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Gauge-independent analysis of dynamical systems with Chem-Simons term
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Quantization of theories involving the coupling of the Chem-Simons term to complex scalars and

Dirac fermions is carried out in the Hamiltonian formalism without using gauge constraints. The co-

variance under the Poincare group of transformations is established and subtleties in defining the

diA'erent (canonical or symmetric) forms of the energy-momentum tensor are examined. Guage-

invariant multivalued (anyon) operators obeying graded statistics are found which create the physical

states with arbitrary spin. The spin-statistics connection is verified. Implications of our analysis con-

cerning the claimed violation of translation invariance in phenomenological Lagrangians and its connec-

tion to anyon superconductivity are also discussed.

PACS number(s): 11.15.Tk, 11.10.Ef

I. INTR&DUCTION

In a recent Letter [1] we formulated the basic aspects
of a gauge-independent analysis of Chem-Simons (CS)
theories coupled to matter fields. This work is an ela-
borate version of the original Letter [1]. Chem-Simons
theories have timely interest because of their applications
to both high energy and condensed matter physics [2].
The original version [3] included a Maxwell term. Subse-
quently, theories in which only the CS piece was taken as
the kinetic term were considered [4]. Dift'erent ap-
proaches ranging from the path-integral to the operatori-
al formulations of the models have been considered [5].

In this paper we shall be primarily concerned with the
canonical quantization of CS theories in the Hamiltonian
formalism without invoking gauge constraints [6]. The
problems and ambiguities related to gauge fixing are quite
well known. Suffice it to mention that this has led to
some controversy and criticisms in the literature [7—9].
Moreover, the conventional structure [7,10,11] of anyon
operators which are found to be gauge dependent are ob-
tained in the Hamiltonian formalism by choosing a
specific gauge. Consequently, it is not clear whether the
anyonicity is a physical eff'ect or an artifact of the gauge.
Indeed, sometimes different results with different gauge
fixing have been reported [11].

We bypass all these ambiguities by doing a gauge-
independent analysis. Explicit expressions for mul-

tivalued gauge-independent operators are found which
create the physical states with arbitrary spin. These
operators are associated with the arbitrary spin. They
obey graded commutation relations which are compatible
with the spin-statistics connection. It is important to
mention that ambiguous manipulations with multivalued

operators, which were earlier subjected to criticisms
[5,8,9,12], have been completely avoided in our computa-
tions. The implications of our analysis for the recently
claimed [13,14] violation of translation invariance in phe-
nomenological Lagrangians have been discussed. We
show that this claim is rather naive and not well founded.

Section II of this paper introduces the model involving

the coupling of the CS term with complex scalars. The
constraint structure is analyzed and the gauge-
independent formulation set up. This is used in Sec. III
to establish the covariance of the model under the Poin-
care group of transformations. Particular care is paid to
elucidate the diff'erence in the definitions of the energy-
momentum (EM) tensor which follow either from
Noether's theorem or by introducing a background gravi-
tational metric. The implications of this difference for
the Dirac-Schwinger condition [15] is analyzed. The con-
struction of the anyon operator and the physical states of
the model are given in Sec. IV. It also includes a detailed
algebra of the anyon operators. The entire analysis (Sec.
II to Sec. IV) is compactly presented for the model
describing the coupling of the CS term to Dirac fermions
in Sec. V. Section VI reveals the ambiguity in defining
momentum operators for phenomenological Lagrangians
and their significance in anyon superconductivity. The
conclusions are given in Sec. VII.

II. CHERN-SIMONS TERM COUPLED
TG COMPLEX SCALARS

As an application of our ideas, let us first consider the
Lagrangian density

X=(D„$)*(D"P)+(814~)st" A„t) Aq,

D„=d„+iA„

is the covariant derivative with the metric

(3)

and 0 is the CS parameter. The Lagrangian (1) is invari-
ant (up to a total divergence) under the transformations

P(x)~e' "P(x),
A„(x)~A„(x)—i) ct(x) .
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The canonical momenta are

BL 0 E'~A . ,
BA, 4~

. =(Dog)*, m*= . =Do(b,

so that, by Dirac's classification [16], the primary con-
straints are

Po =~0=0,

is first class. The complete set of first class constraints is
thus given by ~o and P while P, are second class. The
second class constraints P, are really trivial because these
may be eliminated by using Dirac brackets (DB's) instead
of PB's. In that case S may be identified with the first
class constraint I' [see Eq. (12)]. We therefore eventually
find that the Gauss constraint S may be regarded as first
class.

The computation of the DB's among the fundamental
variables, generically denoted by g, now follows from the
well-known formula [16]

{x(x),xU ) IDB {x(x)x(3) jpB

where the symbol = indicates weak equality, i.e., the
constraints can be identically set equal to zero only after
computing the relevant Poisson brackets (PB's). In order
to check whether there are secondary constraints, the
canonical Hamiltonian density is first computed from (1)
by a Legendre transformation

dzdz' gx, P z P; ' zz'

x {S', (z'), x(y) ] p, ,

(z, z') = ...5"'(z —z )
27T (2)

(13)

(14)

y = fields

Ao Jo —(D, P)*(D'P)—
is the inverse of the matrix of the PB's among P; and P ..
The DB's which differ from their PB's are

where

OE'~
[JOB;3, —(8; Ao) A, ],4a

(8)

{3;(x),A. (y) ]Dii= {a;(x),n (y)IDB

27TZ
e,,5(x —y),

is the conserved gauge-invariant current.
The primary Hamiltonian is given by

II,= d'x, +uo~o+u, P, , (9)

{A, (x),~ (y) I Dii= —,'g,,5(x —y),
which are compatible with setting the second class con-
straint I'; [Eq. (6)] strongly to zero.

The total Hamiltonian is now written as
where uo and u, are arbitrary multipliers. Conserving
the primary constraints with Hz and using the basic PB s &T=&,+uvro+uP, (16)

{A„(x),~'(y) I =g„"5' '(x —y),
{P(x),~(y)] = {((*(x),~*(y)] =5' '(x —y),

which are the only nonvanishing ones, yields the secon-
dary constraints

S =So+ c.'~B;3 =0 .0
0

It may be checked that no further constraints are gen-
erated by this iterative procedure.

The next step is to classify the constraints. We find
that ~o is first class while P, and S are second class con-
straints. The second class constraint S is the analogue of
the Gauss constraint in usual electrodynamics which is,
however, known to be first class. This apparent
difFerence occurs because we have not yet extracted the
maximal set of first class constraints in our theory. This
is essential [17] because the first class constraints are as-
sociated with the gauge invariances of the model. It is
easy to show that the following combination of second
class constraints,

where u, v are arbitrary multipliers rejecting the gauge
invariances of the theory associated with the two first
class constraints. There are now two options for
proceeding further with the quantization program. The
first and the most popular is to choose two gauge-Axing
conditions so that there are no first class constraints. A
fresh set of DB's is computed which is consistent with
setting ~0 and P strongly to zero. The freedom in the to-
tal Hamiltonian (16) is thereby eliminated. The basic
problem with this approach is the choice of suitable
gauge-fixing conditions. It has also led to some contro-
versy in the literature [8,9]. Sometimes nonlocal gauge
conditions [11,18] have also been suggested. As is well
known, moreover, there is no standard prescription to
make an optimal gauge choice. Recently, however, we

[1] worked with an alternative approach [19] which by-
passes these difhculties. The basic idea is to fix u and v so
that the fields have the correct transformation properties,

DB
(17)

P = O'P, +S =8'~, +Jo+ c'~B; 2 =0,0
x—= (P, P*,m, ~*,A„,m;)

(12)
calculated by using the DB's (15). Naturally it is also
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essential to verify that this choice of the arbitrary multi-
pliers correctly yields the transformation properties of
the fields under the other space-time symmetries (i.e.,
spatial translations, rotations, and boosts). Finally, it is
obligatory to check the Poincare algebra. We make a de-
tailed discussion of these issues in the next section.

[Mp' 4(x)]DB xpa'0+x apd (23b)

and, likewise,

[M,, A„(x)],= —x, a, A„+x,a, A„+6,„A,—t,„A, ,

(24a)

[M;, A.(x)] = —x a, A +x,.a A —5,. A (24b)

III. ENERGY-MOMENTUM TENSOR
AND COVARIANCK OF THE MODEL

It is simple to verify that Heisenberg's equation (17)
can be reproduced for all the canonical variables provid-
ed u and v in (16) are chosen as

= (a„y)*(a.y)+ (L)„y)(a.y*)

+ '...„,A-a, A' —g„~ .
4m.

(19)

Indeed, the total expressions for the generators of space-
time translations may be written in a Lorentz covariant
form

Op p +~ p ~p+ Up

where

(20a)

Qpp =BpAp, Up =0 (20b)

Q =Bpc4p, U =0

In order to discuss the spatial translations we proceed
along similar lines. The momentum operator is first ob-
tained from the canonical energy momentum (EM) tensor
0„' where

a
e„',= g ay —g +

x=4' 4'

It is interesting to observe that the fields transform nor-
mally under rotations and boosts. In particular, there is
no rotational anomaly for the matter field P which is cou-
pled to the CS term. Such an anomaly was earlier report-
ed in Ref. [4] where a radiation gauge computation was
performed. The difference in results may, therefore, be
attributed to the choice of gauge-fixing conditions imply-
ing that the rotational anomaly in [4] is really an artifact
of the gauge. Similarly under boosts, the potential A.
transforms with additional terms in the radiation gauge
[4], which are absent in our gauge-independent approach.

Finally a straightforward calculation shows that the
generators of space-time transformations satisfy the Poin-
care algebra:

[P„,P ]oil=0,

[P„M i. ]no=g„i.P (25)

[M„,M i ]i~B=g zM„g iM, +—g„M z
—g, M„i .

Thus in the quantized version the canonical energy
momentum tensor ep„ is replaced by ep„[Eq. (20)] and
the DB's are transformed into commutators as
i [, ]oB~[,]. Moreover, operator symmetrization is im-
plied whenever products of operators occur.

An alternative route of discussing the covariance of the
model is to consider the Dirac-Schwinger covariance con-
dition [15]

such that the proper space-time transformations for all
the fields (and their conjugate momenta) are obtained:

[epQ(x) eQQ(y)]oB= [ep. (x)+ep (y)]a 6(x y)

Using (20), we find however,

(26)

[x p„]na —a~
p„=f e,'„. (21b)

(27)

(21a)
[epp(x) epp(y)]+alp& = [ep;(x)+eo;(y)]a;fi(x —y)ly&,

It is simple to check that the constraints have vanishing
DB with Jepp so that these are fixed in time. A straight-
forward extension can be done to include rotations and
boosts, defined from

where the physical states P) are ones which are annihi-
lated by the first class constraints and

ep; lg) =[ep;+ A;Jp —
—,
' AQJ;+(e/Svr )s,j.(aJAQ) Ap

M„=f d xAfp„, (22a) +(ex4~')s,„AJa, A'] q),
where

azAf„=x„O —x 0„— ~ X„Aa(aA )

with

(22b)

(22c)

[M,„y(x)],= —x, a, y+x, a, y, (23a)

Using ep„ from (20) and the DB (15), it is simple to show,
from the above set of equations,

implying that condition (26) is violated. We have, howev-
er, established covariance via the Poincare algebra (25).
The apparent paradox that the Dirac-Schwinger condi-
tion (26) is violated may be resolved by realizing that the
definition of the energy-momentum tensor is not unique.
Indeed, the general (model-independent) operatorial
proof of the Schwinger condition [15] demands that the
full rotational transformation [e.g. , (24a)] be generated by

an operator such as M, =x;Op —x Op, , which does not
explicitly include the spin factor [Eq. (22c)]. Our rotation
generator (22b) clearly does not satisfy this prerequisite.
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Note that the Chem-Simons term is covariant without
reference to the metric and hence does not contribute to
L9„. It did contribute, however, to the canonical expres-
sion (19). As was done earlier, the total EM tensor is ob-
tained from (29) by adding linear combinations of the two
first class constraints:

(30a)

It is simple to show that the space-time translations are
generated by f 8p„where

Op p 0& Op p (30b)

It is, however, possible to define a new (symmetric) EM
tensor which conforms to this criterion:

BS BX
P~ g pv g pv P~

I 8pp(x) 8p (y)}DB:[8J(x) g'18pp(y)]i3, 6(x —y)

(34c)

The three conditions (34) are sufficient to prove the valid-
ity of the complete Poincare algebra (25).

This completes our demonstration of the covariance of
the model. Both the canonical and symmetric forms of
the EM tensor are modified in the presence of first class
constraints. These modifications are such as to preserve
the proper transformation properties of the fields and
satisfy the Poincare algebra. The Schwinger condition,
however, is compatible only with the symmetric
definition of the EM tensor for reasons elucidated earlier.

IV. THE PHYSICAL STATES
AND THE ANYON OPERATOR

The physical states ~g) of the model are defined to be
those states which are annihilated by the first class con-
straints:

Note that the coeKcient Uo„ is different from its previous
counterpart Up„given in (20b). It is significant that the
difference between the densities 6 o„and 00„ is a boundary
term so that the integrated expressions corresponding to
the translation generators are identical, i.e.,

0 0„= 0O„=P„. (31)

The usual definition of the generator of rotations and
boosts following from (30) is given by

M„=fd xJRp (32a)

where

(35)

Since the first class constraints are the generators of
gauge transformations, the physical states (35) must be
gauge invariant. We can be assured of this if the opera-
tors which create these states from the vacuum are also
gauge invariant. Moreover, following the usual conven-
tion [5] we define the one-particle states to be those states
which carry one unit of the charge Q = jd x Jp [Eq. (8)],
i.e., states

(36)

such that the creation operator P obeys

T = T T~ Opv Xp~ Ov Xv~ Op (32b) [Jp(x), P(y)]=5(x —y)P . (37)

Note the absence of the explicit spin term in (32) which
was, however, present in (22). Once again it may be
demonstrated that the integrated expressions following
from (22) and (32) agree, i.e.,

(33a)

As a consequence of the nontrivial commutator,

[Jp(x»d(y)] =&(x —y)0 (38)

following from the DB (15), a general ansatz for a gauge-
invariant P satisfying (37) may be written [1]:

MO, =MO, (33b) P(x) =exp f dy Q(x —y)Jp(y)+i f dy, 2;(y) P(x),
"o

so that the fields transform normally under rotations and
boosts. The EM tensor (30) is thus seen to satisfy the cri-
teria necessary for it to obey the Dirac-Schwinger condi-
tion [15]. Indeed, an explicit computation reveals that
this is true, i.e.,

(39)

where Q is, as yet, an undetermined function and xo is
some reference point. The line integration in (39) is per-
formed along the straight path:

[happ(x),

8pp(y)] Dii= [8p;(x)+ 8 p;(y)]B;6(x —y) . (34a)
y; =(xp);+(x — );xt,p0~ t ~ 1 . (40)

Apart from this, there are two subsidiary conditions
which may be verified:

[8pr(x), 8', (y)]»= [Op;(x)B,"+8~, (y)B;]5(x —y),
(34b)

It may be pointed out that the gauge inva, riance of P
will be preserved for any choice of path, the straight path
being chosen for algebraic simplifications. Indeed, in
computing products of P the following equality proves to
be very useful:
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f "dy, f 'dzj[A, (y), A, (z)]=i f dt f dt'(x —xo), (z —xo), s, 5((x —xo)t —(z —xo)t')
0 0

=0. (41)

following from the antisymmetry under the exchange
i~j and where the explicit structure for the commutator
among the potentials has been substituted from (15).

In order to fix the function Q(x —y) in (39), we first
compute the general n-particle state functional:

(42)~ y(x, ) lo& .
i=1

To simplify this, note that Eq. (38) implies, by the Baker-
Campbell-Hausdorff formula,

r

exp f dy Q(x —y)JO(y) P(z)exp —f dy Q(x —y)JO(y) =exp[Q(x —z)]P(z) . (43)

Using this formula and the equality (41), the n-particle state functional may be expressed as

n j—1 n n

IW. &=exp X X Q(x x ) exp g f dy Q(x. y)JO(y) g Q(x;)I0&
j=1 i =1 i=1 i =1

where

P(x)=exp i f dy, A,.(y) P(x) .

(44a)

(44b)

Now the general structure of the n-particle functional following from the representation theory of the braid group is
given by [5]

n j—1

Qq[y(x)), . . . , y(x„);t]=exp 2iS g—g co(x, —x ) f [y0( x), . . . , y( x);t],
j=1 i =1

(45)

where Forte and Jolicoeur [5] have shown that for CS
theory with matter coupling, the generalized spin factor
S is a function of 8, henceforth denoted by S(8). The ex-
plicit form for S (8) will be determined shortly.
Po[g(x& ), . . . , g(x„);t] is an n-particle functional with
Bose statistics and co(x —y) is the multivalued polar angle
of the vector x —y:

X 2 2

~(x —y) =arctan
X

(46)

Returning to Eq. (44) we observe that the expression in
the curly brackets represents a gauge-invariant functional
with commuting one-particle cocycles, because

f dy Q(x —y)JO(y), f dy'Q(x' —y')Jo(y') =0 (47)

Q(x; —xj )=2iS(8)co(x; —x ) . (48)

Hence the final expression for the one-particle creation
operator (39) is

P(x) =exp 2iS (8)f dy co(x —y)Jo(y)

+i f dy, A, (y) P(x), (49)

which is multivalued due to the presence of co(x —y).

and hence may be identified with go (45). The correspon-
dence between Eqs. (44) and (45) is complete if one substi-
tutes

This operator P(x) may be regarded as the anyon field
operator since it creates states (44) with arbitrary spin
S =S(8) when acting on the vacuum. Exactly as hap-
pens in the Klein-Gordon theory, we may consider P as
comprising creation operators of particles and annihila-
tion operators of antiparticles. This does not affect our
analysis since the n-particle functional (44) is computed
for distinct y; only so that the vacuum contributions
[proportional to 5(x; —x. ), i Wj ] vanish [1]. Similarly
one antiparticle state will be created by P (x). The
anyon operator (49) which was first suggested in Ref. [1]
is different from the conventional constructions [7,10,11].
The structure (49) is gauge invariant in contrast with the
conventional anyon operators [7,10,11] which are gauge
dependent. The latter, in fact, are obtained in the Hamil-
tonian formalism employing a specific gauge fixing so
that it is not clear whether their anyonicity is a physical
effect or an artifact of the gauge. It is not surprising,
therefore, that different results with different gauge
choices have been reported [11]. Moreover, in obtaining
the anyon operator, we have avoided formal manipula-
tions with multivalued operators that were earlier criti-
cized [8,9,12].

To determine the spin factor S(8) in (49), consider the
action of the rotation operator (32) on the physical one-
particle state,

Jlg&= f d x s"x;8„lg&
= f d x s"x;80. g &

=f d x E"x,(vrd, Q+vr*d P*+iA J )l i0&i, (50)
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where, in going from the first to the second line, we have
exploited the fact that the first class constraints annihi-
late the physical state. The first two terms in (50) are the
normal canonical terms while the third can be simplified
by formally solving the constraint (ll), valued on the
physical state:

, Jo q&=0
g J ~2

(51)

so that, concentrating only on the third factor in (50),
2 gk

Js~g&= f d x E'Jx; Joi E.k Jo~g& .

This simplifies after some algebra to [20]

J it & =(vr/20)Q ~Q& =(7r/20)~y& (53)

since the physical state (36) is an eigenstate of the charge.
The angular momentum operator therefore rotates the
physical state by an additional phase which may be
identified with the spin factor in (49), i.e.,

S(0)=sr/20 . (54)

To study the statistics of P(x) (49) we compute the
product P(x)P(y) and exploit formula (43) to obtain

P(x )P(y) =exp I 2iS (0)[co(x —y) —o~(y —x ) ] ]

XP(y)P(x) .

Substituting S(0) from (54) and noting that the angle be-

tween two antiparallel vectors [co(x —y) —co(y —x)] is
(~ mod2vr), we find

P(x)P(y) =exp[i (m/0)(m mod2n)]P(y)P (x) . (56)

P(x)P (y) =exp[ i (~/0)(m. m—od2~)]P (y)P(x) . (57)

To compute the algebra of P (P ) with their canonical-
ly conjugate momenta ~ (vr ) it is first essential to define
the latter variables. This can be done by recasting the
original Lagrangian (1) in terms of the careted variables
and then taking the necessary partial derivatives:

This result reveals that the fields satisfy graded commuta-
tion relations. The statistical phase in (56) has a sign am-
biguity (due to the presence of mod2vr) and physically
rejects the arbitrariness present in the exchange of two
particles which may be done either by a clockwise or an
anticlockwise rotation. If 0=sr/2n (corresponding to bo-
sons, since S =ir/20=n), we find from (56) that P is
commuting. Similarly, for 0=~ /( 2n + 1 ) (corresponding
to fermions) anticommutators are obtained. Thus the
usual spin-statistics theorem is satisfied. For other values
of 0, a generalized spin with abnormal statistics is re-
vealed. Interestingly, the statistical phase in (56) coin-
cides with our [18] earlier calculation done by completely
fixing the gauge by nonlocal gauge constraints. The alge-
bra for the antiparticle creation operator P (x) can be
obtained by Hermitian conjugation of (56), while the re-
sult for the particle-antiparticle case may be explicitly
evaluated:

a
vr(x) =

a[a,y(x)]
=m(x)exp 2iS(—0)f dy co(x —y)Jo(y) —i f dy; 3;(y) (58a)

a A~t(x)= t =exp 2iS(0)f dy cu(x —y)Jo(y)+i f dy; A;(y) ~t(x) .
a[a,y '(x) ]

Using formulas analogous to (43) it is straightforward to work out the relevant algebra:

P(x)vr(y) =6(x —y)+exp[ i (~/0)(~ —mod2~) ]ir(y)P(x),

P(x)vr (y)=exp[i(~/0)(irmod2ir)]~ (y)P(x),

~(x)~ (y)=exp[ i (~/0)(~m—od2vr)]sr (y)m(x),

vr(x)vr(y) =exp[i (vr/0)(~ mod2vr) ]sr(y )vr(x),

(58b)

(59)

while the remaining algebra is given by Hermitian conju-
gation.

Before concluding this section we comment on two im-
portant aspects concerning the definition of the anyon
operator P(x) (49). The first point is that if the solution
of the constraint (11) is substituted in (49) then the ex-
ponential becomes (ignoring a total divergence) single
valued so that P(x) can no longer represent an anyon
operator. Indeed, it is simple to explicitly verify that this
modified structure for P(x) does not yield any statistical
phase in (56), simply because everything commutes. The
paradox can be resolved by noting that the constraint (11)
is first class and is obeyed only weakly in contrast with
the second class constraints P; (6) which are strongly val-

P(x +dx;, P') P(x,P)—
a, g(x, P) = lim

dx,. 0 8x;
(60)

where the path I" is obtained from I' by extending it by
dx, in the ith direction. In terms of the anyon variables,
therefore,

id. Hence the solution of the constraint (11) cannot be
directly inserted in (49). The second point is that it is
possible to recast the interaction piece of the Hamiltoni-
an (7) in terms of the careted (anyon) variables (49). This
will involve the derivative of the exponential line integral
which will be defined in the manner of Mandelstam [21]:
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T

[D,P(x)]*[D'P(x)]=a, exp —2iS(e)Idy co(x —y)Jo(y) P(x) a' exp —2iS (8)f dy co(x —y)JO(y) P(x)

so that the minimal interaction has been eliminated. This
is highly reminiscent of Mandelstam's [21] construction
of quantum electrodynamics. Just as in QED, here we
can also discuss the theory either in terms of gauge-
dependent quantities (such as P, m., 2;) or in terms of
gauge-independent ones (such as P, vr, F;, etc.). The
latter description, as we have shown, involves the oc-
currence of generalized spin and statistics.

V. CHERN-SIMONS TERM COUPLED TO FERMIONS

where uo, u; are ordinary multipliers [see Eq. (9)] and c,
e are Grassmann multipliers. Conserving the primary
constraints with Hz gives the analogue of the Gauss con-
straint:

S =Jo+(8/2m )E'ia; 3 =0 . (70)

No further constraints are obtained by this iterative pro-
cedure. Analogous to the example of complex scalars, we
find that the combination of second class constraints,

p' =a'p, +s + i(.q.q.+q.q. )

,' yi 8q+ q-g q+(8/4~')e"'w, a.~, ,

where we use the form

(62)

(63)

to preserve Hermiticity. The y matrices in 2 + 1 dimen-
sions satisfy

[X" X ] =2g"'

r P

and the metric is already defined in (3).
The canonical momenta are

(64)

It is possible to develop our gauge-independent formal-
ism discussed in the preceding sections (II—IV) for fer-
mionic matter coupled to a Chem-Simons term. Consid-
er the Lagrangian

=a'm.
, +Jo+(8/4m )c,''a; AJ+i(g Q +Q q ) (7 1)

is first class. Thus the first class constraints are mp and P'
while P; [Eq. (6)] and g-, g are second class. We next
compute the DB in the usual way. The gauge sector is al-
ready evaluated in (15) while the matter sector yields

[4.(x»fp(y)]DB 4[~ (x»~p(y)]DB

i (yo) —p5(x —y),
jl.(x»~p(y)]DB If (x) ~p(y)IDB

= —
—,'5 g(x —y) .

(72)

The other Dirac brackets are identical to the Poisson
brackets. These brackets are consistent with setting the
second class constraints strongly to zero. The total Ham-
iltonian is given by

=o,a~
a i,

aj
a i

L9 7J

4m

aj.
CI= ——(Wxo).
aj.

= ——(y Q)

(65)

T=&, +ulna+UP', (73)

where, as before, u and U are arbitrary parameters
reAecting the gauge invariances of the theory.

The gauge-independent quantization now proceeds by
fixing u and U so that Heisenberg's equation

The constraint structure for the gauge field naturally
remains identical to the previous example [see Eq. (6)].
However, in the matter sector, two new primary con-
straints are generated from (65):

[g, f~,I.,=a~ (74)

is reproduced for all the canonical variables y. It is easy
to check that there is a unique choice for the multipliers:

=sr +(i /2)(fyo) =0,
ri = rr + (i /2 )( y 0$ ) =0 .

The canonical Hamiltonian is

(66)
(75)

An identical exercise can be done for the momentum
operator defined from the canonical EM tensor:

—HO[ JO+(8/2n )E'~a; 2 ],
where J„is the gauge-invariant conserved current:

(6&)

a(a~q) a(a~@) a(a~~. )

=(i /2)gy„a. y (8/4~')s„.,~ a.—~ ' —Zg„. . (76)

The final expressions for the generators of space-time
translations may be expressed in a Lorentz covariant
form:

The primary Hamiltonian is

M~= Jd x(&+uoPO+u P+g C +C g ),
Op —Op +up '3Tp+ Up P

(69) where

(77a)
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uo„=a„go, VO„=O

so that

(77b) Oo,. =(i l2)gyod, Q+ fyoA; P+ (i I8 )B~(gyo[y;, y J ]Q) .

(82c)

(78)

To study the transformation properties of the fields under
rotations and boosts, it is necessary to first define the cor-
responding generators

M„=fd xAfo„ (79a)

8 op cop+ uop~o+UopP (83a)

The total EM tensor is obtained by adding linear com-
binations of the two first class constraints ~0 and P' (7l).
It can be shown that the space-time translations are now
generated by J Oo„where

where

(79b)

Pop —BpAo, Uo
— A p

The difference between Oo„(77) and Oo„(83) turns out to
be a boundary term so that the generators match. The
generators M,. (Mo;) of rotations (boosts) following from
(83) are

which differs from (22) due to the presence of the last
term which occurs because fermions are present. Using
8O„ from (77) and the DB's (72) it follows that

M„=f d x(x„OO —x Oo„) (84)

and are identical with the expressions obtained from the
modified canonical EM tensor [see Eq. (79)], i.e.,

X;d, P —+k'x~ 4k .'[r;—,r, leak
o =~o (85)

xod 4+x do% l'o)'4
(80a)

(80b)

illustrating that the fields have normal transformation
properties. The additional factor in (80) compared to (23)
precisely accounts for the spin of the fermions. There is
no anomalous transformation law for rotations as
claimed in Ref. [4] which, as we pointed out earlier,
ought to be regarded as an artifact of the gauge. Results
similar to (80) can be easily obtained for the momenta
conjugate to g while the analysis for the gauge field can
be mimicked from the previous example [see Eq. (24)].
Finally, it can be shown that the generators of space-time
transformations obey the Poincare algebra (25). This
proves the covariance of the model. Thus in the quan-
tized version of the theory the canonical EM tensor Oo„ is
replaced by Oo while the Dirac bracket is, as usual, con-
verted to the graded relation:

(86)

The one-particle states

(87)

are also an eigenstate of the charge Q =jJo because

[Q, P(x) ]=g(x),
which follows from

(88)

Thus the fields have their conventional transformations
intact. One can now verify that the EM tensor (83)
satisfies the complete set of Schwinger conditions (34) and
thus the Poincare algebra.

To determine the Pock space we proceed, as was done
in [1], by making a suitable gauge-invariant Ansatz for
the one-particle creation operator:

g(x)=exp f dy A(x y)JO(y—) i f dy—; A;(y) g(x) .

'IP Q]DB IPQ —
(
—1) ' 'QP] (81) [J,(x ), itj(y) ]=&(x —y)i'(y) (89)

where e~ =0(1) for bosonic (fermionic) P
A di8'erent way of analyzing the model is to check the

validity of the Dirac-Schwinger condition (34a). It is
straightforward to show that this condition is, however,
violated by the EM tensor (77). The reason, as in the ear-
lier example of complex scalars, is to be found in the
structure of the rotation generator (79) which explicitly
involves the extra spin factors to yield the proper trans-
formation law (80). Let us therefore consider the sym-
metric form of the EM tensor [4,15] obtained by intro-
ducing a background gravitational metric. We find

(82b)

calculated by the DB's (72).
It is possible to fix f), in (86) by computing the n

particle functional

gy(, ) l0)
E. =a

(90)

and comparing with the result obtained from the repre-
sentation theory of Braid group [5]. Mimicking the
analysis done earlier,

Q(x —y) = 2i ( —S + —,
' )~(—x —y), (91)

where co(x —y) is defined in (46). As usual, the spin term
is a function of the CS parameter and the factor half in
(91) comes from the use of fermions. Thus the anyon
operator (86) is
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g(x)=exp 2i [S(8)——,']f dy co(x —y)JO(y)
There is, however, a snag in considering (96) as the
translation generator. Consider, for example, the trans-
formation of the field P which is

i f—dy; 2,. it!(x) (92) [P(x),P; ]pB=D;P(x) (98)

g(x)p(y) = exp[2iS(8)(vr mod2m )]ill(y)g(x) (94)

obtained by using (43). Integral (half-integral) values of
S(0) lead to commutators (anticommutators), thereby
conforming to the spin-statistics theorem. The algebra
for the other operators are calculated in an analogous
fashion and results akin to the set (59) are obtained The
other considerations discussed below Eq. (59) are also ap-
plicable to the construction (92).

VI. COVARIANCK PROBLEM
IN PHENOMKNOLOGICAL LAGRANGIANS

It has been recently claimed [13,14] that a basic con-
cept for the superAuidity of an anyon gas was the spon-
taneous violation of the commutation relation involving
spatial translation generators. In the phenomenological
picture of the system based on quasiparticles and
quasiholes, the momentum generators are not commut-
ing. The commutativity is restored by coupling a spin-
zero massless (Goldstone) boson [13] or a massive spin-
one boson [14] to the system. The object of this section is
to critically examine the claimed "violation" of transla-
tion invanance in phenomenological Lagrangians. Take,
for instance, a typical choice involving the coupling of
complex scalars to an external gauge potential:

since it creates states with arbitrary spin S(0) when act-
ing on the vacuum. An explicit form for S(8) can also be
found by expressing the angular momentum operator (84)
in terms of a canonical piece and an additional piece.
Following the steps which led to (54), we find

S(8)= +—;1.
20 2

the extra factor of —, is the intrinsic spin of fermions. The
statistics of i'(x) is studied by computing the product,

and not i); P(x) so that the usual interpretation of the
translation generator breaks down. Apart from this there
occurs an internal algebraic inconsistency. It can be
shown (see the Appendix) that the Dirac-Schwinger con-
dition [15]holds, i.e.,

[ Hoo(x ) Hoo(y) ] pB
= [Oo. (x ) +80 (y ) ]8",5(x —y ) (99)

Goo(x) =~*n(x) (D, P—)*(x)(D'P)(x) (100)

following from (29). Integrating both sides of (99) over y
and using the symmetry of the EM tensor,

0" =0.
P (101)

It is possible to compute this divergence directly by using
(29) and the equations of motion:

a O~ =r~J
v v ' (102)

P, =f e;, = f (~a, y+~"a, y*) . (103)

It is interesting to observe that the translation generators
commute,

[P», ]PB=0

and yield the correct transformation law

[it!(x),P; ]pB=B;p(x)

(104)

(105)

in contrast with (98). Moreover, this P; along with the
angular momentum

&k o~
—&~o~ (106)

where J„ is given in (8). The above equation is clearly in-
compatible with (101).

Let us now check the possibility of suitably defining
the translation generator from the canonical EM tensor
(19). In that case,

X =(D„P)*(D"P)

Then the generator of spatial translations is

P, = fe„=f [~D,y+~*(D,y)" ]

(95)

(96) k& Jim ] PB ~km ! fikl m (107a)

satisfy the commutators appropriate to the two-
dimensional translation-rotation group:

[P;,P ]PBWO. (97)

leading to a violation of spatial translation invariance.

following from the definition (29). Note that in our Ham-
iltonian formalism, the Lagrangian (95) admits no con-
straints. Hence the EM tensor in (96) need not be
modified by extra factors proportional to the constraints
as was necessary for the examples discussed earlier [see
(30) or (83)]. Moreover, the absence of constraints allows
the quantization to be done by Poisson brackets.

In that case it is simple to verify that the momentum
operators do not commute,

[Jkl& Jmn ] PB fikm Jln film Jkn ~kn Jim +~in Jkm

(107b)
The other commutators of the Poincare algebra (25) in-
volving [PO, JDk], etc , are, how. ever, not satisfied. More-
over, P; (103) is not gauge invariant which is a necessary
criterion for it to be a momentum operator.

The above arguments clearly reveal that it is prob-
lematic to even suitably define the translation operator.
For example, the definition using the symmetric EM ten-
sor leads to an anomalous transformation law (98) as well
as an algebraic incompatibility [between (101) and (102)].
On the other hand, the canonical momentum (103) is not
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gauge invariant and, hence, physically irrelevant. Since a
proper candidate for the translation generator is unavail-
able, it is meaningless to discuss issues related to the alge-
bra of these operators; particularly the "spontaneous
violation of Poincare algebra. "

VII. CQNCI. USIONS
We have developed the canonical quantization pro-

gram for (bosonic and fermionic) matter coupled Chern-
Simons theories without the use of gauge fixing. These
theories have both first and second class constraints. The
second class constraints are eliminated by the use of
Dirac brackets. Since we have not imposed any gauge
constraints which convert the first class constraints to
second class, the first class constraints are explicitly
present in our theory. They appear with arbitrary multi-
pliers in the EM tensor defined either by Noether's
theorem (which yields the canonical EM tensor) or by
varying the action with respect to a background gravita-
tional metric (the symmetric EM tensor). The arbitrary
multipliers are fixed so that Heisenberg's equations of
motion are reproduced for all the variables and their con-
jugate momenta. Additionally, it is shown that the
modified EM tensors correctly generate the other (i.e., ro-
tations, boosts) space-time symmetries of the theory. At
this juncture it is important to mention that the Chern-
Simons term dramatically reveals the difference between
the canonical and symmetric forms of the EM tensor.
Since this term is covariant without reference to the
metric, it does not contribute to the symmetric EM ten-
sor. The canonical definition, on the contrary, explicitly
involves a contribution from the Chem-Simons term.
This difference is precisely accounted for by the
difference in the arbitrary multipliers such that the actual
(modified) generators which include the first class con-
straints become identical. These generators are also com-
patible with the Poincare algebra so that there are no
problems concerning covariance of the models. It is im-
portant, however, that although both forms of the EM
tensor satisfy the Poincare algebra, the Dirac-Schwinger
condition is preserved by only the symmetric EM tensor.

The reason of the canonical EM tensor not satisfying this
condition has been elucidated.

An immediate fallout of the present analysis is the con-
struction of gauge-invariant multivalued operators which
create the physical states with arbitrary spin. These
operators may, consequently, be regarded as the anyon
operators of the theory. They also satisfy the spin-
statistics connection. The anyon operators found here
are different from the conventional constructions
[7,10,11], being gauge invariant. Indeed, any viable
definition of the anyon operator must be gauge invariant
so that the observed effects are physically meaningful.
This lack of gauge invariance of the earlier constructions
[7,10,11] was a key factor in motivating the present study
[1]. Formal computations with multivalued operators
which were criticized in the literature [8,9,12] have never
been invoked in our theory.

The detailed analysis of the structure of the EM ten-
sors is an ideal base for critically examining the recent
claims [13,14] that the Goldstone mode in anyon super-
conductivity may be interpreted as the outcome of the
restoration of translation invariance violated in phenome-
nological Lagrangians. We find such a claim to be ill
founded because it is difficult to even give a proper
definition for the momentum operator for such Lagrang-
ians.

We conclude by discussing some other possibilities.
The first thing is that it is straightforward to extend our
analysis to include the Maxwell term. The constraint
structure of this theory is such that there are only two
first class constraints. In our approach, thus, quantiza-
tion proceeds by Poisson brackets with appropriate
modifications to the energy-momentum tensor. The re-
sults of the previous sections then follow quite logically.
It is equally possible to investigate theories with broken
symmetries. Moreover, our approach is suited for dis-
cussing bosonic as well as fermionic matter couplings.
The explicit construction of anyonic operators in either
case suggests the possibility of bosonization (fermioniza-
tion) in 2+ 1 dimensions [22]. We hope to return to these
and other problems in the future.

APPENDIX

We prove the Dirac-Schwinger condition, which appears in Eq. (99) of the main text, for complex scalars coupled to a
background potential. The relevant components of the EM tensor are given in Eqs. (96) and (100), so that

[800(x),8«(y)}pB= [ ~ir( ) x(D;(()'( )(Dx'((—)( ), x* rr(yi)r(DP)*(y)( 'DP—)( )y}» .

Using the basic PB's

[(b(x),P(y) }
= [vr(x), vr(y) } =0, [P(x),ir(y) }=5(x —y),

we find

[8oo(z), 8«(y) }»=[ —[ir*(x),(D~P)*(y) }ir(x)D Jp(y) —[(D;P)"(x),~*(y)}D'P(x)ir(y)]+c.c.
= [ vr(x)DJQ(y)[B 5(x —y)+i A 5(x —

y. )]—D'P(—x) ri( y)[B; (5x—y) iA;5(x ——y)]}+c.c.
= [ —~(x)D Jy(x)a, 5(x y) ~(y)D&y(y )a, 5—(x —y)+(~a, D'P nB D—JP)5(x —y) ]+—c.c.

Using the defining Eq. (96) for 8o;, we finally obtain

[8«(x),8oo(y) }= [80;(x)+80;(y)]B;5(x—y),
which is the desired condition (99).
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