
PHYSICAL REVIEW D VOLUME 48, NUMBER 6 15 SEPTEMBER 1993

Finiteness of Chem-Simons theory for noncovariant gauges
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Existing all order proofs of the finiteness of the quantized Chem-Simons theory in the Landau gauge
are extended to certain more general noncovariant gauges. The relevant additional supersymmetry also
holds in that case with the antighost equation playing the usual role. The solution of the consistency
problem of possible quantum corrections is quite involved in the noncovariant case, yielding nevertheless
a very simple solution.

PACS number(s): 11.15.Bt

I. INTRODUCTION

The pure Chem-Simons (CS) theory [1,2] uses the CS
density

as a Lagrangian in the action

L=— (1.2)

defined on a three-dimensional manifold JM. In addition
to its diffeomorphism invariance, this action is invariant
under non-Abelian gauge transformations [e.g. , SU(N)]
of the gauge fields A„which are connected to unity. In
addition, the quantized theory derived from the path in-
tegral with exp(iL) exhibits an invariance under not-
connected continuous maps JM~G, provided k obeys a
"quantization condition" [2], e.g. , k HZ for SU(N).
Witten's beautiful results [3] on knot theory, derived
from the quantized version of (1.2) thus imply the insensi-
tivity of exp(iL ) with respect to general quantum correc-
tions to k.

The quantization of (2+ 1)-dimensional gravity has
been reduced to the one of (1.1) with ISO(2, 1) as the cor-
responding gauge group [4]. Relations of (1.2) also exist
to other fields such as conformal field theory [1].

Although the tractability of (1.2) with (1.1) in the prob-
lems mentioned above is intimately related to the fact
that only a finite number of degrees of freedom remains
in a reduced canonical phase space, in order to tackle
quantization and renormalization also methods of covari-
ant quantum field theory have been employed widely.
The vanishing of quantum corrections was found in this
way perturbatively to one loop [5] and higher [6], making
use of the (covariant) Landau gauge t)"A =0. A com-

P
mon difhculty to all such calculations represents a regu-
larization: introducing any scale as in the Pauli-Villars
regularization automatically breaks scale in variance,
whose survival in the quantized theory is crucial for
proving finiteness. In addition, dimensional regulariza-
tion may not be trusted because of the e tensor, and the
analytic regularization may break gauge invariance.

Using the Becchi-Rouet-Stora (BRS) formalism, the

where the constant metric H" is not symmetric. It de-
scribes a "gauge family" related by GL(3, R)
redefinitions. For a general H" this family of gauges
does not necessarily lead to the Landau gauge, because a
complete diagonalization is not always possible. Howev-
er H" may be separated uniquely as

II" =e" ~n +g"
P

(1.4)

with a symmetric i)~ =i1 ". By appropriate O(3) trans-

gauge-fixed action including the Faddeev-Popov (FP)
term, in addition possesses, other than BRS invariance,
further (global) supersymmetries when the Landau gauge
is chosen [7]. Together with BRS and anti-BRS transfor-
mations, the symmetries form an algebra involving the
translation operator. In an all order proof of finiteness
based upon a sector of those symmetries, also, a global re-
lation derived from the equation of motion of the FP
ghost c ("antighost equation") plays a pivotal role [8].

The Landau gauge has been known for a long time to
assume a special position among all possible linear and
nonlinear gauge conditions. Hence generalizations are
desirable. In view of the general covariance of (1.1),
0"A„=g" 8 A„ implies fixing the metric g" globally.
As shown in [9], g" may be generalized to a local form
g" (x). In [9] the finiteness proof could be extended to
this case, because local generalizations of the supersym-
metries mentioned above are available.

Noncovariant gauge conditions are characterized by a
fixed vector as in the axial gauge n-"A„=O, breaking glo-
bal Lorentz covariance. They have been used in pertur-
bation theory [10] and in the presence of boundaries [11]
also for CS theories. Recently, also, an even larger super-
symmetric algebra has been associated with such gauges
[12]. Although a special case of that gauge, the temporal
gauge A o =0 has been important in the Hamiltonian for-
malism on general manifolds W, one must be careful to
fix a residual gauge freedom [11],a problem related to the
regularization of ill-defined propagator poles in momen-
tum space [13]. Our present work considers yet a
different type of noncovariant generalizations of the Lan-
dau gauge:

(1.3)
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formations and rescalings, invoking the GL(3,E) invari-
ance of (1.1), g" can be brought always in diagonal form:

vI" =diag(el, E2, E3), (1.5)

II. GAUGE-FIXED ACTION

where e; =0, +1. Thus (1.3) certainly generalizes the
Landau gauge (e;=e WO) in the sense that among the
general H" in (1.3) there is a subset of metrices H'" '

connected smoothly by global GL(3, E) transformations.
On the other hand, the vector n determines yet another
antisymmetric part.

We show in Sec. II that the pole structure of the propa-
gators only depends on g", whereas n also appears in
the couplings to the FP ghosts. This, of course, limits ad-
missible gauges to g" WO. In view of later considerations
we discuss at this place power counting renormalizability
for special "degenerate" gauges with g" n =0.

Section III A is devoted to the supersymmetries of the
action with the gauge fixing (1.3). Not surprisingly, those
symmetries and the antighost (AG) equation are very
similar to the Landau case. In Sec. III 8 the translation
into Ward identities of the effective action is accom-
plished. We also list the consistency conditions of the
possible quantum corrections and we find just straightfor-
ward generalizations of the identities in the Landau
gauge [8]. However, the basic difference to previous
work is that making Ansatze for the quantum corrections
as local polynomials in the fields for a general gauge (1.3)
we allow al/ tensorial factors, not only ri", 5", e" ~ and
e„as in the covariant case. Because of the complexity
of the computation we only indicate the main steps in
Sec. IV, relegating some technical explanations to Appen-
dices A and B. Since we work in full generality many of
our results may be useful for other noncovariant situa-
tions as well. We have in mind, especially, the use of co-
variant gauge with (noncovariant) boundary conditions
[11]. Fortunately the final result, summarized in Sec. V,
is quite simple. It essentially implies that the finiteness
proof of [8], employing the present techmques, may be
extended to degenerate gauges (1.4) with r)" n =0 or to
gauges linearly related to the Landau gauge [det(q" )%0,
n„=O].

sA„= [D„,c], sc =igcc, sb =B, sB =0, (2.3)

which leaves I.;„,+LG„ invariant, because s =0 on all
fields. Occasionally we shall use A „' defined as
A„=A„'T, so that the gauge-covariant derivative reads
explicitly

D;„:=d„5; igf—b, 'A„" (2.4)

(aHa) =H i'a.a,=q ~a.a, (2.6)

to be understood in momentum space. Equation (2.5) as
well as the ghost propagator depend on q" alone:

' (x,y) = —(BHB) '5(x —y)5' (2.7)

B. Power counting

As long as det(il"')WO the situation with respect to
power counting is precisely as in the Landau case with
(renormalizably) UV-divergent one particle irreducible
(1PI) vertex functions [6,7]. Degenerate gauges
det(g" ) =0 require a special analysis, because the propa-
gators do not provide damping in (at least) one direction.
We first take the case with n =0, rank(ri" )=1, i.e.,
g""=diag(1, 0,0) in a suitable coordinate system. Clearly
x and x are not affected by the "dynamics" of the sys-
tem as far as the local properties of the theory are con-
cerned. With the propagator in (2.5), written here as b,„,
for the gauge field and 6 for the ghosts,

with the structure constants f of G. In the course of our
analysis we shall be forced to specify the gauge group, re-
stricting ourselves to SU(2) and SU(3). We believe,
though, our results to be more general; however, the con-
struction of covariant tensors for larger groups seems to
be a nontrivial problem (cf. below), becoming important
for noncovariant quantum corrections.

The A„propagator and the mixed A„-B propagator
are simply obtained by inverting the quadratic part of the
field equations:

X„".'-'"(x,y) =(aH a) -'~„„F'(x)5(x —y)5",
(2.5)

'(x,y) =(aHa) 'a„"5(x —y)5'

with the inverse operator of

A. Generalities

The gauge fields in (1.1) are Lie algebra valued with an
infinitesimal gauge invariance

hi3(z)=B, '5 (z),

b, (z) = —(e,B, ) '5'(z),
(2.8)

5A, = [D„,5~]=a„5~—ig [ A„,5~] (2.1)

determined by the gauge group G. From (2.1) the action
acquires a gauge-fixing part corresponding to (1.3):

I.GF=Tr 8 F"A„—b F" D„,c

=Tr s 6 I"A„ (2.2)

where B is a Lagrange-multiplier field and b and c
represent the FP ghosts. In the last expression the BRS
operation s is used

and with the ghost vertex also coupled to A& only with
one derivative B„any 1PI graph may be written as
[5(0)] (1PI)„d„„d with a regularization, e.g., by two
cutoffs in k2 and k3 in momentum space yielding
[5(0)]„=A2A3/(2m) . Apart from this overall factor
the remaining possible quantum corrections comprise
only UV-finite graphs. Such 1PI vertices with a "fac-
tored" divergence are not unusual in low-dimensional
theories. A similar phenomenon appears, e.g. , in non-
Einsteinian gravity in the light cone gauge [14]. Of
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course, the infrared (IR) divergence must be regularized
as well, say, e.g. , for e&=+1 by the usual regularizator
mass p in b,23 g

(8', +p' —iE)-'a, 5(z ) ~

Next we consider the situation of rank(i)" )=1 but
n %0. Then i)i' and n can be brought to the form
i)""=diag(ei, 0,0), n„=(0,0, 1) using an 0(3) rotation to
make n 2

=0, n 3
= 1. Here the propagator contains

(Bi)B)~ 8, only, and the x direction decouples as before.
However one component of 6„,

(2.9)

as well as the ghost vertex mix the 1 and 2 directions with
no damping provided for the latter. E.g. , the graph with
2n external A j lines at one-loop order consisting of prop-
agators (2.9) in momentum space will contain k2 integra-
tions up to f dk2k2" ~ 5' "'(0). Thus no factorization as
in the x direction can be expected. Of course, UV regu-
larization by a cutoff

~2n +1
5(2n)(0)

~ ( 1 )n
2n +1

is possible. Clearly this gauge is not a renormalizable
one. However, in view of the rather trivial structure of
possible Feynman graphs, the (potentially different)
cutoffs from 5(0), 5"(0), . . . provide increasing mass di-
mension. According to the action principle [15] the po-
lynominal quantum corrections for Ward-type identities
remain limited in number —in contrast with usual non-
renormalizable theories, where this number may be in-
creasing with loop order.

If rank(g" )=2 [i.e., q" =diag(e„e2, 0)] both cases
n„=O and n WO [i.e., n„=(0,0, 1)] may be discussed to-
gether. Here the nonvanishing components of h„are

To summarize this section, in noncovariant gauges of
the type (1.3), including the degenerate ones with
det(rI" ) =0, graphs in perturbation theory can be defined
by simple regularization, although in one case the cri-
terion of power-counting renormalizability is not
satisfied. This is, though, sufficient for the application of
the action principle [15] to each fixed order of perturba-
tion theory. It says that the terms breaking symmetry re-
lations of the quantized, but regularized theory must be
integrals of local expressions in the fields. For our solu-
tion of the consistency problem of quantum corrections
the polynomial nature, i.e., the presence of

aconite

num-
ber of such terms at each Axed order of perturbation
theory, is necessary. Then the Ansatze are restricted,
among other things, by simple dimensional arguments.
Such arguments usually break down in nonrenormaliz-
able theories by power counting. One of our "degen-
erate" gauges [rI=diag(e&, 0,0), n„=( 00, 1)] was non-
renormalizable in this sense, but it exhibited still a very
simple structure of possible 1PI graphs so that the dimen-
sional argument may still be applied.

III. SYMMETRIES AND IDENTITIES

A. Supersymmetry algebra of the action

Also, for the gauge (1.3) the supersymmetries of [7]
may be formulated. The anticommuting operation with
ghost number +1, corresponding to a global transforma-
tion

V A =e„gb, uc=A, ub=O, uB=db,
(3.1)

b, „(z)= (e,B', +e,B', ) '(8, —e,B,)5'(z),

a„(z)= (~,a', +~,a', ) -'(~,a, —a, )5'(z),
(2.10)

as well as another one with ghost number —1,

u A„=e„g c, v c=O

whereas the ghost A vertex may be read off from
(b; =r);b)

u b= —A, v B=[D,c], (3.2)

Lb~ = —igTr e,b &+6 2 A &, c

+(e2b 2 b, )[A2, c]—j . (2.11)

a~=2 —,'(n 3+n&—~ +a~ ), (2.12)

where n „3 and nb& are the number of vertices A and

ghost vertices; az counts external A lines. (2.12) signals
a superrenormalizable theory. A simple analysis shows
that logarithmic divergencies occur for the A A self-
energy to at most one loop, for the ghost self-energy to at
most two loops. The ghost-A vertex represents the third
primitively divergent graph with the divergence restrict-
ed to one loop only. The ghost propagator needs an "in-
trinsic" IR cutoff.

Here only the x direction is not involved in the Feyn-
man rules, yielding an overall factor 5(0)~„=A/2m in
front of all 1PI vertices. Residual power counting refers
only to the x'-x plane. The corresponding UV diver-
gence is given by

leaves the gauge-fixed action invariant. This is not only
true in the Landau gauge F =0, but also in our more
general case. The algebra of anticommutators for Up Up,
and s,

s =0, Iv, s]=0, Iu, v ]=tv, u ]=0,
Iu, s j =8 +equation of motion,

Iv, u j =e F +equation of motion

(3.3)

is closed on shell, together with the translation operator
which is hidden in F"=0"8 . Thanks to this fact also
the ghost operation

g, A„=g,b=0, g, c=T, , g, B=ig [T„b] (3 4)

represents a global invariance of L;„,+LOB. The pivotal
role of this invariance has been widely exploited in Anite-
ness proofs of CS theories [8] and elsewhere [9, 16].
Equation (3.4) may be included in the algebra (3.3), be-
cause (now @ represents any field)
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{g„s]@„=ig[T„C~ ],
{g.g~]={g. U, l={g. U, ]=0

(3.5)

provided the operator T, generating global gauge sym-
metries 7;C&=ig [T, , C&] is included as well. 'T, com-
mutes with all previously introduced symmetries.

B. Id.entities for the quantum theory

The symmetries of (1.1) with (2.2) may be immediately
transcribed in symmetry relations (Slavnov-Taylor identi-
ties) of the generating functional

T, ig qI', 2„—ig l, c (3.16)

is only linear in the fields y;. Equation (3.15) with (3.16)
is nothing else but the symmetry equation g, of (3.4),
transformed in an identity for I .

We now turn to the other symmetries of the gauge-
fixed action, starting with the BRS symmetry (2.3).
Transforming 6W z =6ks N z with an anticommuting
constant M, in (3.6) only the term j "@~ contributes.
The resulting formal identity I j (58')/(5k ")=0 may
develop a symmetry-breaking term. After the step (3.12)
and (3.13) we end up with the well-known Lee identity

W(j, k)= f (d@)exp(iL),

L =L;„„+Lo„+f k "(s4„)+f j"@„, (3.6) %(r)=Trf . =A,
x 6y;

(3.17)

where N ~ represents the
k„=(k",l, 0,0), j"=(j",g, g, C).
the symmetries of Sec. III A we
functional space 5N „=g „(x) to
quantized "field equations":

set ( A„,c,b, 8),
Before implementing
translate the fields in
obtain the respective

including the integral of a local polynomial A of 0 (vari) on
the RHS. M and the linearized operator

5I 5 5I 5 5I 5".5A„5& 5& 5A„5. 5l 5l 5

(3.18)

f (d@)( ,'E" ~F —
~

—F"8+—ig {ri",c]+j")exp(iL )=0,
(3.7)

satisfy the identity

XrX(r) =0 . (3.19)

f (d@)([D„,ri" ]+ig [c,l] —g)exp(iL ) =0,

f (d&9)( F~[D„,c]—g)exp(iL—) =0,

f (d C&)(F"A„+C)exp(iL ) =0 .

(3.9)

(3.10)

In contrast with (3.18), the other symmetries of Sec. II A
only provide linear identities for I. Again quantum
corrections as in (3.17) must be expected, except for the
translation identity

—i 68I' (&p)= —ilnW' —f J (3.12)

one obtains

The replacements @„~5/i5j ", [D„,c]=sA„+5/i5k-"
yield first-order functional di6'erential equations for 8'
except in the term

F.,=a,A, a, A. ig[A—., A, ]— (3.11)

of (3.7). Since translations in functional space are al-
lowed by almost any definition of the measure (d4),
(3.7)—(3.10) are not expected to develop correction terms
on the right-hand side (RHS). As usual, translating (3.9)
and (3.10) into identities of the effective action

T I =Tr y, +O' . I =06; 6
(3.20)

and for the global symmetry transformation

'T I =ig Tr f [T„p ] +[T k']- I =06

6g l

(3.21)

because our gauge choice, as well as any "reasonable"
regularization scheme (Pauli-Villars, analytic, etc. ),
preserves these symmetries.

For U in (3.1) and U in (3.2) analogous steps as in the
BRS case lead to

(3.22)
I' (y)=r(y;, k')+Tr f BF"A (3.13) v,r=E,+A, (3.23)

(3.14)

A peculiar feature of a general derivative gauge of which
the Landau gauge represents just one special case, is the
antighost (AG) equation, derived from (3.8) with (3.10)
[9,16] by integrating (3.8). Using (3.13) and (3.14) it im-
plies

where for simplicity the same symbols are used for the
fields y~ =(y, , b, B), y; =( A„,c) and where b only ap-
pears together with the source k":

k'=(k" +F"b, l) =(il", l) .
V =e „Trf (F"c) +(F'ri")

x 6A

+e" ~(F'A )a 6 p'9

V =Trf e „ri" +A +l6 6 6

(3.24)

(3.25)

6 I -=Tr T,
6I

x '6c (3.15) 5 =Tr g3„—3 c
X

(3.26)

where the local expression In the derivation of (3.23) the field equation (3.7) must be
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used before transforming the identity in 8'into one in r.
From (3.15), (3.18), (3.19), (3.24), and (3.25) the algebra

of X, G, , V, V, relevant for the effective action may be
derived:

Xi-X(r)=0,
{G„Gb]={V,V ]={V,V ]=0,
{G., V, ] = {G., V, ] =0,
G,X(I )+XiG, I =V', r
VQ(r)+XIV I'=0,
V~(r )+&„V,r = T,r,
{V„V.]r= —~...r'r .

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

We note that V, %, and G, do not explicitly depend on
the gauge condition. This sector alone was used in the
seminal work of [8] for the Landau gauge. We enlarged
this algebra somewhat by including the gauge-dependent
V [cf. (3.24)] [7], but we shall see below that also for our
more general gauge no further restrictions for the quan-
tum corrections are obtained from the latter sector.

IV. QUANTUM CORRECTIONS

BB: XiA =0,
GG: G,A. b+GbA, =0,
VV: V+ +V~ =0,
VV: VQ +V~ =0,
GV: G,A +V+, =0,
GV: G,A +V+, =0,
GB: G,A+XrA, =0,
VV: V+ +V~ =0,
VB V++XrA =0

VB V++%~ =0

(4.1)

Possible Ansatze for the A. 's are determined by the ghost
number and by the dimensions of the symmetry opera-
tors. They contain a limited number of terms if no in-
verse powers of another dimensional quantity (regulariza-
tion mass) can occur. Since we are interested in the local
behavior of the theory, only UV cutoff's are relevant in
this context. As shown above, even for a nonrenormaliz-

Equations (3.27) —(3.33) imply consistency conditions
for the quantum corrections A, A, and A in (3.17),
(3.22), and (3.23). In order to be even more general we
also admit now a quantum correction to the AG equation
(3.15): G, I =b,, +A, .

Inserting the latter equation together with (3.17),
(3.21), and (3.23) into (3.27) —(3.33) we arrive at the con-
sistency conditions for the quantum corrections. With
I =L +O(A') and L defined like I in (3.13), to O(A') all
relations become linear:

+R' '(c 7J 2)+R' '(c 7J i))+R' '(c, l),
A.'=S.'"(~, ~ )+S."'(l,c),
A, =A(R" IV,"),
A =T)"(il, 3 )+T' )(il, A, B)+T' '(il, c)

+T '(l, c, A)+T' '(l, c, B) .

(4.2)

(4.3)

(4 4)

(4.5)

Each generic expression in (4.2) —(4.5) consists of between
two and four terms with diff'erent coefficients. As an ex-
ample we show R "' in (4.2):

R (1)(c g 3) ~ TJ &(l)PvP

caleb

g cg d
C, —~ abed J P ~ P

J
(4.6)

In the noncovariant case the coefficients r'" need not
consist of the e tensor alone. Therefore the covariant
tensor T,b,d in the adjoint representation is completely
general. E.g. , for SU(2) the only possibility is a combina-
tion of 5,b and E,b, But alre. ady for SU(3) a more careful
analysis is required. Tensors T,b and T,b, are easily con-
structed from the Killing metric, from the structure con-
stants f,b, and from the symmetric coefficients d, b,
which also form the building blocks of higher terms.
T,b,& at first may contain 15 terms (55, ff, dd, df with
different combinations of indices) which can be reduced
by identities (cf. Appendix A) to 8 terms. A suitable basis
is g~~~~ by J.b d ~ ~bd + b d ~ b~ d+6 d6b„and the
six tensors [Iabcd =Tr(k, A, b A,,A, z ) ]

~abdc ~abed ~ 1.+abed + 2~abed (4.7)

which are invariant under cyclic permutations of the in-
dices and where the trace terms J and E are taken out
(I„,&=0, etc.). The coefficients a) and a2 for SU(3) are
given in Appendix A. In the evaluation of the consisten-
cy condition (4.1) also terms with five fields appear. Here
the traceless part (in pairs of indices ab etc.) of the tensor
I,b,&, =Tr(A, ,Ebs, A, &A., ) is needed. Together with four
trace terms (Appendix A) the independent tensors with
five indices can be isolated in this manner.

In order to limit the computational eff'ort for the solu-
tion of (4.1) as much as possible we have found it essential
to start at the relations GG and GV in (4.1) and to
proceed to VV and VB. Many relations are redundant,
but very useful in order to check the calculation. Previ-
ous treatments of the covariant case [8] found this sector
of (4.1) sufficient for the proof of finiteness. In our more
general noncovariant case the analysis is very lengthy.
Some intermediate steps are given in Appendix B. The
final result turns out to be

able degenerate gauge such inverse powers do not appear
in perturbation theory. The worst UV behavior in this
sense occurs in the nondegenerate case det(il" )%0 which
thus automatically comprises the other ones. With the
mass dimension [A]=[8]=1,[il]=2, [l]=3, [c]=0 the
integrands in A = J a (x), etc. are to be constructed so
as to have respective dimensions [a]=[a,]=[a ]=3,
[a ] =4, and respective ghost numbers (1,—1, 1, —1):

A =R"'(c, A )+R' '(c, A, B)+R' '(c, A, B )
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A. , =G, (aL),
A =V (P5 L;„„+y L),
A=o,

(4.8)

(4.9)

(4.10)

where cz, p and y are the only free constants surviving
the set of restrictions (4.1) without considering the ones
involving V . It can be shown, though, that the remain-
ing relations with V cannot restrict (4.8)—(4.10) any fur-
ther, especially in view of the term y in (4.9). The
r eason is that V annihilates I.. As indicated already in
connection with the AG identity (3.15) no quantum
correction is expected in any case here. However, unfor-
tunately, a is not related to p and y by the consistency
conditions. Thus no further restrictions are provided by
a =0 in (4.8) for (4.9) and (4.10).

We now discuss the efFect of di6'erent gauge choices on
y . In the most general nondegenerate gauge of (1.4)
with det(q" )WO and n„AO it is evidently possible to
have, e.g. , y =r) n n W5 with no counterterm to the
covariant action able to compensate for such an anoma-
lous addition. This (potential) anomaly refers to U, a
symmetry which according to (3.3) does not (anti) com-
mute with s off shell. Hence theorems proving the gauge
independence (not gauge invariance) of such an anomaly
[17] cannot be invoked to guarantee the absence of such a
term. Thus the crucial first step in the proof of finiteness
breaks down. Of course, this does not exclude the possi-
bility that the theory is finite after all. In any case it
would be desirable to check this fact perturbatively be-
fore attempting to find aIiother proof.

As the next case we consider det(g" )%0 and n„=O.
Here no combination of the e tensors and the g"" [includ-
ing E„,ie p rl" g g =2E,E2e35 in the frame (1.5)] is
able to produce a tensor y W5 . Hence the quantum
corrections allowed can be expressed as counterterms
b, (I ""=I+b, where %16 =0). The renormalization
procedure, however, is ambiguous anyhow with respect
to terms of precisely this type ("stability" [8]), i.e.,

%1 b, =V b, =G, E=O . (4.11)

Thus because of the special form of the RHS in (4.8) and
(4.9) the terms with p and y =y5 can be considered to
be absorbed in A. But the latter must vanish identically
because of (4.11): the second relation essentially requires
terms with ghosts (as in L), and the last relation essential-
ly forbids such terms. It is not surprising that we recover
in this way the result of [8] for the Landau gauge. The
gauge condition 8"A„=O can be interpreted always as
g" 8 A„=O with the "metric" g" =g " without having
to specify that this "metric" is really proportional to V .
On the other hand, a symmetric metric g" represents a
general type of noncovariant gauge. Orthogonal trans-
formations and rescalings of that metric parametrize a
family of gauges in which finiteness of the CS theory can
thus be proved. Of course, the symmetric constant
metric g" represents just one special case of a local
metric v'gg"'(x). Finiteness of that "local" gauge was
proved in [8]. Our present approach shows that
diFeomorphism with respect to g" (x) [8] need not be in-

volved for a constant "background metric" g" . In
another sense, our result is more general since it involves
also the "degenerate" metrics det(g" )=0, because ac-
cording to the discussion in Sec. II 8 the present result
may be carried over to the case of rank(q"")W3.

We now include the antisymmetric part H(" ) in (1.4),
represented by the vector n WO in the degenerate case.
Still no y di6'erent from 6 can be constructed as long as
q" n =0. Those were just the remaining cases discussed
in Sec. II 8 for which finiteness is thus proved as well by
the present argument.

V. SUMMARY
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APPENDIX A: COVARIANT TENSORS OF SU(3)

As mentioned after (4.6), the most general covariant
tensor T,b,d may be formed from products such as 55, ff,
dd, and fd. Together with all independent permutations
of indices this yields altogether 15 terms. The Jacobi
identities

[[A, B],C]+[[B,C], A]+[[C,A],B]=0,
[[A, B], ]C[+[ , B]C, A]+[[C,A ],B]=0

(A 1)

(A2)

Previous proofs of all order finiteness of CS theories
were restricted to a Landau-type gauge 0"3 =0 which
may be interpreted as g~ 8 3„=0 with a metric
q" =q ", det(g" )WO. In our present work we generalize

to contain also an antisymmetric part e" ~n . TheP'
main efFort of the present paper was the solution of the
consistency equations of the basic symmetries (BRS in-
variance, supersymmetries U and U, AG equation) for
the most general noncovariant case, i.e., admitting arbi-
trary tensors in the Ansatze of possible quantum correc-
tions. For technical reasons we restricted the gauge
group to SU(X), E(3. The final result of this cohomol-
ogy were the simple formulas (4.8)—(4.10). The finiteness
proof was found to be applicable especially also to "de-
generate" gauges with det(g"')=0, n„&0 and to gauges
g" n, =0. Our investigation was motivated by studies of
CS theories with boundaries, but especially also by the
fact that these degenerate gauges with successively de-
creasing rank(g" ) bridge the gap to pure axial gauge
[3,12] where the CS theory becomes a manifestly free one.
For all such degenerate cases the usual difhculties of axial
gauges appear, which may be expressed either in terms of
the regularization problem of (k n) ' terms . in the propa-
gator or by the difhculty to impose global boundary con-
ditions in x space. The latter problem is intimately relat-
ed to global questions and thus to the study of topological
properties of the manifold on which the gauge fields can
be defined according to (1.1) and (1.2). Of course, our
strictly local results are not able to say anything about
that.
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for 3 =A.„B=kb, etc. , imply two conditions:

fabefecd facefebd+fadefebc =0
r

traces:

Tr( ABCD) T—r(BCDA ) =0,
Tr([ A, B][C,D])+Tr( [ 3,C][B,D])

(A5)

fadedebc +dacefebd +dabefecd =0

A third one follows from the cyclic property of the i.e.,

=Tr( [ A, B][C,D I )
—2Tr( ACDB+ ABDC), (A6)

dabedecd dbcedead facefebd g (5ab5cd 5bc5da ) (A7)

fabefecd +facefebd + dadedbce 5ab5cd 5ac5bd +5ad5bc (A8)

A fifth independent relation may be obtained by evaluating the identity ln det( 2 ) =Tr ln2 for 3 = 1+x'A,„isolating
the term 0 (x ) [18]:

abedcde +dacedbde + ade bce 3 (5ab5cd +5ac5bd +5ad5bc ) (A9)

Separating the 15 possible terms for T,b,d in two sets [ A ] with nine tensors [55, ff, dd I, and [B I with six tensors
[fd I, one notices that the five relations (A3), (A4), (A7), (A8), and (A9) transform each set into itself. By different
choices of the indices in (A4) four equations can be obtained, three of which are independent. Hence from [B I three in-
dependent tensors remain. Writing down the remaining conditions (A3) and (A7) —(A9) also for different choices of in-
dices, four independent equations are obtained which suffice to reduce the set [ A ] to five independent elements. The
total number of remaining independent tensors (eight), of course, coincides with number of unitary representations in
the product of four octets. A suitable basis is given by, e.g. ,

[5ab5cd&5ac5bd&5ad5bc&fabefecd& abe ecd& abefecd&dacefebd&dadefebc I

or, in accordance with a more compact form of writing the possible quantum corrections (cf. Appendix B), by

[ Iac Ibd & ( Iab Icd + Iad Ibc )& ~abed & Jabdc & ~acbd & ~acdb ~ Jadbc & ~adcb I

with I,b =5,b
cc Tr(A, ,Ab ) and with the traceless J,b,d of (4.7) and a, =

—",, , az = —
—,", for SU(3).

For the covariant tensor J,b,d, of Sec. IV the traceless part reads

Jabcde' Tr(~a~b~c~d~e ) bl(5ab cde +5bc ade +5cd Jabe +5de~abc +5ae bcd )

2(5ab ced 5bc aed + 5cd aeb +5de acb + 5ae bdc )

b3(5ac bde+5bd ace +5ce abd+5ad bee +5be~acd)

b4(5ac bed + 5bd~aec +5ce~adb +5ad bec +5be Jade )

for SU(3) with

15b; =(9, 1, —3, —2) .

(A10)

(Al 1)

(A12)

(A13)

APPENDIX B: STEPS LEADING TO EQS. (4.8)—{4.10)

Taking into account the group theoretical results of Appendix A, the respective independent terms in (4.2) may be
written as

R'"(c, 3 )=f rI""' ~'Tr(cA„)Tr(A, A )+Trf r2"" ~(cA„A Az),
R' '(c g cl)=Tr (r' '"'~cg g +r' '"~~cg g )p v, p 2 ~,p p

R"'(c ~ a') =Tr r"'~"'c ~, v pp

R' '(c, q, 2)= f r4' '„Tr(cg~)Tr(cA )+Trf [rI ' (ccrc)"3 )+r'2 '„(ccA rj")+r~~"'„(crj"cA )],
R' '(c, g, c))=Trf (rI '„cr)"c +r2' '„cc g"),
R' '(c, l)=Tr f r' '(eccl),
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T' '(ri, c)=:Trf t' '„, col"rl',

T' (}l,c, t))=Tr f t' ' lc

T,"'(i,c, A)=Tr f (t',";clA.+t',";cA.l) .

(83)

In the evaluation of (4.1) the symmetry properties of each
term in the coordinate indices must be checked carefully
before setting the corresponding factor equal to zero. It
is also essential to isolate the independent group theoreti-

where Tr indicates the traceless part of the tensor J,&,d in
the sense of (4.7). Similarly we have, in (4.3),

5'"(rl A)=Tr f (s"' T, rl" A, +sz" T A

(82)
5,' '(l, c)=Tr f (s t 'T, lc+s P'T, cl),

X

and, in (4.5),

T'"(rl A )=:Tr t'" ~rI" A A
p ~ ' p,p a P

T' '(g A, t))=Tr f t' rl" A

t(3) — (&) (&)
tp p=~p Pi I. ~pI 82 (85)

Solving GB yields already 10 (tensor) equations between
the r" and the s" and the BB equations are so compli-
cated that the results from the GG and the GB equations
are inserted erst. After these steps

(1)v (1)v (2) gv$2 p $i p $& p

and all r" vanish, except

~(2)pvp ~(2)(pv)p
2

(86)

(87)

As a next step VV and VB are used in a lengthy analysis
leading finally to (4.8) —(4.10). A complete presentation of
all steps is contained in [19].

cal tensors whenever nonlinear transformations [as in
X(L)] are involved. The result for GG is simple

$( )+s( ) =0
1 $2

but already for GV there are three equations from which
we just write down one for purpose of illustration:
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