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Hamiltonian quantization of efFective Lagrangians with massive vector fields
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Effective Lagrangians containing arbitrary interactions of massive vector fields are quantized
within the Hamiltonian path-integral formalism. It is proven that the correct Hamiltonian quanti-
zation of these models yields the same result as naive Lagrangian quantization (Matthews s theo-
rem). This theorem holds for models without gauge freedom as well as for (linearly or nonlinearly
realized) spontaneously broken gauge theories. The Stueckelberg formalism, a procedure to rewrite
effective Lagrangians in a gauge-invariant way, is reformulated within the Hamiltonian formalism as
a transition from a second-class constrained theory to an equivalent erst-class constrained theory.
The relations between linearly and nonlinearly realized spontaneously broken gauge theories are
discussed. The quartically divergent Higgs self-interaction is derived from the Hamiltonian path
integral.

PACS number(s): 11.10.Ef, 11.10.Lm, 11.15.Ex, 11.30.@c

I. INTR.QDUCTION (FP) formalism [5] with the quantized Lagrangian

sfJ] = Ipp exp (~
8'x [L~', (p, s„tp) '+ Jp])

(1.1)

(where p is a shorthand notation for all fields in Zq„„t).
If 8 has no gauge freedom, the quantized Lagrangian
Cq„„t occurring in the PI is identical to the primordial
one:

~quant = ~. (1 2)

If 2 has a gauge freedom, the generating functional (1.1)
is the same as the one obtained in the I"addeev-Popov
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Effective Lagrangians containing massive vector fields
with arbitrary (non- Yang-Mills) self-interactions have
been investigated very intensively in the literature (see,
e.g. , [1—3]) in order to parametrize possible deviations of
electroweak interactions from the standard model with
respect to experimental tests of the W+, Z, and p self-
couplings. In [1—3] it is always implicitly assumed that
the Feynman rules can be directly obtained from the ef-
fective Lagrangian; i.e. , the quadratic terms in the La-
grangian yield the propagators and the cubic, quartic,
etc. , terms yield the vertices. This simple quantization
rule is known as Matthews's theorem [4). Within the
framework of the the Feynman path-intergral (PI) for-
malism (where the Feynman rules follow from the gener-
ating functional) it can be expressed as follows.

Given a Lagrangian 2 with arbitrary interactions of
massive vector fields (among each other and with other
fields), the corresponding generating functional can be

written as a Lagrangian PI:

piquant ~ + ~GF + ~FP ghost& (1.3)

which contains additional gauge fixing (GF) and ghost
terms.

It is well known that, in general, quantization has to
be performed within the Hamiltonian PI formalism. The
naive Lagrangian PI formalism, where (1.1) with (1.2) is
taken as the ansatz for the generating functional, can
only be directly applied to quantize physical systems
without derivative couplings and without constraints.
Thus, to prove Matthews's theorem, one has to derive
the Lagrangian PI (1.1) with (1.2) or (1.3) within the
Hamiltonian PI formalism.

Matthews's theorem has been proven by Bernard and
Duncan [6] for efFective interactions of scalar fields, i.e. ,

for models given by nonsingular effective Lagrangians.
Massive vector fields, however, involve constraints. Thus,
one has to take into account the formalism of quantiza-
tion of constrained systems, which goes back to Dirac [7]
and has been formulated within the path-integral formal-
ism by Faddeev [8] (for first-class constrained, i.e. , gauge-
invariant, systems) and by Senjanovic [9] (for second-
class constrained, i.e. , gauge-noninvariant, systems). Re-
cent extensive treatises on this subject can be found in

[10,11]. In this paper, I will prove Matthews's theorem
for efIective interactions of massive vector fields taking
into account this formalism.

Since it is in general not possible to find closed ex-
pressions for the velocities and the Hamiltonian in terms
of the fields and the generalized momenta within an ef-
fective theory (if there are higher than second powers of
cl„y in the Lagrangian), Bernard and Duncan assumed
that the effective interaction terms are proportional to
an e with e (( 1 and proved Matthews's theorem to
a finite order in e. I will proceed similarly; I will as-
sume that the vector boson self-interactions are given by
Yang-Mills interactions (which can be treated straight-
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forwardly within the Hamiltonian PI formalism [8—10])
plus extra non-Yang-Mills interactions, which are pro-
portional to a small e. In the following proof I will only
consider terms which are at most first order in e, neglect-
ing higher powers of e. This treament is justified when
dealing with phenomenologically motivated effective La-
grangians [1—3], since these are considered to investigate
the effects of small deviations from the standard Yang-
Mills couplings.

It will turn out that the result (1.2) or (1.3) is only
correct up to additional quartically divergent terms, i.e. ,
terms proportional to 84(0). In [6] it is argued that these
terms can be neglected, since within dimensional regu-
larization 8 (0) becomes zero. In fact, how to interpret
divergences higher than logarithmic within an effective
(nonrenormalizable) field theory is an open question [13].
In this paper I will also neglect 8 (0) terms when estab-
lishing the equivalence of Hamiltonian and Lagrangian
quantization. To give an example of such a term, I will
derive the well-known quartically divergent Higgs self-
interaction term [12,14—16] from the Hamiltonian PI.

Recently, Lagrangians have been considered which con-
tain non-Yang-Mills self-interactions of massive vector
fields within a gauge-invariant framework with sponta-
neously broken symmetry [2,3,12,17]. Thus, to justify
the treatment of these models within the (Lagrangian)
Faddeev-Popov formalism [5], I will prove Matthews's
theorem also for spontaneously broken gauge theories
(SBGT's). To do this, I will first consider SBGT's with a
nonlinear realization of the unphysical scalar fields. Each
of these models can be obtained by applying a Stueckel-
berg transformation [18] to a Lagrangian without gauge
freedom [12,17] which is obtained by removing all un-
physical scalar fields from the gauge-invariant Lagrangian
and which will be shown (within the Hamiltonian for-
rnalism) to be the unitary gauge (U gauge) of the origi-
nal SBGT. I will reformulate the Stueckelberg formalism
[18] within the Hamiltonian formalism, thereby estab-
lishing the equivalence of (nonlinear) gauge-invariant La-
grangians and the corresponding gauge-noninvariant La-
grangians. This enables a generalization of Matthews's
theorem to (nonlinearly realized) SBGT's.

A priori it is not clear that two Lagrangians related
by a Stueckelberg transformation are equivalent, since
such a transformation is not a simple point transfor-
mation because it involves derivatives of the unphysi-
cal scalar fields; however, within the Hamiltonian for-
malism this equivalence can be properly shown. Within
this formalism no more "Stueckelberg transformation"
is performed; instead, when passing from the gauge-
noninvariant (second-class constrained) system to the
gauge-invariant (first-class constrained) system, one en-
larges the phase space [19] by introducing new (unphysi-
cal) variables and additional constraints that express the
new variables in terms of the old ones. Next, one uses the

The 8 (0) terms can be interpreted as the contributions
of the loops of static ghost fields [12]. Thus, they do not
contribute in the tree approximation.

extra constraints to rewrite the Hamiltonian and the pri-
mordial constraints. Then one-half of the second-class
constraints can be considered as first-class constraints
and the other half as gauge-fixing conditions [20].

The proof of Matthews's theorem for SBGT's goes then
as follows: Using the Stueckelberg formalism described
above, I will show that the generating funtional corre-
sponding to a SBGT can be written as a Lagrangian PI
with the quantized Lagrangian being identical to the U-
gauge Lagrangian (i.e. , the Lagrangian which is obtained
by removing all unphysical scalar fields from the gauge-
invariant one). This generating funtional has been shown
to be the result of the FP procedure [5] if the (U gauge)
GF conditions that all unphysical scalar fields become
equal to zero are imposed2 [12]. Then I will use the
equivalence of all gauges, i.e. , the independence of the S-
matrix elements from the choice of the gauge in the FP
procedure [15,21], in order to generalize the result (1.3)
to any other gauge.

Finally, I will prove Matthews's theorem for Higgs
models, i.e. , for SBGT's with linearly realized scalar
fields. Since each Higgs model is related to a nonlin-
ear Stueckelberg model by a simple point transforma-
tion [12,15,22], which becomes a canonical transforma-
tion within the Hamiltonian formalism and leaves the
Hamiltonian PI invariant, the result for nonlinearly real-
ized SBGT's can easily be generalized to linearly realized
SBGT's. As in the nonlinear case, Matthews's theorem
will first be derived for the special case of the U gauge
and then be generalized to any other gauge.

My proof of Matthews's theorem will be restricted to
effective Lagrangians, which do not depend on higher-
order derivatives of the fields and which depend on first-
order derivatives of the vector fields only through the
non-Abelian field strength tensor. (The latter require-
ment ensures that the SBGT's corresponding to such
effective Lagrangians also do not involve higher-order
derivatives. ) This includes the phenomenologically most
important interactions [1—3].

In this paper, I will only consider massive Yang-Mills
fields (of course with extra non-Yang-Mills interactions)
where all vector bosons have equal masses and the corre-
sponding SBGT's. The results can easily be generalized
to any other effective Lagrangian with massive vector
bosons, e.g. , to electroweak models. In these cases the
treatment becomes formally more coinplicated (in elec-
troweak models there are extra first-class constraints due
to the unbroken subgroup and extra second-class con-
straints due to the presence of fermions, which can, how-
ever, be treated in a standard manner) but the physically
important features remain the same. Thus, for clearness

This is due to the fact that within this special gauge there
is no GF term (because the FP 6 function, which usually
serves to introduce the GF term, vanishes when performing
the integration over the unphysical scalar fields in order to
remove these fields from the Lagrangian) and the ghost term
can be expressed as a h (0) term and thus be neglected here
[12].
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of representation, I will restrict here to the investigation
of simple massive Yang-Mills theories.

This paper is organized as follows. In Sec. II, effective
Lagrangians without gauge freedom are quantized using
the Hamiltonian PI formalism and Matthews's theorem
is proven for such models. In Sec. III, the Stueckelberg
formalism is reformulated within the Hamiltonian for-
malism, the equivalence of an arbitrary effective theory
without gauge freedom and the corresponding nonlinear
SBGT is established and Matthews's theorem is proven
for nonlinearly realized SBGT's. In Section IV, Higgs
models are considered and the above proof is extended
to linearly realized SBGT's. In Sec. V, the quartically
divergent Higgs self-interaction term is derived from the
Hamiltonian PI. Section VI is devoted to a summary of
the results.

BZ =E; +~ . =A'+OA
OA' OA'

bgf—~g, A, AO+ e
OA'

(2.4)

A' = ir, —8;Ao+ gf g, A;A(') —e
OA'

io i

+ O(e ).

(2.5)

The Hamiltonian is given by

Equation (2.4) can be solved for A* (to first order in e):

II. MATTHEWS'S THEOREM FOR MASSIVE
VECTOR FIELDS

In this this section, I will quantize a massive Yang-
Mills theory with additional non-Yang-Mills interactions

[1], which are proportional to a parameter e (with e ((
1), within the Hamiltonian PI formalism and derive the
simple Lagrangian form (1.1) with (1.2) of the generating
functional upon neglcting terms proportional to e or to
~'(0).

The effective Lagrangian has the form

'R=~ A" —8p a

2 ' ' ' ' ' 4

——M (AOAo —A, A, ) —eel + O(e ),

where Cl is given by

&I = &1[F;.~;
Equation (2.3) yields the primary constraints

(2 6)

(2.7)

(2.8)

2 = J0+ eZI ———E""E + —M A"A
4

+eel (A„,F„) (2.1)

The secondary constraints are obtained from the require-
ment that the primary constraints must be consistent
with the equations of motion, i.e., the relations

(a = 1, . . . , K) with

F„=O„A —O„A„—gf b, A„A'.

qP, =(P,H) =0

must be satisfied. This yields
(2.2)

(2.9)

For the non-Yang-Mills part of the effective interactions,
given by Cl, I make the following assumptions: (a) Zl
does not depend on higher time derivatives; (b) Zl de-
pends on first time derivatives of A only through the
non-Abelian field strength tensors F„(2.2). These con-
ditions are fulfilled by the phenomenologically most im-
portant effective interactions, especially by all nonstan-
dard P, C, and CP invariant trilinear interactions of
electroweak vector bosons [1].

From (2.1) one 6nds the momenta

There are no further constraints. The Poisson brackets
of the primary and the secondary constraints are

(&i(») &2(y) f =
l

M'~ "+~ . , + O(")
l

t' 2 „8dl
(2.11)xS (» —y).

Since (P, (»), P, (y)) = 0, one Ands

Q2 =0;ir; +gf b, ~, A; —M Ao —. e +O(e ) =0.
0

(2.10)

Bd =0,
BA0

(2.3)
Det (O, @ f=(—1) + Det((P, Q ) QO (2.12)

Actually, this requirement is equivalent to the demand that
21 does not depend on Ao.

[with C' = (Pi, P2)]. Thus, the constraints are second
class. This is due to the fact that 2 is gauge noninvariant,
since the mass term and (in general) the non-Yang-Mills
interactions in 21 break gauge invariance explicitly.

The generating functional for a second-class con-
strained system is generally given by [9—11]
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Z[J] = DA„'V7r„exp i d x 7r„A" —W+ J„A" b z 8 z Det 2 4 x. , C y b x —y . 2.13
A a

The determinant in (2.13) only yields 6 (0) terms which are neglected here. This can easily be seen from (2.11) and
(2.12) by use of the identity [23]

Det]M t]z)S ]z —p)] = exp ( d]0) d z te]detM t(z)]j (2.14)

(where "Det" expresses the functional determinant and "det" the ordinary one). Dropping the determinant, integrating
out the no due to the presence of g b(pro) in (2.13), and using the relation

8(P2) oc PA exp —i d xA (2.15)

one Ands

Z[J] =
p, ,a

PA„
x,a

p ~ d x 7r '7r' +~' A +' Ao+~ —~ ~ A Ao+~ ——F
a

+ —M [(Ao+ A )(Ao+ A ) —A A —A;A, ]
1

+.
[ C, + ~

~ ~
+ O(") + J„A~0&1 )]

t9Ao
(2.16)

The substitution5

Ao wAo A (2.17)

which obviously leaves the functional integration measure invariant, yields

Z[J] =
p, ,a

DA„D7r,.

2) CL

4 a a a a a aDA exp i d x ——7r, a, +vr,-F,o
——F; F, .

+—M (A A —A A —A A )
1

'Ry(A~, B;A—„,vr, , A ) + J„A~ (2.18)

with

+1(A„,t9'Ap, ~' ~ ) = e[ ~1+ ~
o)

0 0

+ &("). (2.19)

Now the procedure of Bernard and Duncan [6] can be generalized to the model considered here. Introducing sources
K, and K& coupled to 7r; and A, one can rewrite (2.18) as

Z[J] =

1 1

+ —M (AoAo —A A —A;A, ) + J A"1 +~, K, +A K),
K; =KA ——0

(2.2O)

Another way to see this is to rewrite the determinant as a functional integral over Grassmann variables which yields a ghost
term Csh, t ———M il*il —ail" I

~ qq+ O(e ). The ghost fields are static, i.e. there are no kinetic terms for them, only massa ~ n ~W0~ ~&0b

terms and couplings to the A." fields. This means all ghost propagators are simply inverse masses and thus all ghost loops
are quartically divergent. Thus, the ghost term can be replaced by a 6 (0) term which yields the same contribution to matrix
elements as the ghost loops [12].

After this substitution the source Jo becomes coupled to Ao —A instead of Ao. However it does not acct physical matrix
elements to remove the coupling of A to Jo [21].
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Performing the Gaussian intergrations over 7t, and A one gets

p, ,a
BA„exp i d x Qo+ J A~

x exp —i

X exp

d x'Rl
~

A

d x —K-K.1

2

"' iSK,. ' iSKg)

2 K, =Kg=0
(2.21)

where Zo is the massive Yang-Mills part of the eff'ective Lagrangian (2.1). The use of the functional identity [24]

G[K]
b —G j' [p]ibpK=o

(2.22)

yields

PA exp i d x 80+ J„A~

Xexp g

x exp —i d x&I A, B,A, p, , p&
a a

P; =Pg=o
(2.23)

Since 'Rl (2.19) is proportional to e, the third exponential in (2.23) can be expanded in powers of e:

exp —'L d x+1 A )BiA )p. )pg = 1 —'L d x Hl A )BqA )p )pp +0 (2.24)

Obviously, second-order functional derivatives with respect to the p s acting on this expression yield terms which are
proportional to e2 or to P(0) and which are both neglected here. Thus, the second-order derivatives in the second
exponential in (2.23) can be omitted. The second and the third exponential in (2.23) together reduce to

exp d xI";0 exp —i d x'Rl A„, B,A„, p, , p&

= exp —i d mal (A„,B;A„p;, ip)), (2.25)

RI (A, cl;A, p, , p~) = egl(AI Q&") +—Q(e2)

(2.26)

The insertion of (2.25) with (2.26) into (2.23) yields
[apart from the e2 and 8 (0) terms]

z[J]
p, ,a

'VA„exp i d x 20+ eel + J„A"

(2.27)

With the definitions of R; (2.19) and of Z~ (2.7) one finds noninvariant framework) .
This proof can easily be generalized to I agrangians

which also contain eBective interactions of the massive
vector fields with other fields (scalar, fermion, or addi-
tional vector fields). To derive this result, one adds in
(2.1) the kinetic and mass terms of the extra fields as
well as the couplings without derivatives to l.o and the
derivative couplings to Cl and then goes through the
same procedure as above. Thus, Matthews's theorem
also holds for e6'ective vector-fermion and vector-scalar
interactions.

which is the expected result, namely, the naive
Lagrangian path integral (1.1) with (1.2). Thus,
Matthews's theorem is proven for effective self-
interactions of massive vector fields (within a gauge-

An application of this result, which will become important
in Sec. IV, is to consider 60 as the U gauge Lagrangian of a
(minimal) Higgs model, while Zq contains additional efFective
interactions of the vector and Higgs Gelds.
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III. THE STUECKELBERG FORMALISM

(3.1)

one defines

A„:—A„t,
gp=i p t,

U = exp(p) .

(3.2)

(3.3)

(3.4)

The y are the unphysical pseudo Goldstone scalars. The
Stueckelberg transformation is defined as

A„—+ ——U~D„U= U~A„U ——U~B„U
g g

= U"A„U+ —B„p UtQ
M (3.5)

(D„U is the covariant derivative of U) with

Q
—= t +(pt +t (p)

In this section, I will generalize Matthews's theorem
to SBGT's with nonlinearly realized symmetry which
contain arbitrary gauge boson self-interactions within a
gauge-invariant framework [2,12,17]. It has been shown
in [12,17] that each theory given by an effective La-
grangian of the type (2.1) can be rewritten as a (nonlin-
early realized) SBGT by applying Stueckelberg transfor-
mations [18]. On the other hand, each nonlinear SBGT
(without higher derivatives) can be obtained by applying
a Stueckelberg transformation to a Lagrangian of type
(2.1). Thus, I will reformulate the Stueckelberg formal-
ism within the Hamiltonian formalism in order to show
the equivalence of effective Lagrangians which are related
by Stueckelberg transformations.

The Stueckelberg formalism can be most easily formu-
lated within the matrix notation. With t being the gen-
erators of the gauge group, which are orthonormalized
due to

X and Y are nonpolynomial expressions in the pseudo
Goldstone fields p . They do not depend on the deriva-
tives B~p and, due to (3.1), they become unity matrices
for vanishing y:

Xb(Ip =0) =Yb(p =0) =b b (3.10)

The SBGT corresponding to the effective Lagrangian
(2.1) is

A UtA U ——'UtB U'
9

(3.11)

l'. can be recovered from 8 simply by removing all un-
physical scalar fields in 8

(3.12)

The non-Yang-Mills part of the effective interactions is
given by the gauge invariant term 8I, which is obtained
by applying (3.5) to Zl. l: describes a generalized
gauged nonlinear o model with extra non- Yang-Mills vec-
tor boson self-interactions [12]. Each nonlinearly realized
effective SBGT (without higher derivatives) given by a
Lagrangian 8 can be constructed by applying (3.5) to
an effective Lagrangian 8 (2.1), which is obtained by re-
moving the pseudo Goldstone fields in 8 . I will prove
that the Lagrangians 8 and 8 are equivalent within the
Hamiltonian formalism. This is not obvious because the
Stueckelberg transformation (3.5) involves derivatives of
the pseudo Goldstone fields and from the Lagrangian
point of view one can only argue that two Lagrangians
which are related by a point transformation (i.e. , a trans-
formation which does not involve derivatives) are equiv-
alent. I will show within the Hamiltonian formalism that
l. is the U gauge of 8; i.e. , the U gauge of a nonlin-
ear effective SBGT is simply obtained by dropping all
unphysical scalar fields (as one naively expects).

One can easily see that, if 8 satisfies the conditions
required at the beginning of Sec. II, 8 also satisfies these
demands, since the field strength tensor F„=F„ t
transforms under Stueckelberg transformations due to

+—(p ~+ pt~p+t(zp )+2! (3.6)

F„m U~F„U

or, written in components,

(3.13)

The Stueckelberg transformation (3.5) formally acts like
a gauge transformation, however, with the gauge parame-
ters being replaced by the pseudo Goldstone fields. Thus,
it effects only the mass term and the effective interaction
term Cl in (2.1) but not the gauge-invariant Yang-Mills
term —4F~"F „.Equation (3.5) can be written in com-
ponents by multiplying with 2t and taking the trace.
With (3.1) and (3.2) one finds

F W X~bF (3.14)

~UtA U
' Utg U

g

F~ —+UtF~ U

Ao ~X gAO+ ~ Y~gp

A ~X~gA, + M Y~b8g +
F,.o —+X bFO

F, —+X bF;.

For the subsequent treatment it is convenient to rewrite
(3.11) as

A + X~bA + Y~bdl p, (3.7) (3.15)

where the matrices X and Y are defined as

X~b —= 2tr (U tbUt ),
Y b = 2tr(U Qbt )

(3.8)
(3.9)

For simple gauged nonlinear o models without effective in-
teractions this equivalence has been shown within the Hamil-
tonian formalism in [25] (in a very formal way).
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where the following convention has been used: While in
(3.11) the Stueckelberg transformation is applied to A„
everytvhere in 2 [which automatically implies the trans-
formation of I"~ (3.13)] it is in (3.15) only applied to
the A& field where it does not occur as a part of the
field strength tensor E„, and E~ becomes then trans-
formed seperately. I will use this convention throughout
this section.

The momenta conjugate to the fields in l. are

08 02
7r,- = . =ED+a . =A'+BA~

BA' t9A'

b 081
g—f b, A, Ao+ e

BA'
(3.17)

BZ~ ( b 1 .b3 Ol IS= MY,~
~

A;bAo+ —Y,b(p [+ e . . (3.18)8jr
'

i
' M ' ) B(p~

pro
—— . ——0,

OAO
(3.16) To first order in e one finds the velocities

A* = ~, —cl;Ao+ gf b, A, Ao —e
BA'

(p m Y q (Y,q
vr' MXb—,A )0

+O(e ), (3.19)

'~=Y ~ Y a
g~c F;0~@,

Y' (Y "—MX, A*)

—MXb, Ao + O(e ) (3.20)

and the Hamiltonian

= vr A" +7rP + V'

1

—-M' ) (X.bA', )

2

—) ~XbA, + —YbBPM

+—) (Yb vr —MX bAo) —eCI + O(e ).

(3.21)

2I is given by

I

There are no terms proportional to e in (3.24), since, due
to (3.22), 21 does not depend on Ao (either directly or
through F,o).s There are no further constraints. The
constraints are first class due to the gauge freedom of 2
(3.11).

Since in first-class constrained systems the solutions of
the equations of motion contain undetermined Lagrange
multipliers, one has to remove this ambiguity by im-
posing additional gauge Axing (GF) conditions [8,10,11],
such that the number of GF conditions is equal to the
number of first-class constraints. Constraints and GF
conditions together have to form a system of second-
class constraints being consistent with the equations of
motion. A convenient way to construct these conditions
[10] is to start with primary GF conditions yi and to
construct secondary GF conditions by demanding

(~, , II'}= 0, (3.25)

&r' —= &r'

rp -+Y
q (Y,q

z' —MXg Ao)

I AO~MY
A, mXo, bA, + M Y~t, 8;
F,o

—+X
F,. mX gF,

(3.22)
a a

Xy =F (3.26)

Equation (3.25) yields then the secondary GF conditionsg

which ensures consistency with the equations of motion.
To prove the equivalence of l: (2.1) and 2 (3.11) it is
most convenient to construct the U gauge by imposing
the primary GF conditions

[where (3.15) has been used]. The primary constraints
are

S.—,' (Y.b '~ —MXb.A;) —. ' + O(") = 0.
Bur~

(3.27)
P, =7ro =0 (3.23)

pz ——cl;~; + gf b,~;A; —MXb Yb 7r' =. 0. (3.24)

and the secondary constraints, obtained analogously to
(2.9), are

In fact, to all orders in e, Ao becomes replaced by ~ Yb

and I",.o by X b7r, . Thus, 'Rl does not depend on Ao and
(3.24) holds exactly.

The GF conditions do not fulfil Faddeev's requirement
a b(X,X } = 0 [8]. In fact, this restriction is unnecessary

[10,11,26].



48 HAM ILTONIAN QUANTIZATION OF EFFECTIVE. . .

Using the primary GF conditions o (3.26), the relation
(3.10) and the defintions of 21 (3.22) and Zl (2.7) one
can express the Hamiltonian (3.21), the secondary con-
straints (3.24), and GF conditions (3.27) as

——M (AoAo —A;A;) + —) (vr —MAo)

—eel + O(e ),
gP2 = cl;~, + gf b, 7r, A; —Mar = 0,

y2 =sr —MAo —e +O(e ) =0

(3.28)

(3.29)

(3.30)

with

ga =0
(3.31)

Equation (3.30) can be inserted into itself and becomes

]- 8&1
y2 = vr —MAo —e— + O(e ) = 0.

0
(3.32)

Applying the secondary GF condition (3.32), one can
rewrite the Hamiltonian (3.28) as (2.6) and the con-
straints (3.23), (3.29) as (2.8), (2.10) (to first order in e),
i.e. , as the Hamiltonian and the constraints correspond-
ing to the gauge-noninvariant Lagrangian 2 (2.1). Fi-
nally, the GF conditions (3.26) and (3.32) can be omitted,
since they involve the fields p and vr and neither the
Hamiltonian nor the constraints depend on these fields
anymore. Thus, the Lagrangians 2 and 8 in (3.11) de-
scribe equivalent physical sytems, 2 being the U gauge
of 8

Because of the equality of the Hamiltonians and the
constraints corresponding to l'. and 2, 2 can be quan-
tized as described in the previous section; the generat-
ing funtional turns out to be (2.27). This, however, is
identical [apart from h (0) terms, which are neglected
here] to the generating functional obtained in the (La-
grangian) Faddeev-Popov formalism [5] if one imposes
the (U gauge) GF conditions (3.26) [12]. Because of the
equivalence of all gauges [15,21], (2.27) yields the same S-
matrix elements as the Faddeev-Popov PI corresponding
to C~ in any other gauge (e.g. , Rg gauge, Lorentz gauge,
Coulomb gauge). Thus, Matthews's theorem is also valid
for SBGT's with nonlinearly realized symmetry.

It should be noted that this result cannot be directly
obtained within the Rg gauge (which is most adequate for
loop calculations) because the Rg gauge GF condition

The insertion of the GF conditions into the Hamiltonian
and the other constraints corresponds de facto to a redefini-
tion of the Lagrange multipliers in the total Hamiltonian, i.e. ,

the Hamiltonian from which follow the equations of motion
'RT ——'R +A 4 +A y (where 4 stands for all constraints,

for all GF conditions and the A and A are the Lagrange
multipliers). In the Hamiltoniau PI (2.13) this insertion is
justified due to the prensence of the b functions.

= 8"A„—(M(p = 0 (3.33)

IV. HIGGS MODELS

Finally, Matthews's theorem has to be proven for
SBGT s with linearly realized symmetry, i.e. , Higgs mod-
els, which contain effective (non- Yang-Mills) gauge boson
self-interactions [3,12]. This result will simply be ob-

Actually, loop calculations within the U gauge sufI'er from
ambiguities in the determination of the finite part of an S-
matrix element [27,28]. Therefore, for practical calculations
it is useful to rewrite the PI obtained within in the U gauge in
the Rg gauged form in order to remove these ambiguities. In
fact, loop calculations within the U gauge yield the same S-
matrix elements as loop calculations within the R~ gauge, but
only if the correct renormalization prescription is used [28];
other renormalization prescriptions yield distinct results. In
the Rg gauge these ambiguities are absent.

A similar transition from a second-class constrained sys-
tem to a first-class constrained system has recently been inves-
tigated in several works [20]. However, there uo phase space
enlargement is performed with the outcome that the resulting
model contains only half as many first-class constraints as the
original model has second-class constraints. In my treatment
the number of constraints remains unchanged, since, due to
the phase space enlargement, new constraints are introduced.
The method of connecting first- and second-class constrained
systems by performing a phase space enlargement goes back
to [19].

is not a GF condition within the Hamiltonian formal-
ism. This is because (3.33) cannot be written as a re-
lation among the fields and the conjugate fields alone,
due to the presence of the velocity Ao in y that is not
expressable through the momenta [remember the con-
straint (3.23)]. Therefore, when quantizing 8 within
the Rg gauge, one has to proceed indirectly as outlined
above by first constructing the U gauge and then using
the equivalence of all gauges (i.e., the invariance of the
S-matrix element under a change of the gauge in the FP
procedure ) [15,21] in order to rewrite this result in the
Rg gauge.

The procedure outlined in this section shows how to
interpret the Stueckelberg formalism on the Hamilto-
nian level. While the gauge-noninvariant Lagrangian 2
is related to the gauge-invariant Lagrangian 8 by a
Stueckelberg transformation (3.5), one can pass from the
second-class constrained Hamiltonian 'R to the first-class
constrained Hamiltonian Q by the following procedure:
One enlarges the phase space by introducing the unphys-
ical variables y and vr and the extra constraints (3.26)
and (3.27), which make the new variables dependent on
the others and leaves the number of physical degrees of
freedom unchanged. Next, one rewrites, using the ad-
ditional constraints (3.26) and (3.27), the Hamiltonian
as (3.21) and the primordial constraints as (3.23) and
(3.24). Finally, half of the constraints, namely the new
ones, are considered as GF conditions.
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tained by showing the equivalence of a linear Higgs model
to a nonlinear Stueckelberg model [with (an) additional
physical scalar(s)].

Since the Higgs model corresponding to a massive
Yang-Mills theory cannot be written in a general form for
an arbitrary gauge group, I restrict to the case of SU(2)
symmetry (i.e. , t = zr, a = 1, 2, 3). The extension to
other gauge groups is straightforward.

Any eff'ective Lagrangian (2.1) can be extended to
a Higgs model by constructing the St ueckelberg La-
grangian (3.11) and then introducing a physical scalar
field h and linearizing the scalar sector of the theory [12]
via

v 'U (1+~7p 5
U = exp

1
m I—: [(u + h) ll + i(p r )], (4.1)

2

where v is the vacuum expectation value of the Higgs
Beld, v = . The Lagrangian of the Higgs model cor-

responding to (2.1) becomes

comes a canonical transformation within the Hamiltonian
formalism; i.e., the Hamiltonians and also the constraints
corresponding to 2 and 2 ' are related by canonical
transformations. Thus, the physical systems described
by both Lagrangians are equivalent on the Hamiltonian
level. l.& becomes the U gauge of 8; i.e. , also for a
linearly realized Higgs model the U gauge is obtained
naively by removing all unphysical scalar fields.

Because of the invariance of the Hamiltonian PI under
canonical transformations [8], the generating funtional
obtained when quantizing the linear Lagrangian 8 also
has the form (1.1) with (4.5), which is again identical
[apart from b (0) terms] to the result of the Faddeev-
Popov procedure if the (U gauge) GF conditions (3.26)
are applied [12]. As in the previous section, this result
can be generalized to any other gauge. This completes
the proof of Matthews's theorem for any effective La-
grangian, which satisfies the conditions required at the
beginning of Sec. II.

The treatment of this section shows that the Stueckel-
berg formalism, which was originally introduced in order
to construct Higgs-boson-less SBGT's [17,18], also rep-
resents a powerful tool when dealing with Higgs models
[12,22].

—V(C) (4 2)

with the Higgs self-interaction potential V (C ) which
yields the nonvanishing vacuum expectation value. In
distinction from 8 (3.11), 2 is is not equivalent to the
effective Lagrangian 8, since there is an additional phys-
ical degree of freedom. However, 8 contains the same
effective vector boson self-interactions as 8 and 2 . In
fact, 8 is the limit of l. for infinite Higgs boson mass

[2,12]. Each eff'ective Higgs model (without higher deriva-
tives) can be constructed this way from a Lagrangian of
type (2.1).

To extend the results of the previous two sections to the
Lagrangian (4.2), one uses the fact that even within a lin-

early realized SBGT the scalar 6.elds can be parametrized
nonlinearly [12,15,22] by the point transformation

(4.3)

[with U and 4 given by (4.1)]. The Lagrangian of the
Higgs model in which the scalar sector is nonlinearly re-
alized,

V. THE QUARTICALLY DIVERGENT HIGGS
SELF-INTERACTION

In all previous sections, I have neglected the quarti-
cally divergent 8 (0) terms. In this section I will quantize
the SU(2) Higgs model (without effective non- Yang-Mills
vector boson self-interactions) thereby taking into account
the 8 (0) terms to derive the well-known quartically di-
vergent Higgs self interaction [12,14—16], which serves as
a simple example for such a term.

From the discussion of the previous two sections it is
clear that it makes no difference to quantize the gauge-
invariant Lagrangian of a SBGT or the corresponding U-
gauge Lagrangian which is obtained. by setting p = 0.
Thus, for simplicity, I start from the U-gauge Lagrangian

Fi' F„„+—(oI—"h)(cl~h) + —g (v+ h.) A"A„1 1 1 2

—V(h, p = 0). (5 1)

The momenta are given by

H, S H (4.4) =0,
BA0

(5.2)

H H, S
piquant —~U

H
V'a =0 (Pct:0 (4.5)

It is now easy to establish the equivalence between 2
and 8 ' since a point transformation (i.e. , a transforma-
tion which does not involve derivatives) such as (4.3) be-

describes a Stueckelberg model with one additional phys-
ical scalar h. Thus (remembering the last paragraph of
Sec. II), the results of the previous two sections can be
used to quantize 2 '; the generating functional takes
the Lagrangian form (1.1) with the quantized Lagrangian

For the Hamiltonian and the primary constraints this
statement is obvious and the secondary constraints are ob-
tained from the Poisson brackets (2.9) which are invariant
under canonical transformations.

When establishing this equivalence, no b (0) terms have
been neglected, thus, even concerning the quartically diver-
gent extra terms, quantization of both Lagrangians yields the
same result.
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BC = E';0 ——A' + (9,Ao —gf b,A; Ao,
a

08
~h —— . ——6,

Bh (5 4)

The constraints turn out to be

Pi =pro =0,

P2 = (9;vr; + gf b 7r, A;. —.—g (v+ h) A() ——0.

(5.6)

(5.7)

and the Hamiltonian is
The Poisson brackets of the primary and the secondary
constraints are given by

'R = vr„A" + erich —8

+ F,,Il—,, + —(oj,h)(O, h)

——g2(v + h)'(A, AO —A, A, ) + &(h, p = 0).
1

(5.5)

(& ( ) &'(y)) = -g'( +h)'b'b'( —y) (5.8)

The constraints are second class.
To quantize this, one starts from the Hamiltonian PI

(2.13), integrates out the pro to eliminate b(gPi), uses
(2.15) to rewrite b(gPz), performs the substitution (2.17),
and rewrites the deteminant using (2.12) and (5.8). The
generating functional becomes

Z[J] = 2 cx Ad4 2QK . X '7t h (p, a i,a a

-(a,h)(a, h) + -g'(v+ h)'(A:A: —~ ~ —A;A;)

V(h p = 0) + J A" + Jbh Det
l

—g (v+ h) b (~ —y) l
(5.9)

Now one can perform the Gaussian intergrations over vr, ,

vugh, and A . Intergrating out A yields an extra factor
Det ~ (4g2(v+ h) b (x —y)). One finds

Z[J] = 274 Phexp i d x l'. + J A++ Jhh
P~

xDet
l

—g (v + h) b (x —y) l
.s s 4

(8
(5.10)

Using (2.14) to exponentiate the determinant, Z[J] be-
comes a Lagrangian PI (1.1) with the quantized La-
grangian

g „„,= 8 —3ib (0) ln
l
1+ —

l

( hb

v)
= c —3xs4(o)i. (i + '

t ) (5.11)

Zgh„——Mg g ——g g h.
2

(5.12)

The ghost fields are static due to the absence of a kinetic
term. Thus, all ghost loops are quartically divergent.
In [12] it has been shown that the ghost loops following
from (5.12) yield the same contribution to the S-matrix

(after dropping a constant). Thus, the quantized La-
grangian contains, in addition to the primordial La-
grangian, an extra quartically divergent Higgs self-
interaction term.

Alternatively, the determinant in (5.10) can be ex-
ponentiated. by introducing Grassmann variables, which
yields the ghost term

elements as the b4(0) term in (5.11) and thus Zshost can
be replaced by this term.

For the renormalizable Lagrangian (5.1), however, the
quartic divergences from the extra term in (5.11) cancel
against other quartically divergent Higgs self-interactions
arising from vector boson loops [29]. Thus, in this case it
is completely justified to neglect the quartic divergences
altogether as in [6].

VI. SUMMARY

The quantization of Lagrangians containing arbitrary
interactions of massive vector fields (that do not depend
on higher-order derivatives) within the Hamiltonian PI
formalism yields the following results.

The generating functional corresponding to an eKec-
tive Lagrangian without gauge freedom is a simple La-
grangian PI with the quantized Lagrangian being iden-
tical to the primordial one [apart from the e and b (0)
terms]. Thus, the Feynman rules follow directly from the
various terms in the e8'ective Lagrangian.

(Linearly or nonlinearly realized) SBGT's containing
eH'ective vector boson interactions, which are embedded
in a gauge-invariant framework, can be quantized within
the (Lagrangian) Faddeev-Popov PI formalism.

The U gauge of such an effective SBGT is obtained by
removing all unphysical pseudo Goldstone fields.

Lagrangians that are related by a Stueckelberg trans-
formation are physically equivalent.

Using the Stueckelberg formalism, one can rewrite each
effective Lagrangian as a (nonlinearely realized) SBGT
and extend it, by introduction of (a) physical scalar(s),
to a (linearly realized) Higgs model.
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These statements seem to be obvious from the naive
Lagrangian point of view. However, one has to go
through the more elaborate Hamiltonian treatment of
this article to derive them correctly. The results obtained
in this paper will be generalized to efFective Lagrangians
with higher-order derivatives in a forthcoming work [30].
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