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We derive an exact stringlike soliton solution of D = 10 heterotic string theory. The solution possesses
SU(2) X SU(2) instanton structure in the eight-dimensional space transverse to the world sheet of the soli-

ton.

PACS number(s): 11.17.+y

In [1], an exact multi-fivebrane soliton solution of
heterotic string theory was presented. This solution
represented an exact extension of the tree-level supersym-
metric multi-fivebrane solutions of [2,3]. For this class of
fivebrane solutions, the generalized curvature incorporat-
ing the axionic field strength possesses a (anti) self-dual
structure [4,5] and is referred to as an ‘“‘axionic instan-
ton” (see [6] and references therein). Exactness is shown
for the heterotic solution based on algebraic effective ac-
tion arguments and (4,4) world sheet supersymmetry [1].
The gauge sector of the heterotic solution possesses SU(2)
instanton structure in the four-dimensional space trans-
verse to the fivebrane. In more recent work, Kounnas [7]
described a method of obtaining string solutions with
nontrivial backgrounds by using N =4 superconformal
building blocks with ¢ =4. In particular, he proposed the
existence of an exact solution with SU(2) X SU(2) instan-
ton structure.

In this paper we obtain an explicit space-time back-
ground corresponding to Kounnas’s conformal field
theory by constructing an exact string-like solution of
D =10 heterotic string theory from a modification of the
fivebrane ansatz. In the eight-dimensional space trans-
verse to the string, the solution contains two independent
SU(2) instantons each embedded in a separate SO(4) sub-
group of the gauge group. The arguments demonstrating
exactness of this solution follow those of [1].

The tree-level supersymmetric vacuum equations for
the heterotic string are given by

SlpM:(VM_%HMABrAB)e:O ’
SA=(I'"3 ¢ —LH 5. T*5e=0, (1)

8,=F 3T *%e=0,
where ¥,,, A, and Y are the gravitino, dilatino, and gaugi-
no fields. The Bianchi identity is given by

dH=aT(trR AR —trtF AF) . 2

The (9+1)-dimensional Majorana-Weyl fermions de-
compose down to chiral spinors according to
SO(9,1)DS0(1,1)®S0O(4)®S0O(4) for the M*' >MM!
X M*X M* decomposition. The ansatz
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with constant chiral spinors €, =€,®7,® 7, solves the su-
persymmetry equations with zero background Fermi
fields provided the Yang-Mills gauge field satisfies the in-
stanton (anti) self-duality condition

F,uv:i%e,uv}kaa » mY,A,0=2,3,4,5,
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» m,n,p,k=6,7,8,9 .

The chiralities of the spinors €,, 174, and 7, are correlated
by
(1Fy3)e;=(1Fys)n,=(1Fys)m,=0, (5)

so that three-quarters of the spacetime supersymmetries
are broken. An exact solution is obtained as follows.
Define a generalized connection by

QY =witHG® 6)

in an SU(2)XSU(2) subgroup of the gauge group, and
equate it to the gauge connection A, [8] for
M=2,3,4,5,6,7,8,9 so that dH =0 and the correspond-
ing curvature R (. ) cancels against the Yang-Mills field
str%ngth F in both subspaces (2345) and (6789). For

- -2 2
e hme*i=e e 2=0, the curvature of the general-
ized connection can be written in covariant form [4,5]
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(7)
where o,,7,A,1=2,3,4,5 and

R =8,V V;$,—8,V,V,;6,+8,V,V,6,—8,V, V.,
t€km ViV ®2 T €jim ViV da ®)
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where i, j,k,l,m =6,7,8,9. It easily follows that

R\ ¢ Bya= + %GM »R gl“’ ©)
and
ﬁ ijk] =+ %ekl mn ;’mn ’ (10)

from which it follows that both F and R are (anti) self-
dual in both four-dimensional subspaces. This solution
becomes exact since A4,, =, ,, implies that all higher-
order corrections vanish. Both the algebraic effective ac-
tion arguments and the (4,4) worldsheet supersymmetry
arguments of [1] can be used in essentially the same
manner to demonstrate exactness of the string solution.
The explicit solution for ¢, and ¢, in (3) is given by

2
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where x and a; are four-vectors and p; instanton scale
sizes in the space (2345), and y and b ; are four-vectors
and A; instanton scale sizes in the space (6789). Axion
charge quarzltization then requires that p;=e 1°n,-ot'
and A§=e 20m ja', where n; and m ; are integers. Note
that for N =0 or M =0 we recover the solution of [1]. It
is interesting to note that both the charge
Q,=—1[(7*H and the Arnowitt-Deser-Misner (ADM)
mass per unit length M, of the infinite string diverge. By
contrast, all classes of fivebrane solutions have finite
charge and mass per unit length as a result of the preser-
vation of half the spacetime supersymmetries and the sat-
uration of a Bogmol'nyi bound. The fact that three-
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quarters of the spacetime supersymmetries are broken for
this solution means that the saturation of the
Bogomol'nyi bound is no longer guaranteed, but it is un-
clear as to whether this would necessarily imply infinite
mass per unit length for the string. The divergence of the
ADM mass and the topological charge in fact follows
from the 1/r? falloff of the fields, and is an infrared
phenomenon, as in the case of axion strings in four di-
mensions (the identical falloff and divergence was found
for the octonionic superstring soliton solution of Harvey
and Strominger [9]). For this reason, the divergence of
the energy density and topological charge should not
prevent the existence of a finite effective action describing
this type of string soliton at a scale larger than the core
size. It would therefore seem likely that finite mass per
unit length analogs of this solution exist, possibly in the
context of the conjectured dual theory of fundamental
fivebranes [10]. Another interesting point is that the
D =8 instanton number Ny for this string solution is in
general nonzero for gauge group EgXEg [N3z=NM,
where N and M are the D =4 instanon numbers in the
(2345) and (6789) spaces respectively], since in this case
(TrF?)? in nonvanishing. This is to be contrasted with
the zero D =8 instanton number found for the string soli-
ton solution of Duff and Lu [11].!
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