
PHYSICAL REVIEW 0 VOLUME 48, NUMBER 6 15 SEPTEMBER 1993

Low-energy study of four-fermion theory with the CP model in 2+1 dimensions
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We study the four-fermion theory with the CP model in 2+1 dimensions. The low-energy effective
action is derived and the low-lying spectrum of the model is obtained. Through the Landau-Ginzburg
description, it is shown that, for the superconducting case, the model is identical to the anyonic
superconductivity model.
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I. INTRODUCTION AND A MODEL

The copper-oxide high-T, superconductor (HTCS) has
a layered structure and is conceptually a doped antiferro-
magnet. In its theoretical consideration, the quasi-two-
dimensional properties of the HTCS motivate us to study
(2+1)-dimensional quantum field theory, and there have
been many attempts to understand HTCS's [1—5].

Recently, Shankar [6] has proposed a new model, which
describes hole dynamics in a quantum antiferromagnet.
According to the model there are two types of holes (we
denote them as A and B holes) in an antiferromagnet
due to a bipartite spin lattice. In a continuum and low-
momentum limit, it becomes a field-theoretical model de-
scribing two types of massless fermions, which correspond
to the A and B holes, coupled minimally to the gauge
field of the CP model, the "spin gauge field, " which
describes the spin wave of an antiferromagnet in the un-
doped case. As an aside, the author has argued that there
may be Cooper pairing as in BCS theory. However, the
above results have been derived in 1+1 dimensions. Its
extension to 2+1 dimensions has been done in Ref. [7] in
which the continuum theory was established, the parity
even mass was obtained by solving the Schwinger-Dyson
equation, and eventually parity invariant low-energy ef-
fective action for the HTCS was obtained.

In this paper, we take the continuum Lagrangian of
Ref. [7] obtained from the microscopic Hamiltonian con-
structed on a square lattice as a starting point. The
Lagrangian is given by

l. =Z, +Eh, ,

where 8, describes the antiferromagnetic spin wave,
which we represent by the CP model, and Zh describes
the dynamics of holes, doped in the spin system, which
are minimally coupled to the spin gauge field of the CP
model.

The Lagrangian 2, is given by

~. = (2/g') l(~. —'a. ) ~l' (2)

where a& is the spin gauge field, g is a running coupling
constant, and the z field describing the spin wave is com-
posed of two complex scalar Belds, zi and z2, as

(3)

and satisfies the constraint condition ztz = l.
The Lagrangian Ch is the system of massless fermions

coupled to the spin gauge Beld with additional attractive
and repulsive four-fermion terms. The fermions have two
flavors due to the lattice doubling [7,8] and represent the
A and B holes simultaneously as

( f = 1, 2 ),

where y& (y&) are two-component spinors describing A

(B) holes. Here, we set the number of flavors to an ar-
bitrary positive integer Nf, for a moment, not to 2 for
later consideration, and omit the flavor index f Then.
the Ch is given by

where A~ is the electromagnetic gauge field, r is a cou-
pling constant, and

l'I Ol
( I:2 x 2 unit matrix ). (6)

qo I—
&~, ol, &i~, 0), r'i~, ol

7 =
I 0 I & =I

o I v =I 0

(7)
4~",~ k = 2g"", g~ = diag [1,—1, —1],

where o; (i = 1, 2, 3) are Pauli matrices.
The aim of this paper is to analyze system (1) and

compare it with the anyon superconductivity model. In
Sec. II we derive the low-energy one-loop efI'ective ac-
tion of Eq. (1) for the external electromagnetic and spin
gauge field. The low-energy spectrum of the model is ob-
tained and the model is compared with the anyonic su-
perconductivity model in Sec, III. In Sec. IV the Landau-
Ginzburg description for the efI'ective action is given. Fi-
nally, Sec. V contains the conclusion.

The matrix w3 implies that the A and B holes are coupled
to the spin gauge Beld with opposite sign. The Dirac p
matrices and their algebra are chosen as
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II. EFFECTIVE ACTION

The partition function is given by

Because the z field and the g field interact with each
other indirectly through a spin gauge field a~, we can
deal with both of them independently.

Let us first consider the partition function due to the
fermionic part which we define as Zi[A~, a„]:

Zi[A„,a~]—: D$'Dv/iexp
l

i d xCh
l

VQVe)DeVxexp Ie d x @ (iB+ a~2+ A) @ ogQ——.i~grsg+ (o. + ~ )2Q

NfDovmexp i d'x (o'+ vr2)
2K

Nf
det (if+ /rrs + P —o —i vrrs), (9)

Z, ]we, e.] = expI i Sex—

where we introduce two auxiliary fields, 0 and 7r, to linearize the four-fermion terms. Before we proceed, it should
be noted that it is possible for the fermion masses, that is, the saddle points of the 0 and vr fields, to be generated
dynamically. It has been shown that the dynamical mass generation can occur in the large Nex-pansion [8,9].
Especially, for parity even mass, (iver) g 0, it has been shown that it is possible even at Kf = 2 by solving the
Schwinger-Dyson equation [7]. We would only follow these results and not give the detail analysis. In our case, only
the fact that the dynamical mass generation may occur is important, and we fix %y by 2.

Following the above arguments, we may evaluate the determinant of Eq. (9) around the saddle points m = (o.)
and m = (im), where m and m, are parity odd and even masses, respectively. The determinant is evaluated in the
quadratic approximation and in the low-momentum limit [4,7,9,10]. In this quadratic approximation, the couplings
between the fields 0 and vr near the saddle points and the gauge fields cannot occur because of the gauge symmetry,
and we can set cr (iver) field to m (m ). Therefore, the path integration over the variables in (9) may be ignored and
the determinant becomes just the partition function Zi[A„,a ]. Then the partition function (9) is obtained as

*]f +p„)— fe p'" — +—e" "]exp +Aexep Ax) —p e" "e„pAx ) ]10)

where the following is defined:

1
0~ = —[sgn(m+) 6 sgn(m )], my = m + m,2'

1 f1 '1 ) 1 f 1
11. = —

l
+ l, II= —

l

6vr (lm+l lm l)
'

6vr (lm+l

where m is the saddle point of the A field. It should be
noticed that Eq. (13) is evaluated in the disordered phase
of the CP model [11]because the HTCS is in the phase
[12].

Assembling the results (10) and (13), we obtain the
partition function (8) as

f~ = O„a —0 a~~ I'pv = o]~Av —o)vA~.

Next we turn to the z field part of the partition func-
tion in Eq. (8), which we define as Z2[a„]:

z2[a„]= Dz Dz exp
l

i d xE,
l

Z[A~] = 'Da„Zi [A„,a&] Z2 [a„]

Da„exp
l

i d'x~.~ l

with the efFective Lagrangian given by

(14)

Bz~&zOA exp i d x t9„—ia„z
8 f 2 e-'~2 f Ix)zv + pvA

4 " 4 " 2 " 2

x (a„o)„aq+ A„BAq) —0 e" "a„)9A~, (15)

—&(Iz I' —2/g')

(12)
where an auxiliary field A is introduced to implement
the constraint ztz = 1 and the fields are rescaled as
z ~ g2/g2z and A —i (2/g )A. Since the calculation of
Z2 [a~] in the low-energy limit is well known [10,11,15],
we only give the result that is obtained as

z2[a„]= exp
l

— d xf„ (»)96~ m

where

1 r' 1 1 1+ +
6vr qlm+l lm

l
4lml)

'

From the definitions Eq. (11) for 0+ and 0, one would
realize that the Lagrangian (15) cannot be used in itself
for further studies, but instead it has to be reexpressed
for the two cases of lm l

) lm l
and lm

l
( lm, l. For

lm ) lm, l, 9+ ——sgn(m )/n and 8 = 0, and, for
lm ( lm l, 0+ ——0 and 0 = sgn(m, )/7r. In the fol-
lowing sections, we would give the separate arguments
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1 PZ[A ]

Z[A ] bA„(*)SA ( )
(16)

Before performing the functional derivatives of Eq.
(16), we decouple the A„field from the a~ field in the
efIective Lagrangian because the gauge fields A„and a„
are coupled to each other. In the momentum space, the
efFective Lagrangian (15) may be rewritten as

8 ~ ——a„M"a„+A„K"A +a„I"A,

associated with these two cases to the results to be ob-
tained.

III. LOW-ENERGY SPECTRUM
OF THE MODEL

With the effective Lagrangian (15), we may obtain the
low-energy spectrum of the model by investigating the
pole structure of the electromagnetic current-current cor-
relation function given by

where
4

M -="
(k k--, -k)+'",.- k„,

(k k — k' ' ""k

I" =II (k"k" —g~ k ) + i8 e" "kg.

If we complete the square form in the A.~ Beld, the La-
grangian becomes

~. = (a„+,'A. i—"M;„')M~(a. + ,'M„,'—I"-A.)
+A„(N" —

4
I"~M I )A„. (19)

Then, if we put this Lagrangian into the partition func-
tion (14) and shift the a„field, the variable of path inte-
gration, as

we obtain

Z[A„]= exp i
d3k

(2vr)s " ( 4
A„(k) N" — I"PM —'I

~

A (—k) Ba„exp i a„(k)M" a„(—k), (20)
d3k

which is the variable-decomposed form. Here we should notice that the gauge Bxing is needed to evaluate M in
Eq. (19) due to the gauge symmetry. In our case, 8~a" = 0 is chosen. In this gauge choice, N"" —(1/4)I"~M I
of Eq. (20) is derived as

+@V IP PM —1I(TV '(8 —II k ) + '(8 —II k ) —II8 8 (k"k" — " k2)
4 O' —II k + —g

+ s

+ —9 8' —0' —(ll' y II') k* e~ "k
)+ + — s

Now it is straightforward to obtain the current-current correlation function by acting the functional differentiations
to the partition function (20) according to (16). As was noted in the last section, we give the results for the two cases
of [m ) m, and /m [

( /m. /.

For m ) m, ~, in the k m 0 limit,

io+(j"(k)j ( —k))~s 0 - + II, (k"k —g""k ) +i,8+a" kz

In this case, the model has a massive excitation with

mass 8+2/112„which corresponds to the massive spin

gauge boson. Here, if we look at the effective Lagrangian
(15) with 8 = 0, there is the Chem-Simous term for the
electromagnetic gauge field [13]. This implies that the
A„Beld is topologically massive, which does not spoil
gauge invariance. Thus the superconductivity does not
appear [14]. So, the case of ~m

~

) ~m,
~

is beyond our
interest.

For [m
/

& /m, /,

0' k~k 0'
( "(k)j'(-k)) I.,=."-"„,—'„g" (23)

8 8

On the right-hand side of (23), the first term shows that
the model has a gapless (massless) excitation, which cor-
responds to massless spin gauge boson and the second is
the Meissner term, which gives the longitudinal mass to
the electromagnetic gauge field. Now it is obvious that
we would be interested in the case of ~m

~
& ~m

~

to study
the superconductivity.

IV. LANDAU-GINZBURG DESCRIPTION

+8&.a~0, o = — f„„—
PVf„F"—8 e—~"—"a~0 Ap. (24)

Now we change the variables from a„to f~
(1/2)e„pf"", the dual of f", in the path integral (14).
Since f~ satisfies the Bianchi identity B~f = 0, we intro-
duce the Lagrangian multiplier field P in the path integral
to impose this constraint. Then Eq. (14) becomes

II
4 PV

Since we have obtained the Meissner term in Eq. (23),
we would pay attention to the case of ~m

~

& ~m, ~. In
this section, it is shown that the electromagnetic gauge
Beld has not only a topological mass but also a longitu-
dinal mass following the Landau-Ginzburg description of
Lykken, Sonnenschein, and Weiss [4]. We will discuss the
case of ~m

~

) ~m,
~

briefiy.
Let us return to the efFective Lagrangian (15). With

~m
~

( ~m, ~, then it becomes
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Z A„= 'Df„27/exp i d x[ — f„—'E„—e—„pF"f —0 f„A"+ pet„f"
[

Integrating out the field f„,we get the partition function as

I( 1121 2 0 II „),1
s[A„]= odexp(~ d''z ——

~

II. — ~r~. + e~ zA"r "+ (s~g +0 A.„)'II.&
" 211, "" 2II (26)

This fi.nal expression gives just the Landau-Ginzburg de-
scription of anyonic superconductivity. So the remaining
arguments are parallel to those of anyonic case. The pho-

ton A~ has a mass 02 /II„the square of which is just
the coefficient of Meissner term in Eq. (23) and leads
to the electromagnetic super current of the conventional
BCS theory, in addition to the topological mass. The
massless field P that has been introduced as a Lagrangian
multiplier in Eq. (25) may be identified with the one rep-
resenting the massless spin gauge field [4,5,7,15]. It may
be interesting that the Chem-Simons term, which is ab-
sent in Eq. (24), appears in Eq. (26). However, since we
do not set the parity-odd mass m to zero, the presence
of Chem-Simons term is natural. In fact, if m vanishes,
the efFect due to the Chem-Simons term does not exist
at all.

For ~m
~

) ]m [, 0 = 0, we could not obtain the
Lagrangian of the Landau-Ginzburg type as in the previ-
ous case. Formally, this is because of the Chem-Simons
term for a& field. The gauge field A~ has only a trans-
verse (topological) mass as was shown in the preceding
section. In this case, if we ignore the interaction term
between the fields a„and A„byassuming [mo[ )) [m, [,
II 0, the Lagrangian becomes a system of two distinct
topologically massive gauge theories.

dimensional continuum Lagrangian for the HTCS, which
is an extension of the model proposed by Shankar. As-
suming the parity even (m, ) and odd (m ) masses which
are generated dynamically, the low-energy effective ac-
tion has been derived explicitly in the quadratic ap-
proximation. By investigating the pole structure of the
electromagnetic current-current correlation function, we
have obtained the low-energy spectrum of the model.
For the case of ~mo[ ) ]m, ], the model has a finite gap

of 0+2/II2 and the gauge fields a„and A„are both

topologically massive. For the case of ~m
~

& ~m, ~, the
current-current correlator gives the Meissner term and
shows that the model has no gap, which is identified with
the masslessness of the spin gauge field a„.In this case,
the electromagnetic gauge field A„has not only a topo-
logical (transverse) mass but also a longitudinal mass
due to the Meissner term. Therefore the model is su-
perconducting for [m

~

( [m, ]. The Landau-Ginzburg
description of the model for this superconducting case is
identical to that of anyonic superconductivity model.
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