point is that the leading contributions in Eq. (B10) are independent of s
Therefore, in Eq. (B9) we can replace the last factor in the second term by an analogous expression with s id ~ s„,
the difFerence being again small terms of O(n2). Using Eqs. (B4), (B6), and (B7), Eq. (B9) becomes

n e' 1 . n- n ((«)o« = («w) + —d — =2 2 1 —&rw ——d ——"
l

1 ——.2 lc2P
Aww(mw)

C - MS

(Bl1)
Recalling Eqs. (10), (12b), and (15a) of Ref. [1] and neglecting again very small contributions of O(o. , ns), we find
that the term proportional to (o/vr)d(l —s2/c~) in Eq. (Bl1) can be written as (o./vr)d(l —s~/c2) (c~/c2 —1). Inserting
the above results into Eq. (BS), we find
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A s2i c2
(Ei) .„=(dry), + —d 1 + 1 ——.

~ ~

—.
~

—1)
1

1 —(diw) . ——d) Re
7t'

( s2 c2

ne~

A~g (mw) —A (
2

)C2
- MS

(B12)

The coefficient of (o./7r)d simplifies to s2/c and Eq. (B12) equals Eq. (14).

APPENDIX C

If terms proportional to squares of mixing angles are neglected, the fermionic contributions to the lVW self-energy
become a sum over independent isodoublet contributions and we obtain

Bo = „2 ) N fi(co+)cu ),127t's
doublets

(Cl)

f, (~+, ~ ) =In[c'(~+~ )'~']+ 1 — +
2

3(~+ + ~-) —(~+ —~—) ~++ ln
4((u+ —~ )

-)' 2n(....)2

5 Cd+ + Cd (M~ —Cd )
3 4 2

(C2)

where Bo is defined in Eqs. (lla) and (lib), N, = 3 and K, = 1 for quark and lepton isodoublets, respectively, and(f) .

w~ = m~+/m2~, with m+ and m being the masses of the "up" and "down" fermions in the isodoublet. Calling

(ld+ —4) ) 1

4 4'

the function A(w+, u ) is given by

A(~+, ~ ) =C cos y &++M —1

2 4)+(d

~++~
A(~+, (u ) = ln

2 u+ + ~ —1+ 2iC~&/2

for C&0,

for 0 &0.

(C4)

(C5)

Equations (C4) and (C5) are a simpler version of Eqs. {A10) and (All) of Ref. [49]. As expected from the integral
representation of the self-energies [41], fz(~+, w ) is a symmetric function of co+ and ~ . As ~ ~ 0,

2 M+ —1 5 2

fg(~+, 0) = ln(c (u+) + (~+ —1) 1+ ln
2 3 4 2

while in the limit a+, a ~ 0,

fi(0, 0) = inc
5

(C6)

(C7)

If all the fermion masses other than mq are neglected, Eqs. (Cl), (C6), and (C7) lead to Eq. (llc). In order to estimate
the terms of O(m2b/m~), we consider the case ~+ ) 1 and ~ && 1. Including corrections of O(u ), we have

fi{u)+)cu ) = fi(~+, 0)+ —cu (1+~+) ln
3 —co+ —— + O(~ ).

1

2 4)+ —1 2
(CS)

Inserting the second term of Eq. (CS) in the (t, b)-isodoublet contribution to Eq. (Cl), and identifying ~ = cub =
mb/mL, and w+ ——cuq ——m~ /m~, we obtain a very small shift,

mb

3A 2 4)g 1{1+~, ) ln
87ts2 ug —1 2

(C9)

Using mb = 4.5 GeV and mz = 91.1S7 GeV, we find that the O(mb/m~) corrections to Eq. (Cl) are = 2.5 x 10
5.4 x 10 6, 2.8 x 10, 1.7 x 10 6 for mq ——mz, 150, 200, 250 Gev, respectively. VA note that the cofactor of wb

in Eq. (C9) tends to 0 as mq ~ oo. To estimate the contributions of O(m2/m~~), we set m, = 0 and keep terms of
O(w+) for w+ « 1 in Eq. (C6),

3 li
fg(~+, 0) = fg(0, 0) + —su+ in~+ ——

i
+ O(su+2).

2 2p
(C10)
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Inserting the second term of Eq. (C10) in the (c, s)-isodoublet contribution to Eq. (Cl), and identifying id+ ——id, =
m, /mdiv, we obtain

&&(f)
- mc

lncd, ——
l
.

8vrs 2) (Cl 1)

For m, = 1.5 Gev, this amounts to a shift of —1.1 x 10 s to Eq. (Cl). For the corrections of O(m /m2~), we replace
id, —+ id = m~/m2iv and divide by the color factor 3 in Eq. (Cl1). This leads to a further correction of —5 x 10 s to
Eq. (Cl).

Turning our attention to Co, defined in Eqs. (15a) and (15b), and neglecting again the squares of mixing angles,
we have

Oo 12 2 2 e ) &cf2(id+, id-) ——) .~c g(p f)
doublets

' f
(C12)

-)'
2n( )2

fz(id+, id ) = 1 — (id++—~d ) ln[c (cd+id ) ~ ]+ 1—3 w+ + w

2
W

(&+ —Cd —) Cd+ 5 (~d+ —id-)
ln

4 (d 3 2 )

g(p f ) = (1 —4s Csf Q f ) + 1 ln pf + —+ 2(1 + 2pf ) [A(Df ) —1] —6pf [ln py + 2A(Df ) —2], (C14)

where the f sum is over quark and lepton fiavors, N, is again the color factor, Qf is the electric charge in units of
the positron charge e, Csf =+1(—1) for up (down) members of the doublet, pf = mf/mz, Df = 4pf —1, and

A(Dg) = D~ t8n '
(D~

'
)

IDfl' ' 1+ IDfl' '
1 —IDf I'~'

forDf )0,

for Df & 0.

(C15)

(C16)

As is clear from their structure, the contributions involving f2 and g in Eq. (C12) arise from the first and second
terms in Eq. (15a), respectively.

One readily Ands the limiting values

3 w+ —1 5 (d+'
f2(id+, 0) =

l
1 ——cd+

l
ln(c id+) + (id+ —1) 1+ ln ——+cd++) 2 4)+ 3 2 '

(C17)

f~(0, 0) = lnc ——,5
(C18)

g(0) = —— (1 —4s2Csf Qy) + 1 (C19)

If the fermion masses other that mt, are neglected, Eqs. (C12), (C14), and (C17)—(C19) lead to Eq. (15c). To discuss
the corrections of O(m&/mL ), we consider f2(id+, id ) for cd+ ) 1, id « 1 and g(pf) for pf « 1. One readily finds

f2(cd+, id ) = f2(id+, 0) + —id (1+id+) ln + —id+ —ln(c id+) + O(id ),2 4)+ —1

g(pf) = g(0) —48pfs Qg(2s, Qf —Csf) + O(p~).

(C20)

(C21)

Identifying id = id'„ id+ ——id', pf = pi, = mb/mz and inserting Eqs. (C20) and (C21) into Eq. (C12), we find for the
leading correction of O(pb)

&&(f)
mb

3o, 8., (
pb (1+~d, )ln —~di —ln(c ~d, ) ——s

I
1 ——s

87t.s c '
~~ —1 ) (C22)

Using the same input values as in Eq. (C9), we find that the O(mb2/mi2), ) corrections to Eq. (C12) are = 2.5 x 10
—6.7 x 10, —1.6 x 10, —2.3 x 10 for mq ——mz, 150, 200, 250 GeV, respectively. To estimate the corrections of
O(m2/mi2), ), we set id = 0 and keep terms of O(cd+) for cd~ && 1 in Eq. (C17). In conjunction with Eq. (C21), this
gives
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3o, 16„2 4„& 2
p,, —s2 —8~ —1 —ln c

8+s2c~ 3 3
(C23)

where Ii, = m, /mz. For m, = 1.5 GeV, this is ——8 x 10 . The corrections of O(m /mzii, ) are even smaller on
account of the absence of the co1or factor.

There are also very small corrections of O(m&/mz2) and O(m, /mz) associated with the fi(rq) contribution to
e2II~~ (0) [cf. Eq. (7a)]. Their magnitude is —+5 x 10

Putting all these small O(mI/m~) corrections together, we see that for mt ——mz, 150, 200, 250 GeV they amount
to (1.4, —0.6, —0.8, —0.9) x 10 s in the case of Ariv and (—1.0, +0.2, +0.9, +1.5) x 10 s in the case of Ar" On. the
other hand, Dr = Drys —(c /s~)(Ar~ b,r)—and the small corrections are enhanced in the second term, leading to
shifts of (—6.5, +2.1, +5.1, +7.8) x 10 for the same values of mt.
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