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Mechanism of trapped surface formation
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By a combination of analytical and numerical methods, the density profile of a spherical star momen-
tarily at rest is varied, and the corresponding response in the area of the spherical shells is monitored. It
is shown that the inner apparent horizon (if it exists) must lie within or at most on the star's surface
while no such restriction is found for the outer apparent horizon. An apparent horizon, however, lying
in the vacuum region will always have a nonvanishing area, as long as the ADM mass of the system is
nonzero. Furthermore for density profiles not decreasing outwards, it appears that all spherical trapped
surfaces lie on a thick spherical shell. Finally for a uniform density star a simple criterion is found, re-
lating the density and proper radius that guarantees the presence or absence of trapped regions.

PACS number(s): 04.20.Cv

There has been lately considerable renewed e6'ort aim-
ing to discover conditions upon a given initial data set
that permit us to infer the presence or absence of trapped
surfaces [I—5]. Although most of the cited work focuses
on characterizing the state of initial data triggering the
formation of trapped surfaces, it would be also beneficial
to understand the mechanism that leads to their forma-
tion as well as any other relevant property. For instance
how do spherical trapped surfaces appear and how are
they distributed around the center of the star? Where (if
it exists) is the location of the outer apparent horizon?
What is the response of the apparent horizon under
smooth variations of the parameters describing the initial
data?

It is the purpose of the present Brief Report to provide,
at least for a special class of configurations, answers to
the above mentioned questions. For this we shall consid-
er a sequence of instantaneous states describing spherical
stars of proper radius R and proper density p, just at the
onset of their gravitational collapse. (In what follows the
term trapped surface stands for an outer trapped surface
as defined in Hawking and Ellis. ) By examining the prop-
er area of spheres around the center of the star as a func-
tion of distance away from the center, the trapped region
can be identified: it lies between successive maxima and
minima of the area function. We vary the density profile
(in essence we are moving from one member of the se-
quence to another) and monitor the behavior of the area
function. Such "variations" of the density cause the ap-
pearance or disappearance of trapped surfaces and forces
the inner and outer apparent horizons to "move" around
in the stars interior or exterior region. The results are
presented as a series of plots of the area function against
the proper distance.

Recall that initial data on a time-symmetric slice X
satisfy the Hamiltonian constraint, i.e.,

A =16~ p,G
C2

where the p stands for the non-negative density. The as-
sumption of spherical symmetry allows the introduction
of geodesic-type coordinates and thus the line element of

X takes the form

ds =dr +B(r)(d8 +sin Odg ), O~ r ( oo (2)

Evaluating the scalar curvature % of the metric (2), Eq.
(1) reduces to

2dB 1 dB
B dr 2 2B2 dr

2
2 G+—=16m. p .

2
(3)

We look for solutions admitting a regular geometry at
r =0. This demands

B(r)
r=0

=0, dB =0.
dr

(4)

For later use note that the amount of mass-energy within
each sphere of radius r is given by I6]

2

m(r)= — 8 1—1 c ig2 1 dB
2 G 4B dr

(4a)

and it obeys, by virtue of (3),

dm (r)
2 8 Ig2 dB

(4b)

Our intention is to investigate the behavior of solutions
of Eq. (3) subject to (4). A number of conclusions can be
drawn by inspection of Eq. (3). At first for p=O a solu-
tion obeying (4) is given by 8 (r) =r, which corresponds
to fiat three-space. Further if a solution 8 =B(r) admits
infiection points of nonzero area (and thus the area func-
tion passes through a saddle point) they must be either in-
terior points, or lie at the star's surface. At such points,
one deduces from Eq. (3) that the density p and area B(r)
obey Bp=p /8mG.

Let us now consider a solution 8=8(r) extending
from the interior, i.e., r ~R to the exterior vacuum re-
gion. The absence of surface layers at the star's surface
requires B(r) to be C' at r Ri.=e., 8, (r) and dB(r) /dr
should be continuous across the surface (note, however,
that d B/dr may exhibit a discontinuous behavior at
r=R). Since, on the other hand, in the vacuum Eq. (3)
implies d B /dr )0, therefore, if the surface of the star is
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not trapped (i.e., dB/dr )0, there), the exterior solution
will be a monotonically increasing function; i.e., trapped
surfaces can never develop in the vacuum region. In the
opposite case, i.e., if the surface is trapped, Eq. (3) implies
that only a local minimum of B(r) can develop in the
vacuum region. This outermost local minimum is the
outer apparent horizon. Note, however, in general it may
also lie in the interior. In the case where it lies in the
vacuum one may naturally ask can it have a zero area?
We shall show that as long as the data possess a nonzero
Arnowitt-Deser-Misner (ADM) mass, this is not possible.
In fact evaluating the right-hand side of (4a) on the outer
horizon (of zero area), and utilizing (3) we get

]m(r)= — B'~ 2 — =0,
2 6 dp

1 6 1 d B—=8m p+-e' B dr' (S)

Therefore arbitrary density profiles allow the possibility
that the left second derivative is negative while simul-
taneously the right-hand side of (S) is positive, implying
that the surface of the star may become the location of

which, in view of (4b) is impossible. (The above argument
also rules out vacuum infiection points of zero area. ) Let
us now shift attention to the behavior of the local maxi-
ma of B (r). The first local maximum of B (r) (if it exists)
marks the location of the inner apparent horizon. Gener-
ically it lies interior to the surface, but one may ask can
the inner horizon lie on the surface of the star? The
answer depends upon the behavior of the density profile
at the star's surface; if p(r) is continuous at r =R, then
Eq. (3) implies that the inner horizon cannot be located at
the surface. If it exists it must be an interior point. In
the case where p(r) is discontinuous at r =R, Eq. (3) im-
plies that the left derivative (d B /dr )I and surface den-
sity p satisfy

&0,

implying that the surface must be an outer apparent hor-
izon as suggested from the exterior geometry. (This situ-
ation will be verified below by an explicit exact solution. )
In summary, therefore, no inner horizon can lie exterior
to the star in contradistinction to the outer apparent hor-
1zon.

How many distinct local maxima and minima are ad-
mitted by an arbitrary solution of (3) and (4) matched in a
C' fashion across the surface? The answer to that ques-
tion is not obvious. The nonlinear structure of (3) does
not allow us to get further insight into the nature of solu-
tions of (3) and (4) and, thus, we have to search for exact
solutions. For an arbitrary p =p(r) exact solutions of (3)
and (4) appear difficult to be found. Therefore we shall
use numerical techniques to construct solutions of the
system. Note that one case where the system is soluble
corresponds to the uniform density star, i.e., p(r ) =const
[7]. Before we comment on the constant density solution
let us rewrite the systems (3) and (4) in a slightly different
form more suitable for numerical computations. It is
convenient to introduce the variables

y =r/R, P=B/R (7)

where R is the physical (proper) radius of the star, so that
Eqs. (3) and (4) take the dimensionless form

2dP 1 dP 2

P dy 2P "y P

y=o ~ y=odlP

the inner horizon. Notice in that case the C' matching of
B(r) across the surface dictates that the second (right)
derivative (d B/dr )z is given by

6= 8m. p+— (6)B dp2 g2 B dy

C)

C)

FIG. 1. Dimensionless area p
as a function of the dimension-
less proper distance y =r/R for
a uniform density distribution.
The values of the dimensionless
parameter Yo are indicated.
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where

Y(y)= R p(r) .G

In the above notation, we shall examine two dimen-
sionless density profiles corresponding, respectively, to a
uniform configuration and a Gaussian one:

YU(y)= .

YG(y ) =

0(y &1

0, y)1,
Yoe (1-y') 0(y (1
0, y&1, (12)

3
P(y ) = sin

8nY0

where Yo and the compactness parameter a characterize
the profiles. The solution of (8) and (9) with the source
given by (11) has, in the interior region, the form

1/2
8~Y0

y

In the exterior region Eq. (8) is numerically integrated
with boundary conditions dictated by the C' matching of
the solution on the surface. In Fig. 1 solution curves for
various values of the dimensionless parameter Yo are
shown. It is worth mentioning briefly a few features of
the solution relevant to our discussion. One may easily
verify that as long as Yo& 3'/32, P(y) increases mono-
tonically. At precisely Yo=3vr/32, P(y), and consequent-
ly B(r), develops the first local maximum taking place at
the surface of the star. Note because of the discontinuity
of the density across the surface, this critical point is a lo-
cal minimum according to the exterior geometry. Thus
for this particular value of Yo there exists only one
trapped surface which is simultaneously the location of
the inner and outer apparent horizon. As Yo keeps in-
creasing the degeneracy is lifted and consequently inner
and outer apparent horizons start "moving" in opposite
directions (see also Fig. 1). Upon further increase the
inner horizon moves moderately towards the center while
the outer horizon moves towards the surface and simul-
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FIG. 2. Dimensionless area P as a function of the dimensionless proper distance y = r/R for a Gaussian density distribution. The
values of the dimensionless parameter Yo and compactness parameter a are indicated. The dotted vertical lines mark local extrema.
Note the presence of a maximum and minimum (indicative of a trapped surface) in the area function.
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FIG. 3. Examples of configurations for

which several maxima and minima are present
in the dimensionless area P. (a) Uniform densi-

ty configuration. (b) Gaussian density profile.
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taneously keeps shrinking (i.e., its proper area is decreas-
ing). Finally at Ye=3~/8 the outer horizon has zero
proper area and resides exactly on the surface of the star.
The subsequent increase of Yo causes the outer horizon to
move inward while it maintains its zero area. For even
larger values more critical points start to appear [see also
Fig. 3(a)]. Such data, however, may be regarded as un-
physical since the gravitational field generated by them is
so strong that it disconnects the star from the asymptoti-
cally liat region (for further relevant comments on this
point consult Ref. [8]). In summary, therefore, whenever
data obey 3~/32 & Y, & 3~/8 they admit a distinct inner
and outer apparent horizon. We discuss elsewhere [9] the
impact of the above constraints on models of compact as-
trophysical objects.

Solutions of (8) and (9), with the source term the
Gaussian profile of Eq. (12), exhibit the same qualitative
features as those of the uniform case. In Figs. 2(a) —2(f)
we present a few plots of (8) and (9) for various values of
the parameters a and Yo. Note however, that in this case
there exist data that allow both inner and outer apparent
horizons of nonzero area lying within the interior of the
star [see Fig. 2(e)]. This situation does not occur for the
uniform density stars. From the analysis of the solution
curves of Eqs. (8) and (9) there appears to emerge a com-
mon feature worth emphasizing. The systems (3) and (4)

admit no solutions where two or more consecutive mini-
ma (excluding the origin) can have values different from
zero. (This point may be easily verified directly for the
uniform case. ) In turn this property implies that a system
first must disconnect itself from the asymptotically Oat
region before it allows a second minima to appear [see,
for instance, Figs. 3(a), 3(b)]. We would like to think that
the above described property of (3) and (4) is a generic
property of all solutions due to the nondecreasing form of
p(r). However, we have been unable to show this analyti-
cally.

Finally, it is of interest to know how much of the above
described picture is maintained if one deals with
configurations lacking time symmetry or spherical sym-
metry. Although one may anticipate a similar overall
behavior (at least for spherical systems) we ought to bear
in mind that there are additional factors entering the
problem, and they may alter some of the features dis-
cussed here. We hope to come back to this point else-
where.
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