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We investigate the momentum dependence of the extended Drell-Hearn-Gerasimov (DHG) sum rule.
An economical formalism is developed which allows one to express the extended DHG sum rule in terms
of a single virtual Compton amplitude in the forward direction. Rigorous results for the small momen-
turn evolution are derived from chiral perturbation theory within the one-loop approximation. Further-
more, we evaluate some higher-order contributions arising from 6{1232)intermediate states and relativ-
istic corrections. We also discuss the limitations of our approach.
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I. INTRODUCTION

Many years ago, Drell and Hearn [1] and Gerasimov
[2] (DHG) suggested a sum rule for spin-dependent
Compton scattering. It expresses the squared anomalous
magnetic moment of the nucleon in terms of a dispersive
integral over the diiT'erence of the total photonucleon ab-
sorption cross sections o, /2(co ) and tr 3/2( ro ) for the
scattering of circular polarized photons on polarized nu-
cleons. The subscripts A, =—,

' and —,
' denote the total yX

helicity, corresponding to states with photon and nucleon
spins antiparallel or parallel. Experimentally, this sum
rule has never been tested directly since up to now no
measurements of the helicity cross sections have been
performed. However, models for the photoabsorption
cross sections [3—5] do indicate its approximate validity
(on a qualitative level). One can now extend this sum rule
to virtual photons with k & 0, the four-momentum
transfer of the virtual photon, ' since the corresponding
helicity cross sections can be parametrized in terms of the
spin-dependent nucleon structure functions. The recent
data of the European Muon Collaboration [6] taken in
the scaling region of large ~k ~

=10 GeV suggest not
only that the pertinent sum rule behaves as 1/k for large

~
k ~, but also that the sign is opposite to the DHG sum

rule for real photons (which in standard notation is nega-
tive). Therefore the integral

I(k2)= f [cr&/z(co, k ) —o'3/2(co, k )],
with co the virtual photon energy in the nucleon rest

tlt is eustotnary to set k = —Q and only use Q . We will not
do this in the following.

frame, must change its sign between the photon point
(k =0) and the European Muon Collaboration (EMC)
region, k = —10 GeV . A recent model predicts this
turnover to happen at k = —0.8 GeV [7], and it ex-
plains this value mainly in terms of the low-energy con-
tribution of the b(1232) resonance to the pertinent pho-
toabsorption cross sections. Note that the model of Ref.
[7], as well as the phenomenological analysis of Ref. [5],
seems to indicate a positive slope of I (k ) in the vicinity
of the photon point, k =0, whereas the older analysis of
Anselmino, Ioffe, and Leader [8] gives a negative slope (as
a function of k ).

Here we wish to add some new insight into the momen-
tum dependence of the integral I(k ) in the region of

small k where small means that +—k does not exceed
a few pion masses. Our model-independent analysis is
based on the fact that at low energies the interactions of
hadrons are governed by chiral symmetry and gauge in-
variance (when external photons are involved). One can
systematically solve the chiral Ward-Takahashi identities
of @CD via an expansion in external momenta and quark
masses, which are considered small against the scale of
chiral symmetry breaking, A&-—1 GeV. This method is
called chiral perturbation theory. It uses the framework
of an eff'ective Lagrangian of the asymptotically observed
fields. The low-energy expansion corresponds to an ex-
pansion in pion loops. In the presence of baryons, a com-
plication arises. The nucleon (baryon) mass in the chiral
limit is comparable to the chiral scale A&, and thus only
baryon three-momenta can be considered small [9]. One
can, however, restore the exact one-to-one correspon-
dence between the loop and low-energy expansion using a
nonrelativistic formulation of baryon chiral perturbation
theory (ChPT) [10]. The nucleon is considered as a very
heavy (static) source, and in that case, all momenta in-
volved are small, therefore restoring the consistent power
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II. SPIN-DEPENDENT
COMPTON SCATTERING: FORMALISM

In this section we outline the formalism necessary to
describe the scattering of polarized (virtual) photons on
polarized nucleons (protons and neutrons). Denote by p
and k the four-momenta of the nucleon and photon, re-
spectively. It is convenient to work with the two Lorentz
invariants k and ni=p. k/I, with I the nucleon mass.
The spin of the photon and nucleon can couple to the
values —,

' and —,
' with the corresponding photoabsorption

cross sections denoted by o»2(ro, k ) and o.3/p(co, k ), in
order. In what follows we are interested in the extended
Drell-Hearn-Cxerasimov sum rule; i.e., the integral

I(k )= J [o,/2(co, k ) —o3/2(ni, k )]
~ter

(2.1)

with k ~0 and the threshold photon energy co,I„due to
single-pion electroproduction, is given by

counting. In what follows we will use the nonrelativistic
version of baryon ChPT which was systematically investi-
gated in Ref. [11]as well as the relativistic formulation as
spelled out in detail in Ref. [9]. This will allow us to ex-
tract the leading term in the chiral expansion of I(k )
and to calculate the derivative of I(k ) around k =0.
This is the region where ChPT applies. Furthermore, fol-
lowing the suggestion of Jenkins and Manohar [12], we
will also add the b,(1232) resonance to nonrelativistic
baryon ChPT. The b,(1232) is the lowest nucleon excita-
tion, and its closeness to the nucleon mass
m& —m =2. 1M might indicate substantial contributions
from it (this is also supported by phenomenological mod-
els). In fact, using these various approximation schemes,
we will get a band of values for the slope of I(k ). Our
most important result, however, is that independent of
the scheme we are using, we find that I(k ) increases as
~k ~

increases (around k =0). This new result should
serve as a constraint for all model builders and should
eventually be seen in refined phenomenological analyses
or directly from the data (when they will become avail-
able). For a review on baryon ChPT, see Ref. [13].

The paper is organized as follows. In Sec. II, we spell
out an economical formalism to calculate I(k ) in terms
of a single function which possesses a right-hand cut
starting at the single-pion production threshold. In Sec.
III we use ChPT to calculate I(k ) for the proton and
neutron at small k, in the extreme nonrelativistic and
the fully relativistic formulation. The contribution of
loops involving the h(1232) isobar in the nonrelativistic
approach is also discussed. The numerical results and
conclusions are presented in Sec. IV.

where M denotes the pion mass. For real photons the
expression (2.1) becomes the celebrated DHG sum rule

dc'I(0)= [o &/2(co, O) —o 3/p(co, O)]

&e K

2m
(2.3)

Here ~ is the anomalous magnetic moment of the proton
or neutron and we use standard units e /4n = 1/137.036.
The DHG sum rule is derived under the assumption that
the spin-dependent forward Compton amplitude for real
photons f2(ni ) satisfies an unsubtracted dispersion rela-
tion which guarantees that the right-hand side of Eq.
(2.3) converges. In what follows we will make use of the
same assumption for virtual photons. To set the scale for
I(k ), let us give the numerical values for the proton and
neutron:

Iq(0)= —0.526 CxeV

I„(0)=—0.597 GeV
(2.4)

(2.5)

The relation of these structure functions to the spin-
dependent virtual Compton amplitudes in the forward
direction S, z(co, k ) is standard:

2m.G;(co, k )=ImS;(co, k ) (i =1,2), (2.6)

which follows from the optical theorem. Furthermore,
crossing symmetry implies that S, (co, k ) and G2 ( co, k )

are even functions under (co—+ —co) whereas S2(co, k )

and G, (ni, k ) are odd. In fact, for our purpose one does
not need information on both amplitudes St(co„k ) and
S2(ro, k ) but only the particular combination entering
Eq. (2.5). In order to isolate this relevant combination,
one contracts the antisymmetric (in p~v) part of the vir-
tual Compton tensor in the forward direction with polar-
ization vectors e„' and e, for the outgoing and incoming
virtual photons, respectively. If we choose the gauge
conditions

Our main concern will be the k evolution of the extend-
ed DHG sum rule, in particular around the origin k =0.
The interest in that comes from the relation of the helici-
ty cross sections to the spin-dependent nucleon structure
functions G i (co, k ) and G2(co, k ). Following the nota-
tion of Ioffe, Khoze, and Lipatov [15], one can show that

o, /2(a), k ) —o3/2(ro, k )

4 2 k
G (co k )+ G2(co k )

2m~+k m mcus

M„—k
~,„,=M.+

2m
(2.2)

6p=E' 'p=6 k=E k —0

for the polarization vectors and work in the nucleon rest
frame p„=(m, 0, 0,0), we obtain

~For the definition of these cross sections, see Ref. [15] (Chap.
2). We omit the tilde over the symbol cr used in that book.

3We use a di6'erent normalization for the nucleon spinors,
uu = 1 instead of uu =2m.
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e~T( )6 =
2 g ' o''(E X E) d&(co, k )+ S2(co, k )

m

S2(co, k )—o .kk (e'X e)

k
y o"(e'Xe)y S, (co, k )+ S2(co, k )

2m

mcus

(2.7)

where y is a conventional two-component (Pauli) spinor.
In Eq. (2.7) we have exploited the fact that under the
chosen gauge e'X e is parallel to k and k =co —k . Ob-
viously, we are projecting out the particular combination
of S&(co,k ) and Sz(co, k ) whose imaginary part enters
the extended DHG sum rule I(k ). In analogy to the
real photon case, we call this combination

2 I 2

f~(co, k )=
2 S, (co, k )+ S2(co, k )

8am m co
(2.8)

Here we indicated already that fz(co, k ) is an even func-
tion of co which follows from the (co~ —co) crossing
properties of S, z(co, k ) [15]. The odd amplitude
toft(co, k ) can now be expressed in terms of a single
function A (s, k ) as

2~(s —m —k )f~(co, k )

=e [A(s, k ) —A(2m +2k —s, k )] . (2.9)

Here we introduced the Mandelstam variable s = (p +k )

which is related to co via co=(s —m —k )/2m. The
function A (s, k ) appearing in Eq. (2.9) can always be
chosen such that it has only a right-hand cut starting at
the single-pion production threshold s=(m+M ) . A
similar construction of an amplitude with only a right-
hand cut has been used by Meyer [14] who tried to relate
the extended DHG sum rule to half-off-shell nucleon
form factors. Under the assumption that fz(co, k )

satisfies an unsubtracted dispersion relation (in co) or
equivalently that A (s, k ) satisfies a once-subtracted
dispersion relation (in s, subtracted at an arbitrary point
so), we can make use of the previous equations and calcu-
late the extended DHG sum rule I(k ) as

Imf 2 (co, k )
I(k )=8',ds

(m+M„) s —m

ImA(s, k )

~~+M )' (s —m )(s —m —k )

4~e
k

A(m+k k) —A(m k) (2.10)

This equation is our basic result. It is completely general
and allows one to calculate the extended DHG sum rule
I(k ) from a single function A (s, k ) which can be easily
computed from the virtual Compton tensor in the for-
ward direction. To repeat it, Eq. (2.10) was derived un-
der the assumption that A (s, k ) obeys a once-subtracted
dispersion relation. That this is not a too strong assump-
tion, e.g. , can be seen from the fact that in the relativistic
formulation of baryon ChPT to one loop A (s, k ) indeed
has this analytical property. Furthermore, as argued in

I

Ref. [13] the asymptotic behavior of S, 2(co, k ) following
from Regge theory supports this assumption, i.e.,
f2(co, k )-co ' Ho. wever, a general proof for this is not
yet available. In this sense the situation is analogous to
f2(co, 0) where the validity of an unsubtracted dispersion
relation cannot yet be proven in general. In the following
section, we will use ChPT (in the one-loop approxima-
tion) to evaluate A(s, k ) and to calculate I(k ) for k in
the vicinity of zero (this is where ChPT applies).

III. CHIRAI. EXPANSION

At low energies, any @CD Green function can be sys-
tematically expanded in powers of small momenta and
quark (pion) masses. This is done within the framework
of an effective chiral Lagrangian of the asymptotically
observed fields, here, the nucleons, pions, and photons.
The low-energy expansion amounts to an expansion in
(pion) loops of the effective theory. In the presence of
baryons, a complication arises due to the baryon mass
which is nonvanishing in the chiral limit and therefore
adds a new scale to the theory. In that case there is in
general no strict one-to-one correspondence between the
low-energy and loop expansions. Stated differently, there
is no guarantee that all next-to-leading-order corrections
at order q (with q denoting a generic small momentum)
are given completely by the one-loop graphs. A11 calcula-
tions performed so far, however, indicate that the leading
nonanalytic terms (in the quark masses) which arise due
to infrared singularities in the chiral limit of vanishing
pion mass are indeed produced. Furthermore, one also
gets in the one-loop approximation an infinite tower of
higher-order terms [9] which spoil the one-to-one map-
ping between low-energy and loop expansions. To over-
come these difhculties, it was recently proposed to use a
heavy fermion effective field theory, i.e., considering the
baryons as very heavy [10] and to expand the theory in
inverse powers of the baryon mass. In that case the n-

loop contributions are suppressed by relative powers of
q

" (with q a genuine small momentum) and a consistent
counting scheme emerges. Furthermore, in this frame-
work one can easily couple in the b, (1232) resonance
since one does not encounter the usual problems with the
relativistic spin- —', particle [12]. Nevertheless, we have to
stress that the baryon mass m comparable to the chiral-
symmetry-breaking scale A& is not very large. Therefore
an expansion in powers of M Im is a priori not to be ex-
pected to converge very fast. Such M„/m suppressed
contributions are partly resummed in the relativistic ap-
proach. Of course, the evaluation of all M /m correc-
tions is necessary to judge the quality of the chiral expan-
sion. Furthermore, once the spin- —', decuplet is included,
one has an extra nonvanishing scale in the chiral limit
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(the average octet-decuplet mass splitting) which again
complicates the low-energy structure.

The basic mXy Lagrangian in the relativistic formula-
tion of baryon ChPT to leading order [O(q ) ] reads

~ —~(1) +~(2)

iB —m+ Ny, (3.1)

F2
Tr[V„UV"U +M ( U+ U")],

qI e lmU'x(H +/ ) (3.2)

with gH =H and yah = —h. Eliminating now the "small"
component h via its equation of motion, one ends up with

5'„'&=H(iv D+g~S.u )H+O(1/m ) . (3.3)

Here S„=(i/2)y&o„v is the covariant spin operator
which obeys S.v =0. The nucleon mass term has disap-
peared, allowing for a consistent chiral power counting
scheme. All one-loop contributions are of order q . Fur-

I

where U =exp[i r n /F ] embodies the Goldstone bosons,
u =&U, and u„=iu V„Uu, with V„ the pertinent co-
variant derivative. The isospinor + contains the proton
and neutron fields. The superscript (i) denotes the chiral
power of the corresponding terms; it counts derivatives
and meson masses. The construction of this effective La-
grangian is unique. Let us point out that it contains four
parameters. These are the pion decay constant F, the
axial-vector coupling g~, the nucleon mass (all in the
chiral limit), and the leading term in the quark mass
expansion of the pion mass, M =+2mB. Here
m =

—,'(m„+m&) is the average light quark mass and
8 = —(0~uu ~0) /F is the order parameter of the spon-
taneous chiral symmetry breaking. Calculating tree dia-
grams with this effective Lagrangian, one reproduces the
well-known current algebra results. To restore unitarity
one has to consider pion loops in addition. To give all
corrections at next-to-leading order in the chiral expan-
sion, one has to work out all one-loop diagrams con-
structed from the vertices in X and furthermore
one has to add the tree graph contribution from the most
general chirally symmetric counterterm Lagrangian
X'„&+X'&+X'„'. For the (spin-dependent) Compton
tensor under consideration here, however, no such coun-
terterm can contribute. As stressed in Ref. [11],we are
dealing with a pure loop efFect (within the one-loop ap-
proximation).

As already noted, in Eq. (3.1) the troublesome nucleon
mass term appears. In the extreme nonrelativistic limit,
it can be eliminated in the following way. Decompose
the baryon four-momentum as p„=mv„+)„with v„ the
four-velocity (v =1) and l„a small off-shell momentum
(v. l «m, ), and write 0 in terms of eigenstates of the ve-
locity projection operator,

FIG. 1. (a) One-loop diagrams contributing to the spin-
dependent Compton tensor in the heavy mass formulation of
ChPT. Dashed lines denote pions. (b) One-loop Compton
graphs including the 6(1232) resonance in the heavy mass ap-
proach (denoted by a thick line).

I(k )=I(0)+I(k ), (3.4)

with I(0)= ere a /2m the—DHG sum rule value for
real photons. In the heavy mass formulation of baryon
ChPT, the leading term of the chiral expansion of I(k )

is given completely by the one-loop graphs in Fig. 1(a).
All higher-order corrections to I(k ) are suppressed by
further powers of the pion mass M and k~. Some (but
not all) of these corrections will be generated from loop
diagrams with b, (1232) intermediate states or in the rela-
tivistic version of baryon ChPT. The leading term of the
chiral expansion of I(k ) can be given in closed form:

thermore, one has to expand the tree contributions from
the vertices of Eq. (3.1) in 1/m appropriately to collect
all terms up to and including order q . For a more de-
tailed discussion of these topics, see Ref. [11]. One can
furthermore add the 5(1232), which is a spin- —,

' field, very
easily in the extreme nonrelativistic limit. For details on
the couplings of the b, (1232), see the Appendix. Here we
just note that the mass splitting I&

—m stays finite in the
chiral limit. Therefore loops with intermediate b, (1232)
states will count as order q and higher (since the coun-
terterm contributions start only at order q ).

Let us now turn to the calculation of I(k ) for small
k . In Fig. 1(a) we show the pertinent Feynman dia-
grams which contribute in the heavy mass limit (with in-
termediate nucleons only). We work in the Coulomb
gauge e'. v =e.v =0, which is very economical in the cal-
culation of photon-nucleon processes since most dia-
grams (those with an isolated photon-nucleon vertex) are
then identical to zero. The integral I(k ) takes the form

2 2
' 1/2

z 4I(k )= —1+ 1+— ln
4mF P

1/2
V'p+2

2 2

p+O(p ),
48mF

(3.5)
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with p= —k /M &0. We see that the slope of I(k ) at
k =0 is negative and singular in the chiral limit; i.e., it
diverges like 1/M . This behavior is a direct conse-
quence of the chiral structure of @CD which governs the
low-energy strong-interaction phenomena. Furthermore,
I(k ) is equal for both proton and neutron [within the
O(q ) approximation to the virtual Compton tensor].
We should also add here that presently the usual DHG
sum rule value I(0}for real photons cannot be obtained
through a dispersive integral such as Eq. (2.10) within the
one-loop approximation of ChPT. In the heavy mass for-
mulation, this term arises from real 1/m suppressed tree
graphs involving the anomalous magnetic moment x (in
the chiral limit). In the relativistic version of baryon
ChPT, the anomalous magnetic moment of the nucleon is
generated from one-loop diagrams and it is nonvanishing

in the chiral limit. In order to obtain a term proportional
to a such as I(0), one necessarily has to go to the level of
two-loop graphs. This problem of how I(0) can be ob-
tained from a dispersion relation for loop amplitudes
does, however, not affect our discussion of the k depen-
dence of I(k ). Extending the effective Lagrangian to the
b,(1232) resonance as spelled out in the Appendix, we
have to calculate the diagrams of Fig. 1(b). These
amount to some higher-order (q", n ~ 1) corrections to
Eq. (3.5) which we include because of the phenomenologi-
cal importance of this resonance [a complete evaluation
of all O(q) corrections to I(k ) corresponding to O(q )

for the virtual Compton tensor goes beyond the scope of
this paper]. A straightforward calculation gives, for the
sum of the nucleon and b,(1232) one-loop diagrams,

2 2

I(k )= ln(r++r 1)—4' V'r ~ —1

—f 'dx
+r 1 —p—x(1—x )

ln
T + 7" —1v'1+ px (1—x ) 1+px (1—x )

(3.6)

with r =(mz —m )/M =2.1. Obviously, I(0)=0, in
agreement with the celebrated low-energy theorem of
Low [16] and Gell-Mann and Goldberger [16]. As a
check, one can show that in the limit mz —m —+ ~ one
recovers the result of Eq. (3.5). Again, there is no split-
ting between proton and neutron sum rules, i.e.,
I(k )=I~(k )=I„(k ). The slope of the extended DHG
sum rule at the photon point is given as

e ga r3'(/r3 1 r ln(r++—r ——1)
2 2 2 2 2

I'(0)=-
48mF M (r2 1 )3/2

(3.7)

In the relativistic formulation, matters are different.
First, one has to calculate many more Feynman dia-
grams. These generate some of the M /m suppressed
higher-order corrections and naturally lead to a splitting
between proton and neutron for the momentum depen-
dence of the extended DHG sum rule, i.e.,
I (k )AI„(k ). What is conceptually most important is
that in the relativistic version of baryon ChPT one can
indeed show that the amplitude function A (s, k ) obeys a
once-subtracted dispersion relation. Using now the
definitions of the various loop functions as given in Ref.
[17] extended to k ~0, the following expressions can be
deduced for I ( k ) and I„(k ):

e'g„m' ~ ~ 3m2 M'(1 —y)+m'y'+k'y(y —1)I (k2)= dx dy ~ 1 — y
4~E k o o k M (1—y)+m y

M (1—y)+m y +k2xy(xy —1) —', y(1 —y)[k —(Zm +k3)y]
2p ln +

M (1—y)+m y +k x(x —1)y M2(1 —y)+m y

y [k (xy+x y —
—,')+m~(y —1)]

M (1—y)+m y +k x(x —1)(l—y) M (1—y)+m y +k x(x —1}y

y [m (1—y) —k x y] 2m k (1—x)xy4
M (1—y)+m y +k xy(xy —1) [M (1—y)+m y +k xy(xy —l)]~

y [k x (1—x)(y —
—,')+m k ( —,

' ——', x+2x —xy)]

[M (1—y)+m y +k x(x —1)y ]

—'k my (1—y)
zan[M (1—y)+m y ]
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2g2 ~2
& &

M2 1 y +~2y2+ 2z y 1 1 z+zy
I„(k )= dx dy ~2(1 —y)ln

4~+'~k2 & 0 Mz(1 —y)+may +k x(x —l)(l —y)

M ( 1 —y ) +m y +k xy (xy —1 ) y 2[ —2m 2+ k 2(2x —1)]
M (1—y)+m y +k x(x —l)y M (1—y)+m y +k x(x —1)y

2 2 2 2

2m + k2(1 —x)y [k x +m (1—4x)]
M (1—y)+m y +k xy(xy —1) [M (1—y)+m y +k x(x —1)y ]

+ 4m k x(1—x)y
[M (1—y)+m y +k xy(xy —1)]

(3.9)

As an important analytical check, we can again verify
that I (0)=I„(0)=0 and one can show that in the limit
m~ao both I (k ) and I„(k ) tend to I(k ) as given in

Eq. (3.5). With this we have collected all formulas neces-
sary to study I(k ) for both the proton and neutron.

IV. RESULTS AND DISCUSSIQN

First, we must fix the parameters. Throughout, we use
F=93 MeV, M =139.57 MeV, m =938.27 MeV, and

g~ =1.26. In the case of the 6(1232) resonance, we use
the SU(4) relation among coupling constants,
g z&=3g z/&2, with g~z=gzm/F given by the
Goldberger- Treiman relation. The mass splitting be-
tween nucleon and 6(1232) has a value of ma —m =293
MeV.

Consider now the proton. We will first discuss the
slope of I (k ) at the photon point k =0. In the heavy
mass limit with only intermediate nucleon states, we find

dI(k ) eg~ = —5.7 GeV
dk k&=p 48nF M

(4.1)

This value is decreased by 16% when the 6(1232) reso-
nance is included in the one-loop graphs as inspection of
Eq. (3.7) reveals. Therefore the h(1232) does not play a
major role in determining the slope of I~(k ) in our ap-
proach. Much more drastic is the effect of the relativistic
M /m suppressed terms. In the fully relativistic calcula-
tion where many (but not all) of such terms are included,
we find I'(0) = —2.2 GeV for the proton and
I„'(0)= —1.7 GeV for the neutron. It is instructive to
compare these numbers with some phenomenological
analyses and models of I(k ). In the work of Anselmino,
Ioffe, and Leader [8], the k dependence of the extended
DHG sum rule is modeled via vector meson exchange at
low momentum transfer. One finds

I

Li [5]. According to this work, I (k ) first decreases in
the region 0 —k 0. 1 GeV and then a rapid rise in k
sets in. This kink structure comes from the N-b, (1232)
magnetic transition form factor. Furthermore, it was ob-
served in the phenomenological analysis of Ref. [5] that
the DHG sum rule at k =0 is almost completely saturat-
ed by the b, (1232) contribution. Indeed, both features
seem to be connected with each other. If the b, (1232)
contribution to the helicity cross sections o.&(co, k ) is re-
moved, Iz (0) almost vanishes and the kink around k =0
disappears. As already mentioned, the DHG sum rule
I~(0)= —rre a~/2m can be different from zero first
within a full two-1oop calculation in ChPT, since K itse1f
is a one-loop effect. Therefore we regard the kink around
k =0 [if it is really present in the experimental Iz(k )]
as a two- and higher-loop effect. If we ignore the kink in
Iz(k ) of Ref. [5] and only consider the rise in k, then
the global behavior of I~(k ) for 0.05 GeV ~ —k ~ 0.5
GeV suggests an average negative slope of about —2
GeV . This value is comparable to our relativistic
ChPT result. It is important to stress the difference in
the underlying physical picture of the ChPT and the phe-
nomenological approach. The cross sections o.»2 and
o.

3&2 originate from the sum of all inelastic (electropro-
duction) channels. Our calculation shows how the one-
pion channel is constrained by the chiral structure of
QCD. In contrast, in Ref. [5] the one-pion and one-rI
channels are represented by resonance production. The
role of the b, is completely different in the two cases. In
the ChPT case, the loops with intermediate isobars con-
tribute to the two-pion inelastic channels; i.e., they are
corrections to the dominant one-pion channel. In the
phenomenological approach, the 5 is used to fit the one-
pion channel. A direct comparison of the 6 contribution
is therefore misleading.

In Fig. 2 we show I (k ) for —k ~ 0.25 GeV . In the

I '(0) = —4m.e 1+—I
4

P

'2 2
Kp

r,
= —2.2 GeV

(4.2)

for I =0.126, the experimental value of the integrated
spin-structure function g, (x) of the proton [6]. In the
more recent model of Burkert and Ioffe [7], one finds,
however, a positive slope due to the 6 resonance and
similarly in the phenomenological analysis of Burkert and

4Presently known are only the cross sections crz at the reso-
nance position (i.e., MR =m +2mm+k ). The evaluation of
the extended DHG sum rule furthermore requires knowledge of
the full energy dependence of the resonance cross sections and
resonance transition form factors. Relaxing the assumptions of
Ref. [5] on these parameters may well make the kink around
k =0 disappear.



3068 BERNARD, KAISER, AND MEISSNER

) 0.6
QJ

L3

CV

CL

0.05 0.25

FIG. 2. Momentum dependence of the extended DHG sum rule I~(k ). The solid line gives the one-loop result in the heavy mass
limit of baryon ChPT. The dashed line is obtained from one-loop graphs involving nucleons as well as 6(1232) resonances. The dot-
dashed line gives the result of the relativistic version of baryon ChPT to one loop.

heavy mass limit, half of the value of I (0) (in magnitude)
is reached at. k =0.06 GeV . The crossover where
I (k ) goes from negative to positive values takes place at
k = —0. 15 GeV . This is a very low value compared to
previous phenomenological analysis, but compared to the
pion mass scale M „ it is already quite large,
k = —7.7M„. Therefore one can no longer trust the
one-loop approximation in that region of k where a sign
change of I (k ) takes place. Including some higher-
order chiral corrections through loops with b, (1232) reso-
nances, the momentum dependence of I~(k ) becomes
softer and the corresponding numbers decrease by rough-
ly 30%. The zero of I~(k ) is now shifted to a higher
value of k = —0.23 GeV . In the relativistic formulation
of ChPT where in addition to the leading terms also
many higher-order corrections are included, I (k ) is
much smaller than in the case of infinite nucleon mass.
This phenomenon, that higher-order relativistic correc-
tions are quite large, was also observed in previous calcu-
lations of the nucleon electromagnetic polarizabilities
[17]. However, since the M /I corrections generated in
the one-loop approximation of relativistic baryon ChpT
are by no means complete, one cannot draw any con-
clusions about the convergence of the chiral expansion at
the moment.

In summary, we have presented a novel formalism to
calculate the momentum dependence of the extended
DHG sum rule at finite k ~0. A single amplitude func-
tion A (s, k ) which enters the spin-dependent virtual
Compton tensor in the forward direction is sufficient to
evaluate I(k ), as long as A(s, k ) satisfies a once-
subtracted dispersion relation. We have used baryon
chiral perturbation theory to investigate the behavior of

the extended DHCx sum rule I(k ) in the vicinity of
k =0. We could give a (rather wide) range of values for
the slope I'(0). Eventually, this prediction will be tested
experimentally; at present, we consider it as a constraint
following from the chiral structure of QCD which will be
useful for phenomenological analysis and model building.
Furthermore, a higher-loop calculation has to be per-
formed to find out the stability of the results presented
here.

Note added. Recently, Soffer and Teryaev [19] pro-
posed a difFerent model for I (k ). They combine a
Schwinger sum rule (based on the assumption of double
spectral representations) with a simple parametrization of
Ii+2(k ). In this work, Iz(k ) shows no kink and the
slope is essentially determined by the electromagnetic
charge radius of the proton. One obtains I'(0)= —5.0
GeV, close to our nonrelativistic result.
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APPENDIX: h, (1232) IN THE HEAVY MASS
FORMULATION

Here we discuss briefly the description of the b,(1232)
resonance in the heavy mass formulation following Ref.
[11]. To leading order [up to O(q)], the relevant efFective
Lagrangian reads (we write down only those terms which
are actually needed for our purpose)
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i—T"'v D' T +5mT"'T'
P P

+ —(T"'u'H+Hu'T"') .u p (A 1)

for the mass splitting of nucleon and b, (1232) and

lu'= —Tr(r'u 7 Uu )= —8 rr'/F e—e" A rr /F+ .

The Rarita-Schwinger spinor T„with a an isospin index
and p a Lorentz index incorporates the four charge states
of the 6(1232) as follows:

Tl
g++ gO/+3
5+/&3 —5

gives rise to the chiral couplings of pions and photons to
the Xb, system. We already exploited the SU(4) relation
g„z&=3g„&/&2, with g~z=g~m/F between the AND,
and md% coupling constants. The empirical information
on the h~mN decay width confirms that this relation
holds very well within a few percent. In the heavy mass
limit, the propagator of the 6(1232) reads

T2=
u

g++ +go/+3
/&3+ 6 (A2) (A3)

T3=
P

1/2
g+
gO

Furthermore, in the heavy mass limit this field is subject
to the constraint v„T"'=0. In (Al), 5m =mz —m stands

where S„is the covariant spin operator of heavy mass ap-
proach satisfying v.S=0. Let us finally remark that this
formulation of b, (1232) couplings is completely
equivalent to the usual isobar model as discussed in Ref.
[18) for the special choice v„=(1,0,0,0). This corre-
sponds to the standard nonrelativistic description.
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