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Transport coefBcients and relaxation times are calculated for degenerate quark matter within
perturbative +CD for temperatures T and inverse screening lengths qo much smaller than the
quark chemical potentials. The important physical efFect is "dynamical screening" of transverse
interactions. The physics changes significantly when T q~ and all relaxation times change from a
power law dependence on T for T (( q~ to a power law times a logarithmic one for T )) q~. Results
difFer very much from standard Fermi liquid results in both limits. Detailed analytical calculations of
the momentum relaxation time for interpenetrating quark plasmas, the difFusion coeKcient, electrical
conductivity, viscosity, and the thermal conductivity are performed to leading orders in the coupling
constant. Applications to diffusion processes in the burning of neutron stars into strange quark
matter and to electrical conduction in quark matter are given.

PACS number(s): 12.38.Bx, 12.38.Mh, 21.65.+f, 97.60.Jd

I. INTRODUCTION

Transport and relaxation properties of quark and gluon
(QCD) plasmas are important in a number of a difFer-
ent contexts. First they play a role in determining the
time that it would take a quark-gluon plasma formed in
a heavy-ion collision to approach equilibrium. Second,
they are of interest in astrophysical situations such as
the early Universe, and possibly neutron stars.

The basic difIiculty in calculating transport properties
of such plamas, as well as of relativistic electron-photon
(QED) plasmas, is the singular nature of the long-range
interactions between constituents, which leads to diver-
gences in scattering cross sections similar to those for
Rutherford scattering. This makes the problem of funda-
mental methodological interest, in addition to its possible
applications. The first approaches to describe the trans-
port properties of quark-gluon plasmas employed the re-
laxation time approximation [1—3] for the collision term.
This approximation simplifies the collision integral enor-
mously and transport coefFicients are related directly to
the relaxation time. The latter is typically estimated
from a characteristic cross section times the density of
scatterers. In Refs. [2, 3] the divergent part of the to-
tal cross section at small momentum transfers was as-
sumed to be screened at momentum transfers less than
the Debye momentum. However, Debye screening infIu-
ences only the longitudinal (electric) part of the QED and
QCD interactions, and the transverse (magnetic) part is
unscreened in the static limit.

Recently it has been shown that the physics responsible

for cutting off transverse interactions at small mornenta
is dynamical screening [4, 5]. This efFect is due to Lan-
dau damping of the exchanged gluons or photons, and is
analogous to the anomalous skin eIFect in pure metals [6].
Within perturbative QCD and QED rigorous analytical
calculations of transport coeKcients have been made for
temperatures high compared with the chemical poten-
tials of the constituents [4]. In this paper we investigate
in detail degenerate quark plasmas for which the temper-
ature is much lower than the quark chemical potentials,
pq. Previously, the transport properties of such systems
have been studied by Haensel and Jerzak [7], who as-
sumed that transverse interactions were cut off at large
distances in much the same way as longitudinal ones.

A major part of this paper is devoted to a detailed
analytical calculation within perturbative QCD of mo-
mentum relaxation rates and their applications to trans-
port processes in degenerate quark matter. Though al-
most no thermal gluons are present in degenerate quark
matter when T &( pq, the calculations are more compli-
cated than for the high-temperature case since there are
three scales: T, p~, and the Debye wave number qD (we
shall use units such that h = c = kIi = 1). In high-
temperature plasmas the quark chemical potentials may
be neglected and one has only two scales. The resulting
transport coefFicients we find are qualitatively different
from those obtained when T )) pq, and, in addition,
depend on the ratio Tjqri. We find that the eff'ects of
dynamical screening are more pronounced for the degen-
erate case than for the high-temperature one. In particu-
lar the temperature dependence of relaxation rates is not
given by the standard result, T, for a normal Fermi
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liquid with short-range interactions.
We shall first describe in Sec. II the transport theory

we use, namely the Boltzmann equation, and the screen-
ing of long-range quark-quark interactions. In Sec. III,
we then evaluate the collision term for the process of
interpenetrating quark plasmas and calculating the mo-
mentum loss and the relaxation time. In Sec. IV we apply
the momentum relaxation time to calculate the difFusion
coefIicient, the electrical conductivity, and to estimate
the stopping time in ultrarelativistic heavy ion collisions.
The calculation of the thermal conductivity and the shear
viscosity for quark matter is postponed to the end since
these are considerably more complicated to evaluate. Fi-
nally, in Sec. V we give a summary.

II. TRANSPORT THEORY

A. Basic formalism

We shall in the following consider only situations where
quantities vary slowly in space and time with respect
to the typical scattering time, and the quark matter is
assumed to be a weakly interacting gas of relativistic
fermions. We describe the kinetics with the Boltzmann
equation for the individual quark components. Since we
work in the perturbative limit, we may neglect the ef-
fects of gluons on the dispersion relation for the quarks,
as well as the Landau Fermi-liquid interactions among
quasiparticles [8, 9]. The Boltzmann equation for the
quark distribution function fq(ep) is 'thus simply

—+ vp, V', + F V'~, f~(sp) =
(Bt

= —(2~)') ~. ).I
M« I' [f1f.(1 —f.)(1 —f4) —fsf4(1 —f1)(1 —f.)]

q' 234

xb(P1 + P2 P3 P4)~(sl + s2 s3 s4)

The collision integral on the right-hand side (RHS) is
given by the rate of q quarks scattering in and. out of
the state with momentum p~ by scattering on q' quarks
with momentum p2 (see also Fig. 1), and M~~~ is the
scattering matrix element.

Since here we are only interested in properties that
are spin and color independent, it is convenient to work
with the squared modulus of the matrix element summed
over final spins and colors, and averaged over initial
ones (IMI') Thus (IMI ) = (l~l )/(16s1s2sss4), where

(IMI ) is the invariant matrix element for the scattering
process 12 ~ 34 in Fig. 1, summed over final states and
averaged over initial states. F is the external force ap-
plied to the system and vq

——6 is the spin and color
statistical factor for the quark flavors q and q'. For no-
tational convenience we have abbreviated fq(s, ) by f,

B. Screening of quark interactions

The matrix element squared for the scattering process
12 ~ 34 in Fig. 1, summed over final states and averaged

JQ

I

over initial states, is for scattering of quarks of difFerent
Havor [9]

whereas for scattering of the same flavors of quarks

These matrix elements are very singular because of the
= (w —q ) dependence; here w and q are the en-

ergy and momentum transfer. The matrix element for
scattering of like quarks is difFerent due to the indistin-
guishability of final states; in particular there are now two
singularities, u and t . However, because of this in-
distinguishability, the u and t channels are identical and
we should divide by two to avoid double counting of final
states. Therefore, there is no difFerence for small momen-
tum transfers and the singular behavior that determines
the transport processes for scattering of like quarks is the
same as that of unlike quarks.

The bare @CD or @ED interactions between two par-
ticles become screened in a plasma. The efFects are taken
into account by including the photon and gluon self-
energies or polarization operator II~ in the photon or
gluon propagator D„. These are related by Dyson's
equation

D —1
(

2 2)+II (4)

P,

FIG. 1. Feynman diagram for quark-quark scattering in-
cluding the gluon self-energy, II, of which the leading order is
just the qq bubble. Putting intermediate states in the bubble
on the energy shell gives the imaginary part of II due to
absorption of the exchanged gluon by scattering on a quark
(Landau damping).

As shown by Weldon [10], the propagator splits into
longitudinal and transverse parts with respect to q with
difFerent polarization functions II~ and. IIq respectively.
The result is

Jq Jq
q' — '+ II, '
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where J~ and J~ are the currents connected to the ver-
tices involving q and q', respectively (see Fig. 1). In (5)
current conservation, q~ J& ——w Jo —q J~ ——0, has been em-
ployed to relate the longitudinal (J~ = J.q) and timelike
(Jo) components of the current.

In the random phase approximation the polarization
functions (or self-energies) for photons or gluons are
found by calculating the simple bubble diagrams of Fig. 1
[10, 11]. For small momentum transfers (the long wave-
length limit), q « p, they are given by

IIi =q~Xi ~

2

IIt = q~yt,2

where

x (x+1&
!

1 ——ln
l2 qx —1)

x' x(1 —x') (x+ 1&xt= —+ ln!
2 4 gx —1)

[Note that our definition of II~ differs from that of Weldon
by a factor (x —1).] Here x = wjq and the Debye
wave number for cold quark matter of Nq flavors is qD
g2Nq p2/(27r2).

We shall below repeatedly use the expansion close to
the static limit, x = w/q 0, of the polarization func-
tions:

y)(x) =1+0(x),

y, (x) = i —x+ O(x ),

Note that the leading term in the transverse screening is
imaginary. Both the longitudinal and transverse gluon
self-energies have imaginary parts coming from Landau
damping. Physically this corresponds to a virtual gluon
being converted into a particle-hole pair. In other words,
the intermediate state in the bubble diagram of Fig. 1 is
on the energy shell ~

To first order in the coupling constant the currents
in (5) are given by J~ = gu(ps)p„u(pi)A~/2 and J~

I

gu(p4)p„u(p2)A'i /2 where u are Dirac spinors and A are
the usual Gell-Mann matrices connected to vertices q and
q'. Because of the singular matrix element, the main con-
tribution to Q~~ will come from small momentum and
energy transfers, i.e. , q (( p; p~. The magnetic mo-
ment contribution to the currents can then be neglected

I

(i.e. , the spin does not flip in the small q limit). The cur-
I I

rents are then simply J~ = gA~ pz „and J~ = gA~ p2 „,
and we find, from (5),

= 8'yE'3g A A
++~ q —~ +IIt (9)

(IM.. I') = 9g' (1 —x') cos P
q2 —~2 + IIt

For massive quarks there would be additional factors
of the particle velocities at the Fermi surface reducing
the transverse or magnetic interaction [12]. For nonrela-
tivistic systems such as laboratory metals the transverse
part is therefore small, though it is important for some
magnetic properties [6, 12, 13]. For relativistic particles,
however, the transverse part is as important as the longi-
tudinal one for hot plasmas whereas for cold degenerate
plasmas we will show that in fact it is the dominant one.

III. MOMENTUM RELAXATION

The relevant quantity for transport processes such as
momentum stopping, difFusion and electrical conductiv-
ity is the friction between the counterHowing quarks or
equivalently the momentum transfer to quark flavors q
due to collisions on all quark favors q'. This is given by

where the momentum transfer due to collisions between
quarks of flavors q and q' is then given by (1):

Here, the massless particles travel with velocities v; =
p, /s; equal to the speed of light and v; t, is the trans-
verse component with respect to the direction of q. For
small q, energy conservation implies that w = zq —e3
vq q = —v2 q. Therefore the velocity projections
transverse to q have lengths

!vi z
l

= !v2 z
l

= v 1 —x,
and consequently vi q v2 |——(1 —x ) cosP, where P is
the angle between vq t and v2 t. The color degrees of
freedom are included by taking the expectation values
of the Gell-Mann matrices connected with each vertex:
!A'i A~

l

= l(3!A !1)(4!A !2)l . Summing over final-state
colors is done by closure; since A is diagonal with trace
2, the averaging over initial states gives 4/9. Finally,
summing over gluons, o. = 1, . . . , 8 gives us a resulting
factor 32/9. From (9) we now obtain

(2~) vqv~ ) p—i(!Mg, l') [fif2(1 —fs)(1 —f4) —fsf4(1 —fi)(1 —f2)]
1234

x~(Pl + P2 P& P4)~(si + 2 2 4) '

If one uses the bare interactions, Q~~~ diverges because of the Rutherford-type singularity of QED and QCD
interactions: (!M~4 l ) oc q . In transport processes this matrix element is usually weighted by (1 —cos0) q
and consequently Qzz~ oc j(!M~& l )q dq will diverge logarithmically for small momentum transfer. This infrared
divergence is cut off by Debye screening for the longitudinal interactions and by dynamical screening for the transverse
interactions, as described in the previous section.

First we consider interpenetrating quark plasmas each in local equilibrium. The quark distribution functions are
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fq(sp) =(e p[( p
—~. — . p)/ .j+ ) ' (13)

where q = u, d, 8, . . . refers to up quarks, down quarks, strange quarks, etc. Here the local temperature is denoted
by Tq, the chemical potential by p&, and the How velocity by uq, and all these quantities may depend on time
and position in space. We shall investigate interpenetrating quark plasmas with difFerent flow velocities but with a
common temperature Tv = T. The distribution function of Eq. (13) is also the standard trial ansatz for calculating
the difFusion coefIicient and electrical conductivity which will be explored in Sec. V.

In (12) we can replace the factor pi by (pi —p3)/2 = —q/2 due to symmetry. Furthermore, linearizing the
distribution functions (13) in the flow velocities, one finds

f'(s') =f, —
&

' u'. p,
gf0
t9GP

(14)

where f is the distribution function of Eq. (13) with u = 0. The momentum transfer (12) is then given by

—(27l') V&Vvi ) q (lMvv l )fi f2 (1 —f3)(1 —f4)S(pi + pz —p3 p4)8(E] + E3 E3 E4) .
1234

(15)

Introducing auxiliary integrals over the transferred momenta and energy (see Appendix A) the integrals over 1 and 3
separate from those over 2 and 4 and we find

+qual
——(27r) vqvg~ 6T

d~ d'qq'(lM„ l') S(p„q, ~)S(y v, q, —cu), (16)

where the factor S is defined by

S(&v q ~)—:).f, (»)[1 —f, (»)j~(» —p3 —q)~(» —» —~).
P&)P3

The quantity S is basically the dynamical structure factor of a free quark gas. It is evaluated in Appendix A in the
limit of u, T « p~ and is given by

S(pv, q, u)) = (2vr) p O(2@v —q)
.O(q —l~l) 2

The cross term linear in cos P in the matrix element squared of (10) vanishes since there is no other dependence on P
and there will be an angular integration over P (see Appendix A for details). The cos P averages to 1/2. From (10),
(16), and (18) we obtain, by changing variables from q to x = w/q,

3n, T(uq —uq )Pqy, v,37r3

d~ C (u/2T

( sinh(~/2T) )

I/2C q

1 1 1
dx

I1+ (*q~/~)'xi(*) I' 211+ (*q~/~)'x (*)/(I —*')l'2 2+ (19)

where n, = g2/4vr is the @CD fine structure constant.
Because the energy transfer is limited by the temperature, so that lul T « yv, the lower limit on the x integration

in (19) can be set to zero for the purpose of calculating the leading terms of order o, In other words, large momentum
transfers of order pq do not contribute to stopping. This is in contrast with the high-temperature plasma case where
large momentum transfers of order T contribute to linear order, albeit not to the leading logarithmic order [4, 5j. We
define the dimensionless integrals in (19) as

I (T/qD) = d(u ( ~/2T
(sinh(ur/2T) p

(20)

I (u)) = 1 1 1
dx +-II+ (*q~/~)'~i(*) l' 211+ (~q~/~)'~~(*)/(I —*')l' (21)

The integral in (20) cannot be evaluated analytically due
to the complicated form of yi q(x). The general features
can, however, be extracted by evaluating it in limiting
cases. For large energy transfers, w )) qD, screening
does not afI'ect the matrix element and the integral in

I

(21) is simply 3/2 (see Appendix B for more details), 1
from longitudinal interactions and 1/2 from transverse
ones. For small energy transfers, ~ && qD, the screening
is essential in order to obtain a finite result. Since the
major contribution to the integral (21) comes from small
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values of x (x w/q~ or equivalently q qD), we can
expand the yi &(x) for small ~ = ur/q as given by (8). The
integral over x in (21) becomes

7'1'1 "l'I'11tlt 'I' i'i'I'[lttt '- i '
f 'i'7'I ltf

1 1
dx [1+ (*q~/~) 'j'

1 1+—
2 1+ (vr/4)'(qD/cu)4x'

4
U

CQ 3

The upper limit can now be extended to oo and the inte-
gral is then straightforward to evaluate and so we obtain,
for the two limits,

'3/2, u) &) qD,
I (~) =

& vr f4~''0
, 6 q7rq~2y

+, u«qD.
4qD

'

The two terms for w (& q~ correspond to the transverse
and longitudinal interactions, respectively, and we note
that the transverse part dominates in contrast with the
u )& q~ limit where the transverse part is just half of the
longitudinal part.

Next we perform the integration (20). When T ))
qLi, I, (T/qD) is essentially an integral of 3/(2cu) with
a lower cutoB' around qLi as seen in (23) and an upper
cutoff around T as given by the Bose factors. Thus the
leading term will be 2 1n(T/qadi) and the next order is a
constant term evaluated in Appendix B. For the other
case, T « q~, the w && qD limit of (23) applies for I
and is straightforward to evaluate. We find

O.. . lj& I a l&lsl fill. . & I & I & lifr

T/qD

FIG. 2. The dimensionless function I, (T/qo) given by
(20). Dashed and dotted curves correspond to the T )) qo
and T « q~ limits of I, (T/qo), respectively, as given by (24).

Generally, Q~~ is proportional to the relative flow veloc-
ities of the different quark flavors. The total momentum
transfer, Q~, to quark fiavors q by scattering on the other
flavor q' can be written in the form

2 21 1 ~ PqPq~).(~. —u. ), (27)
q/ qI

where the characteristic rate of momentum stopping by
strong interactions, 1/r„ is, from (26) and (27),

—ln(T/q~) + 2.72, T && q~,
I.(T/qD) =

&
p T )»s T

a(
(

+ —,T«q~,
(qadi) 12 qLi

where

(24)
7s

To..I, (T/qD)
37r

T ln(T/q~) —+ 2.72T, T )) qLi,

a, +, T ((qD.
12 qD

(28)

a = I'(-)((—)(2vr) /6 = 1.81. (25)

Q„=-(-, - -, )u,'V,' ', T-.'I.(T/qD).qq q q q q (26)

In the limit T )) qD the contribution to I, from trans-
verse interactions is just half that from longitudinal ones
to leading logarithmic order. This follows from the fact
that the contributions to I, are in this ratio for ~ &) qD.
In the limit T « qD the contribution to I, from trans-
verse interactions scales as (T/qD) / and thus domi-
nates the contributions from the longitudinal interac-
tions, which scale as T/qD as may be seen from (24). Em-
ploying the static limit (no transverse screening) would
have led to a logarithmically diverging I, (T/qD) since
the lower limit would then have to be zero instead of

qD. Thus we see the importance of the finite energy
of the transferred gluon and the Landau damping during
exchange ("dynamical screening"). I, ( /Tq)Dhas been
calculated numerically and the result is shown in Fig.
2. The analytical result (24) is quite good except in the
region around q~ 2T.

From (19) and (24) we finally obtain

The physical significance of this time ~, will be described
further in the next section. Note that (27) satisfies the
condition P Q~ = 0 as required by conservation of total
momentum.

The strong dependence on T/q~ in (28) arises be-
cause the stopping process is dominated by processes
with small momentum transfers, qD. When T )) qo,
(28) contains the usual logarithm of the maximum and
minimum momentum transfer given by T and qD, respec-
tively [4, 5]. The screening of small momentum transfer
q qo is unaffected because the thermal smearing of
the Fermi surface is greater than the inverse screening
length. For T &( qD, however, we do not obtain the
usual r, oc T result of Fermi liquid theory [14j; instead
the leading term is w, oc T ~ because Landau damp-
ing screens momentum transfers q+(q~~~) /, where the
energy transfer w is T [13].

The standard Fermi liquid result for a typical transport
relaxation rate is that 1/7 oc T . When T « q~ this is
actually what Eq. (28) gives for the longitudinal part
of the interactions, because the longitudinal part of the
matrix element, (q + qD), is practically constant
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for all energy transfers w T (& q~. Consequently, the
very singular interaction does not affect the temperature
dependence for the longitudinal part when T &( qD and
we obtain the standard Fermi liquid result. However, for
the tranverse part or for T )) qD the singular interactions
give quite different temperature dependences as can be
seen from (28). The same applies for the viscous and
thermal relaxation rates, which we calculate below.

Let us now compare our results with those of Haensel
and Jerzak [7]. They do not address the problem of trans-
verse screening but implicitly assume that the transverse
interactions, like the longitudinal ones, are screened for
q qD. Second, they assume that T « qD so that their
viscous and electrical relaxation rates are proportional
to r oc n, T /q~ a, T which is also what one3j2

finds from (28) for T (( q~ when transverse interactions
are ignored. However, transverse interactions dominate
the longitudinal ones and the full expression (28) must
be used. As we will show below, thermal conductivities,
viscosities, and electrical conductivities are also different
from those of Haensel and 3erzak.

p 2&a ( nT
300 MeV (100 MeV)

for T (( qD (( pq and

(32)

2n. ln (1/a. ,) ~ ~

fm/c,
F100 MeV) (34)

In relativistic heavy ion collisions, the central rapidity
region is expected to have T 200 MeV and pq &( T and
the relaxation times are thus of order a few fm/c for a,
0.5. In the target and projectile fragmentation regions
the baryon density may be high and if the excitation
energies are low, T « pq 200 MeV, the relaxation
times can be longer. For T pq the relaxation times
are, however, also of order a few fm/c.

0.5a., ~

ln (T/q~) fin/c,
100 MeV)

for qo (( T « pq. For comparison we give the mo-
mentum relaxation times for quarks and gluons in high-
temperature plasmas from [5]

IV. TRAN SPORT C0EFFICIENT S

A. Momentum relaxation times

Consider a spatially uniform quark plasma of favor q
lowing with respect to %q —1 plasmas with different fla-
vors (q' g q). The relative flow velocity will relax in time
due to collisions, and we here evaluate the characteristic
time for this process. Multiplying (1) by momentum pi
and summing we obtain

dgq
dt

where gq is the momentum density

(29)

g~ = ~a ) &f~(sv) = ua~v ~

P

Having evaluated Q~ and r, we proceed to look at vari-
ous transport processes. We start by calculating the mo-
mentum relaxation time of two interpenetrating quark
plasmas which follows from the results of the previous
section in a straightforward way. Subsequently, we eval-
uate diffusion coeKcients and the electrical conductivity.
Finally, we calculate the viscosity and thermal conductiv-
ity which require somewhat more elaborate calculations.

B. DifFusion in burning processes

Transport processes play a major role in the burning
of a neutron star into strange quark matter as described
in [16]. When a neutron at the phase boundary enters
the quark matter, the quarks become deconfined into a u
and two d quarks. The d quarks, which are the fuel, have
to be transported into the burning region where they are
converted to s quarks on a weak-interaction time scale w

The s quarks, which are the waste, have to be transported
to the phase boundary or burning front. Thus d and s
quarks diffuse through each other and. the u quarks; i.e. ,
there are flows of different favor quarks relative to each
other. The burning drives the diffusion which is balanced
by friction due to collisions. Since thermal equilibrium is
established on strong-interaction time scales, which are
very short, whereas burning takes place on longer time
scales controlled by weak interactions, we can generally
assume the quarks to be in local equilibrium [16] as given
by (13) with T„=T, = Td, = T.

The collision integral on the right side of Eq. (1) con-
sists of a friction term arising from the different quark
favors having different How velocities. Multiplying the
Boltzmann equation (1) by momentum and summing we
obtain

and iii~ = p /vr2 is the enthalpy density for degenerate
quark matter of one flavor at T = 0. In the center-of-
mass system uz —— (Nq —l)uzi and —assuming pz pqi
we thus see from (27)—(30) that the momentum density
decays exponentially:

g~(t) = gg(0) exp( —t/7. ),
with a decay time ~, . This behavior is strictly true only
initially, since scattering drives the plasmas out of local
equilibrium so that the later stages will be more compli-
cated. In addition instabilities may appear [15].

The resulting time scale for momentum relaxation is

Here Pq ——p4/4vr is the pressure from quarks of flavor
q. As described in [16] this expression for the pressure
gradient together with the rate of s-quark conversion and
the boundary conditions describe the burning process.

To estimate the parameters in the burning process we
take the characteristic values T 10 MeV for the neu-
tron matter temperature and 300 MeV for the quark
chemical potentials. Taking the perturbative running
coupling constant
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n, (T) = 6vr/[(33 —2&g) ln(pq/A)],

with A 150 MeV, we find o., 1 at these densities
(so perturbation theory may not be trustworthy). With
the value o., = 0.5 in (28) [the maximum value for which

qD & p, q, as required for the validity of (28)] we obtain

also

) 2/3 (
~, =5x10 ( p,q

(300 MeV)
T

q10 MeV)
fm/c;

(300 MeV) (10 MeV)
fm/c

(36)

so that gr, /r c 100 ms . The front velocity will be
an order of magnitude smaller, uF 10 m/s. A neutron
star of radius 10 km will thus burn in 10 s. Gen-
erally the time scale is set by w and the length scale by
cga;q, so that the scale of the front velocity is set by

cgr. /7„. .

The burning scenario only applies to the burning of
bulk nuclear matter into bulk quark matter. As de-
scribed in [17] the cores of neutron stars may consist of
quark matter droplets embedded in the nuclear matter or
more complicated rod and platelike structures. Because
of Coulomb energies in this two-component system the
mixed phase of quark and nuclear matter is energetically
the most favorable state; this is similar to the phase in
neutron star crusts above neutron drip.

One may de6ne a diffusion coeKcient D by the ratio
of the Hux of quarks of Havor q to the density gradient,
uqnq —— DV nq, wher—e nq ——p, /m2 is the q-quark num-
ber density. Letting one of the quark components with
velocity ui diffuse through the others with velocity u2
we have that u2 —— ul/(Nq —1)—in the center-of-mass
system. Consequently, we obtain from (35) and (27) that

C. Electrical conduction

For u, d, and s quark matter with m, = 0 there are no
electrons present since charge neutrality is automatically
satisfied. Thus all electrical currents must be carried by
quarks. Applying an electric field E to the quark plasma
will generate an electrical current in which u quarks How

in the direction of the electric field, and d and s quarks
How in the opposite direction. In a steady state friction
due to collisions will balance the electric force.

A rigorous calculation of the electrical conductivity re-
quires knowledge of the nonequilibrium quark distribu-
tion functions. To determine the deviation from local
equilibrium one must take into account the scatterings of
the interpenetrating quark plasmas as well as the scat-
terings within each quark Havor which will equilibrate
the distributions functions towards the local equilibrium
ones. The quark conductivity can, however, be estimated
by assuming that the distribution functions are given as
(13) where ul is the flow velocity of u quarks and u2 is
that of d and s quarks. d and s quarks have the same
charge and therefore the same velocity. We assume weak
fields so that u, « c and in the rest frame of all the
quarks ui ———2u2.

In a steady-state, isotropic plasma we obtain, from the
Bolt zmann equation,

where eq is the electrical charge of a quark, eq
——3e for

u quarks, and eq ———3e for d and s quarks. Multiplying
(37) by pl and summing over momenta pl ——p we find
that the RHS gives us exactly Qq (as described in Ap-
pendix A only particles at the Fermi surface contribute
to the scatterings when T « pq and so p pqv&). Con-
sequently, we obtain the simple result

The diffusion coefFicient is thus of the same order of mag-
nitude as the relaxation time 7, or the stopping length
since all particle speeds are c = 1. It has been custom-
ary to estimate the mean free path by the inverse of the
quark-quark scattering cross section, oqq, times the quark
density and a factor taking Pauli blocking into account:
A (crqqno) (p,/T); usually one estimates the quark
scattering cross section by a third of the proton-proton
cross section: crqq 0""/3 Thus. .

( p,, & '( T
8 fm.

q300 MeV)
q

100 MeV)

This estimate for A is independent of o., and qo, and
has a different temperature dependence than the stop-
ping length cw, because the latter takes the very sin-
gular forward scattering into account. Quantitatively, A

is longer than c7., unless a low value for o., 0.15 is
chosen when T 100 Me V and p, 300 Me V.

eqEnq ——Qq . (38)

For u, d, and s quark matter with m, « p„ the electri-
cal current is j,l = P equq fq = eulnq. The electrical

q

conductivity is thus, from (38) and (28),

2

+el = 2el/@ = e +s .
3 7r2

This result may be understood simply in terms of the
quark electrical conductivity. It actually becomes the
standard Drude result for a multicomponent system,
cr l = P nqe rq/mq, when the density of carriers is taken
as nq ——p /vr, the masses as m, q

——pq, the charges eq as
—e and —e for the u and d, s quarks, respectively, and fi-
nally the relaxation time 1q is replaced by the momentum
stopping time 7;.

If neutron stars with temperatures of order 100 keV
or 10 K have cores of quark matter, the electrical
conductivity will be
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8/3
~., = (~,T,)-'~3 ' x 1O"3-',

300 MeV
(4o)

where T9 is the temperature in 10 K. The quark electri-
cal conductivity is a few orders of magnitude less than the
electric conductivity expected in ordinary neutron stars
due to electrons.

If the strange quark mass I,, is nonzero, charge neu-
trality requires that electrons be present in the plasma
and since they interact only through the weaker elec-
tromagnetic interactions they scatter less and they may
dominate the current. The density of electrons to ensure
charge neutrality is, however, very small. Even for pure
u and d quark matter the electron chemical potential will
be only about a quarter of the quark chemical potential
and the electron density will only be 2 x 10 of the
quark density. The exact relation between the quark and
electron conductivities depends on m, and o, Ther-
mally produced electrons and positrons can be neglected
when T (( pq.

D. Viscosity

The standard methods for calculating transport prop-
erties of normal Fermi liquids exactly [14] cannot be used
for degenerate quark and electron plasmas because of the
singular interaction, which means that it is not possi-
ble to decouple integrations over angles from those over
quasiparticle energies. Consequently, we shall restrict
ourselves in this paper to making variational estimates.

Consider a time-independent How velocity u which has
only an x component which depends only on y. To cal-
culate the viscosity we linearize the Boltzmann equation,
writing the distribution function as

ggo
f fle fi

Ei y (41)

where f = (exp[(e'; —p —u p, )/T] + Ij is the local
equilibrium distribution function. The Boltzmann equa-
tion (1) then reduces to

Of 0

Pla Vly 6E' l
'~. ) .(IMqq I' )f& f2 (I —f3)(1 —f4)~(~i+ ~2 —s3 —~4)(C'i + C'2 @3 44) .

Q)P2

The variational expression for the shear viscosity q is [14]
—2

(42)

Of')' VIl ) P~VIl C P
rj ( OsrI )

). (!~m!')fif2(1 —f3)(1 —f4)~(&~+&2 —&3 —«)(@~+@2 —@3 —@4)'.
i)P1 )P2

(43)

O'P OC P~Vy . (44)

The constant of proportionality is irrelevant as it can-
cels in (43) and we shall in the following set it to one.
Consequently, the momentum Aux tensor is

The maximum of the right-hand side is achieved when
4 = C. We shall not attempt to solve the integral equa-
tion (42) for 4 but rather take the standard ansatz for the
deviation from local equilibrium which obeys the symme-
try

Since (!M~~ ! ) depends only on the relative orientation
of q, pl, and p2, we can average over z and y directions
while keeping x and P fxed. This corresponds to keeping
the relative positions of the three vectors q, pl, and p2
fixed and then rotating this system over the three Euler
angles. Consequently, we obtain

(4 j + %2 C3 C4) = —q (1 —x )(1 —cos IIt) I (46)
5

where the bar denotes an average over the Euler angles.
From (43) we obtain, by comparison with (19),

Of pg
Vq ) P~Vy 4pBr„57t.2

P
(45)

1—= 40am, p TI„(T/qD),s q '9

where

(47)

I~(T/q~) = ~/2T
(u (sinh((u/2T) )

dx
2 II —(1 —x ) (1 —cos P)2'

1
x 1+ (xq~/~)'Xl (x) I+ (xqD/~)'~l (*)/(I —*') (4S)

This function is also shown in Fig. 3 and can be eval-
uated analytically in the limits

—ln(T/qD) + 3.57, T )) qD,
in(T/qD) = l

f T )'l'3 3 T (49)
+

(qa) 4 qa
'

I

This viscous calculation is more complicated than that
for the momentum relaxation time because (46) intro-
duces dependences on angles between pq and p2 (or
equivalently P, see Appendix A) and so the cross term
between longitudinal and transverse interactions in the
collision term no longer vanishes. Electrical conduction
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a 4
C3

I—
+ 3

T/qD

FIG. 3. The dimensionless function I„(T/qo) given by
(48). Dashed and dotted curves correspond to the T )) qo
and T « qz limits of I„(T/qo), respectively, as given by (49).

does not introduce such angular dependences which ex-
plains why the calculation of the electrical conductivity
was simpler. Otherwise, the evaluation is analogous to
that for the momentum relaxation time, which is why
I„=I, for transverse interactions alone in the T « qD
limit. The cross term contributes to order T/qD and this
term in Iz is therefore three times that in I, . Because of
the extra factor (1 —cos P), the T )) q~ limit for I„has
a factor 5/2 instead of the factor 3/2 in the case of I,

The viscous relaxation time is defined by

1
g APFVF7g

5
(50)

5

8 2 3
T ln(T/qD) +—3.57T, T )) qLl,

N, n.' x ~
—T'/' ' T2 (51)
a ] +, T((q~

where pF ——pq is the Fermi momentum, vF ——c = 1 is
the Fermi velocity and n = Nqnq is the density of quarks.
From (47) we find

1 8
Nqn, TI„(T/—q~)

E. Thermal conductivity

To calculate the thermal conductivity we linearize the
Boltzmann equation, writing the distribution function as

A@0
f f le Ji

T (52)

where f,' = (exp[(s, —p)/T(z)] + 1) is the local equi-
librium distribution function; one Ands

We see that the viscous rate is exactly three times the
momentum stopping rate, 1/r„of Eq. (28) in the ex-
treme T (& qD limit. This is the same ratio as one
obtains from standard Fermi liquid theory if small an-
gle scattering processes dominate and the deviation from
local equilibrium only depends on q but not on x and

In our case the transverse interactions dominate for
T (& qD for which only small x contributes. Furthermore,
the cos P term in (46) vanishes since it is an odd power
of cos P. Therefore the viscous deviation from local equi-
librium, Eq. (46), essentially depends only on q. This
explains why the viscous rate is just three times 1/r, . In
the T )) qD limit, averaging over 1 —x gives an addi-
tional factor 2/3 and the factor (1 —cos P) in addition to
the (1 —cos P)

2 factor from the matrix element [see, e.g. ,
Eq. (9)] gives a factor 5/2 instead of the factor 3/2 in
the calculation of 1/r, . Consequently, the viscous rate is
1/r„= 10/(3r, ) as can be seen by comparing (51) with
(28) in the extreme T )) qD limit.

The bulk viscosity for weakly interacting extremely rel-
ativistic particles vanishes, just as it does for weakly in-
teracting nonrelativistic particles. The reason for this is
that in both cases the particle energy is a homogeneous
function of the momentum, and consequently a homolo-
gous compression of the system leads to another equilib-
rium state, but with difFerent temperature and chemical
potential [1, 18]. When the strange quark has a finite
mass, compression of strange quark matter leads to a
state out of P equlibrium. The relaxation of this state
by weak interactions gives rise to a bulk viscosity, which
Madsen has calculated in detail [19]. Strong interactions,
which dominate the behavior of the transport and relax-
ation process considered in this paper, play only a minor
role in the bulk viscosity.

ufo
vie (s 1 V') 'Nq ) flf2(1 —fs)(1 —f4)(IM- I')/i(~l + s~ —s. —«)(~i+ ~2 —~. —O4) .

Q&P2

(53)

The thermal conductivity r is given by [14] the maximum of

gfO
~) (p &)e p

K ( Osp )
). (IM., I )fi f2'(1 —fs)(1 —«')~(sr+ f2 —s. —s4)(+i+ +2 —+s —+4)'.

Q~P1~P2

(54)

As for the viscosity, we calculate the thermal conductivity by taking the standard ansatz,

@p oc (sp —p)vz ) (55)
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for currents in the z direction. Consequently, we find for the normalizing factor in (54), essentially the thermal current
per quark flavor,

JT' = vq ) (Ep —pq)v~ Cp: —p T (56)

From (54) and (55) we obtain, after averaging over directions of the z axis (i.e., the three Euler angles as before)
keeping x and P fixed,

(@i + 42 —@s —44) = —w (1 —x )(1 —cos P),2=2 2 2

3

to leading orders in cu and q. Note that in the case of thermal conduction (57) one obtains a factor ur whereas in the
case of momentum relaxation and viscous How we found a factor q2 Isee Eq. (46)]. We find

1 24
o..—T I„(T/q~),

K 7t
(58)

where

I„(T/q~) —: d~ ( ~/2T
(sinh(~/2T) ) o

2 7f —x (1 —x )(1 —cosP)
27t

x 1+ (xq~/~)'~~(*)
cos

1+ (xqD/~)'~~(*) j(1 —*') (59)

This function can be evaluated analytically in the two
limits

=1 2K U+Cv7
3

—ln(T/qLi) + O.SO, T » qLi,
I„(T/qD) =

&

2((3)
i i, T « qo.
kqD)

(6o)

where c„= (Nq/2)Tp is the specific heat per volume
Thus we find

2

Nq n, q I„(T/q~)—

12 ' T'T'

0.2

T/qD

10

FIG. 4. The dimensionless function I„(Tjqo) given by
(59). Dashed and dotted curves correspond to the T )) qo
and T (( qo limits of I„(Tjqo), respectively, as given by (60).

In the T && qD limit we have given only the term
coming from purely transverse interactions. The cross
term contributes to order (T/q~) ~ and higher whereas
the purely longitudinal interactions contribute to order
(T/q~)s and higher.

The full result obtained by performing the x and w

integrations numerically is shown in Fig. 4.
We define a characteristic relaxation time for thermal

conduction, w„, by

N~o. ,p x (

' ln(T/q~) O.30+, T»qo,
(62)

, 2((3)T/q~, T && q& .

The relaxation time for thermal conduction has a dif-
ferent temperature dependence than both v; and w„be-
cause the thermal conduction was weighted by energy
transfers (w ) instead of momentum transfers (q ) as for
momentum stopping, electrical conduction and viscous
processes.

We now discuss how one may understand in simple
terms why the temperature dependence of the relaxation
rate for thermal conduction difI'ers from those for the
other processes we have considered. If one derives ex-
pressions for the relaxation rates using the calculations
given above, one finds that they all have similar forms,
but a weighting factor (q/p~) in the relaxation rates
for viscosity, electrical conductivity, and momentum is
replaced by a factor (u/T)2 in the relaxation rate for
thermal conductivity. For the case T » qD the dom-
inant contribution to rates comes from processes with

q T, and therefore the thermal conduction rate
is a factor (p/T) greater than the other rates. In
the opposite limit, T « qD, processes with ~ T and
q (q~2T) ~s are most important, and consequently the

thermal conduction rate is a factor p2/(Tz~sq~ ) larger.~ s 4i3

As mentioned above the purely longitudinal interac-
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tions gave a (T/q~) contribution to I„ in limit of T &&

q~. Therefore, for longitudinal processes alone, 1/r„has
the standard Fermi liquid T dependence just like 1/r,
and 1/r„as explained above in connection with the cal-
culation of 1/7.

V. SUMMARY

Our calculations above show that the transport prop-
erties of degenerate QCD or QED plasmas of relativistic
particles have several interesting features. First, there
are three scales, the chemical potentials, the tempera-
ture, and the Debye screening wave number. We have
investigated the degenerate case where p is much larger
than T and q~ and found that the physics changes be-
tween the two limiting cases of T )) q~ and T && q~.
Second, we found that the transverse interactions dom-
inate the scattering processes when T « q~ because
they are only screened for energy transfers less than

(qr T) ~ . The resulting relaxation rates for momen-
turn. relaxation, electrical conduction, and viscous pro-
cesses scale as 1/r (a.,T) ~ /pq, while the relaxation2/3

rate for thermal conduction is 1/r„a, T. The quali-
tative reason for ~„behaving in a different way from the
other relaxation times is related to the singular charac-
ter of the interaction for small energy transfer and small
momentum transfer.

At high temperatures, T )) q~, relaxation times
are similar to those of hot nondegenerate quark-gluon
plasmas where the rates of momentum relaxation are
1/7; Tn., In(T/q~). However, the Debye wave num-
ber is different, q~ gT. At low temperatures, T && q~,
the result is qualitatively different from that as well as
from standard Fermi liquids [14]. The relation 1/r,

2/3n2Ts~s/q~~ was found instead because the energy trans-
fers are limited by the temperature and not the Debye
wave number when T « q~. Whereas dynamical screen-
ing drastically influences the transport coeKcients for de-
generate quark matter it only enters through the factor
In(T/q~) in high-temperature plasmas. If a magnetic
mass m g g T were responsible for the infrared cutoff
instead of q~ in dynamical screening, the only difference
would be a factor of 2 in the leading logarithmic order.
The results obtained here are exact to order n, whereas
previous results for T )) pq were limited to leading log-
arithmic order, n2 in(1/ri. ,).

The viscosity was found to be similarly influenced by

dynamical screening and can be written as q aequi, /5
where the viscous relaxation time is, from (47), approxi-
mately one-third of the momentum relaxation time. The
thermal conductivity, however, has a different behavior
for T « qLi as seen in (58) because the thermal trans-
port is reduced as compared to transport of momentum.
An important general conclusion of these studies of QCD
and QED plasmas is that the relaxations times are difFer-
ent for different transport processes and all deviate from
the standard results of Fermi liquid theory.
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APPENDIX A: THE STRUCTURE FACTOR

Here we evaluate the structure function of Eq. (18).
We introduce auxiliary integrals over the momentum and
energy transfers so that

~(pl + P2 Ps P4) d'q ~(pi —ps —q)

x8(p2 —p4+ q), (Al)

8(si + s2 —~3 E4) = dQJ 8 (Ei —ss —W)

xb(s2 —s4+ cu), (A2)

whereby the sums over 1 and 3 separates the sums over
2 and 4 in (12) .

The three-dimensional b function expressed in spheri-
cal coordinates is

~(pi —ps —q) = —~(ps —(pi —q)')
P3
x8(cos Os —cos Oiq)8(gs —Piq), (A3)

where 03 and Ojq are the polar angles of the vectors p3
and pi —q, respectively, and Ps and Piq are the corre-
sponding azimuthal angles. Since we already have lin-
earized in the flow velocities they can be set to zero in
distribution functions in (17). From (17) and (A3) we
obtain

S(pq, q, ~) = 2(27r) d cos 06(~ —2@i~ —q + 2p, q cos 0)

= (2~)
e(q —l~l)

q +(u) /2
dpifq'(pi) [I —fq'(S i —~)]pi(s i —~) . (A4)

Here 0 is the angle between pi and q which, due to the 6 function, is limited to cos0 = w/q = x. Since the matrix
element depends on cosP where P = Pqq —Piq, we must transform the variables qiiq and Piq to P and, for example,

In (A4) the integration over Piq has been performed giving 2'. Consequently, we are left with an average

(le l )y = 1 dry/27rlMl, which must be performed in the integrals of Eq. (16) in order to obtain Eq. (19).
Since u T « pq the lower limit of the integral can be approximated by q/2 and we get
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~(t„q, ) =(2 )
' ~',8(». —q)
se(q —I~l) 2

q
~ exp' T —1' (A5)

which contains the usual Bose factor for the transferred gluon of energy —~.
The upper cutoK on the momentum transfer, q & 2pz, will actually not enter in the calculations because the energy

transfer is limited by the temperature and we are considering the limit of T « p~. The condition Ice[ & q ensures that
the gluon transfer occurs in the Landau damping regime.

APPENDIX B: EVALUATION OF I, (T/qg))

We evaluate the integral over ur and q in (16) in more detail to find the leading logarithmic term as well as the next
order in the limit of qD « T.

It is convenient to insert an intermediate cutofF, q~ && cu && T, in the integral of w so that

I (Tlq~) = d(d ( M/2T

(sinh(u)/2T) )
1 1 1

dx 2+II + (xqL /~)'Xt(x) I' 211+ (xq~/~)'xt(x) l(1 —*')I'

In the second (upper) integral where q~ && w & ur we can neglect effects of screening so that

(sinh(~/2T) ) 2 2 2T i 2T) (2T)
t'T )—ln 2 — ln —

l + 1, ~ && T .
)

(B2)

In the first (lower) integral we can ignore the Bose factors since cu & w « T To leadi.ng logarithmic order the x
dependence of X is unimportant. The integrals over x just give 3/2 with, however, a cutoff when w qD. Consequently,
I, = —1n(u/q~), to leading order. The next order cannot be performed analytically because of the complicated
functions X~ t(x). However, when w )) qLr the screening can be ignored and when w && qLr only the small x behavior
of II~ t matters. Therefore we approximate X~ t for small arguments (8) and obtain the estimate

1 1

2 I1+ irrx'qD/(4~') I2

3+ —,qD ((W.
2

+ —+ —ln
4 2kqD)

(T)
+ 2.810, qD (( T.3= —ln

2 &q )

()) l(d 1

o I:1+(xqD/~)']'

ln i + —+ — ln
qqD) 2 2 i ~7lqLi)

Adding (B2) and (B3) we obtain

3 /TliI.(T/q~) = —ln
2

(B4)

The constant found in this approximation is remarkably close to the value 2.72 found by numerical integration of
(Bl). The reason is that the small x expansion exhausts most of the deviation and the corrections from the detailed
forms of y~ and yz, as compared to their small x limits, cancel partially by accident.
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