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Superspace duality in low-energy superstrings
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We extend spacetime duality to superspace, including fermions in the low-energy limits of super-
strings. The tangent space is a curved, extended superspace. The geometry is based on an enlarged coor-
dinate space where the vanishing of the d'Alembertian is as fundamental as the vanishing of the curl of a
gradient.

PACS number(s): 11.17.+y, 04.50.+h

I. INTRODUCTION

In a previous paper [I], we showed how spacetime du-
ality invariance [2] (a symmetry which mixes a graviton
and axion) of the bosonic sectors of strings, which is
preserved in low-energy limits, can be made manifest by
using a new formalism for axionic gravity. %'e will first
present that formalism in a yet more general way to allow
it to be applied to fermions as well. The basic idea is to
introduce a generalized vierbein with a local tangent-
space gauge invariance involving general linear groups
rather than the usual orthogonal (Lorentz) groups, a rein-
terpretation of Cartan's approach to gravity. There are
independent left- and right-handed general linear (GL)
groups corresponding to the left- and right-handed modes
of the string, so the field theories describing the low-
energy behavior of strings still have the string's handed-
ness built in. The possible advantages of this string-
inspired approach to spacetime geometry include new
gauges that make the field theory Feynrnan rules more
closely resemble those from string theory and allow solu-
tions related by duality to be found more directly, more
convenient insertions of background fields for o.-model
calculations, and a better understanding of (super)string
field theory.

In the following section we introduce the background
fields for the Hamiltonian formalism of strings. The os-
cillators ZM of the string carry a superindex M; duality is
just a global SO(d, d+n) transformation acting on that
index. The commutation relations of these oscillators in-
volve a constant metric ilM&, the SO(d, d +n) duality in-
variance is a subgroup of the OSp(D, D+n 2D') symme-
try [SO(D, D +n) in the bosonic casej that preserves this
metric. Gauge transformations A, for massless fields are
generated by ZM. Since ZM form an a%ne Lie algebra
(and not an ordinary Lie algebra), the algebra of this
group defines a new Lie derivative. The zero modes of
ZM are the derivatives BM, which include not only the
usual mornenta but also winding numbers. Although the
winding numbers vanish on the massless background
fields we consider, this condition is imposed in calcula-
tions only as 0 8M=0. This is not a mass-shell condition
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(the metric AM~ is off diagonal), but a partner to the usu-

al relation 8~M 8&)=0 for partial derivatives.
Background fields are introduced by covariantizing ZM

as II z =e z ZM with the background vielbein e ~ . Its
transformation under A, is a cross between a covariant
vector and a contravariant one, a consequence of the
modification of the Lie derivative. The tangent-space su-
perindex A separately labels left- and right-handed oscil-
lators. It defines a tangent-space metric g„~ that is not
constant; as a result, the local tangent-space symmetry
involves genera1 linear groups rather than orthogonal
groups. To allow definition of the left- and right-handed
conformal generators (the first-class constraints), this
metric is constrained to have its left-right off-diagonal
part vanish, and the tangent-space gauge group is con-
strained to not mix left and right indices. The dilaton
field is required (as a density) to define actions.

In Sec. III we discuss the supersymmetric case. Addi-
tional constraints are required on the tangent-space
metric and gauge group to preserve the second-class con-
straints. These constraints allow the existence of
connection-independent torsions, as in ordinary super-
space for pure supergravity.

Unlike ordinary superspace, all these torsions are
found to be trivial when we consider constraints on them
in Sec. IV. The constraints are those that preserve the
form of the algebra of first- and second-class constraints.
We also discuss further restrictions on the allowed
tangent-space transformations of the second-class con-
straints; these are necessary to define representation-
preserving constraints, such as those that allow the ex-
istence of chiral superfields, such as the dilaton.

Section V defines the conventional gauge, where the
tangent-space symmetry is fixed enough to allow
identification of the surviving components of the vielbein
with the usual (super)graviton and axion (super)fields. In
this gauge the torsion constraints take the familiar form.
The usual super Yang-Mills spinor field strength appears
as a component of the vielbein.

At least in three and four spacetime dimensions, the
torsion constraints can be solved off shell. In D =3 the
solution picks certain parts of the vielbein as indepen-
dent. In Sec. VI we find the D =4 solution in terms of
prepotentials, which appear as in usua1 superspace as ex-
ponential operators, in the form of complexified group
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elements. Duality then acts in the obvious way on the in-
dex of the prepotential 8'

For a deeper understanding of the geometry of this su-
perspace we consider covariant derivatives in Sec. VII.
Because of the form of the new Lie bracket, not all con-
nections can be determined, so only certain types of co-
variant differentiation are allowed. However, the treat-
ment of a aM=0 on an equal footing with [aM, az] =0
means new torsions and curvatures can be defined whose
construction involves traces on an equal footing with an-
tisymmetrization. The use of traces is related to the ex-
istence of the dilaton as the integration measure.

In Sec. VIII we construct the curvature tensors and ac-
tions for the bosonic case. The field equations are the
generalization of the Ricci tensor and scalar. The La-
grangian is simply this scalar, with the dilaton as the
measure. The index structure of this tensor, even in the
supersymmetric case, explicitly rejects the string proper-
ty that closed-string states are the direct product of left-
handed open-string states with right-handed ones.

In the final section we review the basic results and their
equations.

II. ALGEBRAS AND SYMMETRIES

We begin in the Hamiltonian formalism by considering
the afBne Lie algebras of general string creation and an-
nihilation operators (in the o representation), and the
Virasoro algebras in terms of them, in the presence of
background fields. The "bare" algebra is expressed in
terms of a basis of oscillators Z~ with a "super" index
~=(M, , ), where M is the index carried by the (grad-
ed) coordinates x of the background fields, and m labels
additional directions with no corresponding coordinates,
like the 16 compactified dimensions of the right-handed
sector of the heterotic string:

I ZM(1»ZE(2)] =i~'(2 —
1)VMN

ZM=(PM, X',P —
—,
'X' )

N

gM
9M% ~ N

0 0

5M is the usual Kronecker delta, while in 6 N, for fer-
mionic indices K'„=—5," from index reordering. X(1)
is the string coordinate and P(1) its momentum, where
"1"labels the o. parameter.

We next define a generalization of general coordinate
transformations based on this algebra:

A= f d 1 A, (X (1))Z (1),
where gM includes general (super)coordinate transforma-
tions A, , axion (two-form) gauge transformations A,M,
and Abelian vector(-multiplet) gauge transformations

There is also the gauge invariance of the gauge in-
variance:

nx =a~,
a =(a„,a",a )=sA= f ZMa ~= f x =o.

(We freely raise and lower indices with the metric g~&.)

Although the operators a and a (related to winding
numbers in the full string theory) vanish on the gauge pa-
rameters and backgrounds we consider, this condition
will be used explicitly only as the consequences
W'=Z~a~a and

(a w)(a a)=a~a ~=o

on arbitrary functions 2, which states that all supermo-
menta are orthogonal, even to themselves. Otherwise, we
treat 0 and 0 as spacetime central charges under
which the background fields are neutral (but see the dis-
cussion of duality later in this section). The commutation
relations of this symmetry group (with group elements
e '

) define a new I.ie derivative

[Ai~A2] = LA (i2)

which preserves the gauge invariance of the gauge invari-
ance:

6X~=O~X, — = X =-,'XMO
[&,2] 2 [& m 2]

(sign factors due to ordering of superindices are implicit).
Duality is basically the global symmetry on the super-

index M that preserves the metric g~&. Since X' is part
of Z, this symmetry holds only when considering states
with no dependence on d of the bosonic components of X
(as for the n components of X ), allowing an SO(d, d +n)
symmetry. However, since d can be arbitrary, this gen-
erally means performing manipulations that treat these
indices as if there were the full OSp(D, D+n ~2D') sym-
metry. (Configurations that are independent of some of
the D' fermionic components of X are probably not use-
ful, since supersymmetry spinor derivatives have terms
proportional to 0" times components of the vierbein that
are nonvanishing in nonsingular coordinate systems. )

We then write the a%ne Lie algebra Hz of left- and
right-handed oscillators in background fields collectively
by labeling them with a superindex A =(A,A), where
both the left-handed index A. and the right-handed index
A can range over commuting as well as anticommuting
values (with difFerent ranges for left and right). The
background fields are represented by the vielbein
e~ (x ), which is an invertible square matrix, and can
be used to define a curved tangent-space metric gzz
analogously to ordinary gravity, in addition to the
orthosymplectic coordinate-space metric gM~(n(M~~ =0):

II„(l)=e~ (X (1))ZM(1), g~~ =e~ equi

g„z and g~~ and their inverses are used to raise and
lower their corresponding indices, but gz~ is a function
while gM& is a constant, the reverse of the usual situa-
tion. The commutation relations of this aftine Lie algebra
are
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A(l)5'(2 —1)=A(2)5'(2 —1)+5A' .

(On indices, "(]" and "[)"are graded symmetrization
and antisymmetrization. ) Since

(8 A )(8MB ) =(e "A )(e AB ) =0,
we find

c
[eA eB I =FAB ec .

The oft'-diagonal part of the metric is constrained to
vanish so that we can define decoupling left- and right-
handed Virasoro operators:

g -=0 ==I.+ ——
—,g rt~II~,AS

The gauge transformations are defined as

511„=[ —~x, ll, ]+X„'ll, ,

=0=-5e =(A 8 e +e B™k')

~g AB ~ ~Mg AB +~( AB]

+X eB

where A, A describes left- and right-handed local (graded)
GL invariances on the A. and A. indices. Under the A,

gauge transformations,

5fABc =(covariant) eA e—B ec 8M B[)vip)
M N P

Thus, of all of f, only f[ABc) and fA [Bc)=e„gBc are co-
variant with respect to these transformations. Under the
tangent-space transformations,

[11„(I),ll, (2)] =m'(2 —1)-,'[g„(1)+g„(2)]
+ l 5FAB HC

FAB = , (—f—[ABD)+e[AgB)D)g f[AB) +-,f [AB)&
C DC C & C

MfABc =(eAeB )ecM
M~

eA =eA M I A(BCJ eAgBC

1

A (BCj A gBC 2 e(BgC] A

We have used

The form of the first identity that follows directly from
the II Jacobi identities is

D & D E D
[A BC) 3 F[ABC) F[AB~ FE[C)

+—F[AB~ e gE~C) =0E D

which resembles the usual Jacobi identities for structure
functions.

Duality transformations also can be derived by consid-
ering A, transformations for which eA is independent
of d components x' of x . This only restricts I, to be
linear in x'. Furthermore, A. can be considered linear in
coordinates x' and x, corresponding to 8 and 0
which we otherwise assume to vanish (on e„).The net
result is that in the k transformations we replace A, BM

by 0 and 8[MAN) by a constant matrix, with nonvanishing
components for indices (i, i, m), representing the global
group SO(d, d +n).

In addition to the vielbein there is also the dilaton, a
scalar density needed for constructing actions
[dete„=(detgAB)'~ is not a density]:

5e'=aM(XMC') .

This transformation and the one for the vielbein preserve
the gauge invariance of the gauge invariance, since A, M
appears only as A, BM, BM A, , and 8[MXN). In treating
the bosonic sectors of strings, 4 is just the square of a
single scalar 4, but for the supersymmetric cases N is
the square of the magnitude of a D —2 component scalar

(at least for D =3,4, 6); the D —3 angular parts
parametrize the coset space

SO(D —3 ) ISO(D —2),
which is the "8 symmetry" gauged in conformal super-
gravity.

III. SUPERSYMMETRY

In the bosonic case, eA is a (2D+n) X(2D+n) ma-
trix, representing graviton, axion, and n types of photons
(with dilaton in 4) in D dimensions. The left- and right-
handed indices are A =a and A =(a,a ), where a and a
take D values and a takes n. The Bat-space values of the
fields are

5fABc=(covariant)+(eAAB )gDc .
gm

a
1

2 Dam 0

FAB is a linear combination of f [ ABc) and eAgBc, and
so is A, covariant. Its tangent-space transformation is

5FAB =(covariant)+e[A~B) + (e ~[A) )gD)B)

1

2 Iam

0 0

(e M) 5m 0

Since not only 8[MB)v)=0 (as usual) but also 8 8M=0,
the F s satisfy Bianchi identities for both curl and diver-
gence:

(gAB ~ = DAB 0 Jab

0 0

0
—6-db

1 1

[ A FBCD) g F[AB CD)E

(FAB ec )= —1
I eA eB j =e[A( I'~B))

where

1'eA =eA QM=(BMeA )

We next discuss the supersymmetric case. Since we
consider only the classical mechanics of superstrings, we
can treat D =3,4, 6, 10 dimensions for the supersym-
metric modes of heterotic superstrings. (The generaliza-
tion to type II superstrings will not be considered here. )

Therefore, we consider background fields describing
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0 0 nP. O

q, b 0 0

N= 1 supergravity (+ a tensor multiplet, in the cases
where pure supergravity does not include an axion) to-
gether with (Abelian) Yang-Mills multiplets.

We now have A =(a,a, a) [and still A =(a, a )], with
II~=(II,II„II ) the curved superspace generalization
of the affine Lie algebra (D,P„A ) introduced in Ref.
[3]. (0 is necessary to make the range of the A and M
indices agree, to define an invertible g~+, and to express
L+ as g IIII.) The generalization of the bosonic tangent-
space vacuum metric is then

As in ordinary super space, the restriction of the
tangent-space group from the naive generalization of or-
dinary gravity allows the existence of nontrivial torsions
(while reducing the set of curvatures). Unlike ordinary
superspace, we will find that all such torsions must either
be constrained to vanish or be found to be pure gauge.
Since the F's are already A, covariant, we start with
them and consider k„covariance. (Equivalently, we
can look at the torsions defined below and analyze those
that are connection-independent due to these new restric-
tions. ) Examining the F transformation law from the pre-
vious section, we see that a specific component of F~z
will be covariant if, as a consequence of our conditions on

and g„~ (including those from the previous section),

0 0 —g,b

0 0 0 0 —5-ab

internal=SO(D —2)/SO(D —3) =SD 3=I,U(1),SU(2) .

(Perhaps there is some way to generalize to octonion for
D = 10. Otherwise, it seems that there is no internal sym-
metry in that case. ) Thus, in D =3 there is no restriction
on k»; in D =4, using 4D Weyl spinor notation to write
the spinor index as (a, a), we have A, ~=A,,~=O; in D =6,
using SU(2) Majorana-Weyl spinor notation to write the
spinor index as ia, we have k; ~»=5;9. »+6 PA,; ~; and
in D = 10 we can write

»=6 »A, +-'y'b»A. . -
lX ab

where a is a Lorentz vector index. We will also find that
g &

is restricted so [II,II&] does not generate 5' terms.
The net result of all these restrictions is

g p=o, S '=a »=H» Z, '=0,a 6

where II »&~ is a projection operator that picks out the
pieces of A, » we want to discard, as just described.
The full

GI.(D ~2D')GL(D+n )

gauge in variance could be restored by defining the
second-class constraint to be 3 = 2 H~ for some

, and introducing a new symmetry group (Lorentz,
internal, scale) acting on A . The previous group would
then be obtained in the gauge A =5

We have the usual superspace coordinates x =(8",x ).
In addition to the Virasoro operators, which are first-

class constraints, we now also have the second-class con-
straint H . As a result, the mould-be

GL(D l2D')GL(D+n)

gauge symmetry is restricted so that II transforms into
itself. Furthermore, we will see in the following section
that we need to further restrict this tangent-space sym-
metry A, ~ on II from GL(D') to the largest symmetry
that leaves y matrices invariant. In D =3,4, 6 this group
is GL(2, 3) for A =real, complex, quaternion; and we
have GL(2, A) =Lorentzscaleinternal, with

g =0
for that specific choice of A, B,C. The last constraint is C
independent, and implies AB =AX or aP. (These are ex-
actly the values for which g„ii =0.) The remaining con-
straints then imply A =a and C=c or y in the former
case, and C=anything but y in the latter case, but both
cases allow C =y when the spinor indices are appropri-
ately projected. The final result is then that the fully co-
variant F"s are

F», F», Hp ~ Fg, F~
H ~g'F ~

where we have written them in groups which transform
into themselves under the tangent-space transformations.
II p

~
&

'~ is another projection operator which performs a
similar function; for example, in D=4 it picks out F»~
and F.

p
~.

IV. CONSTRAINTS

The introduction of massless background fields into the
Green-Schwarz superstring for the purpose of deriving
constraints on the background mas first performed by
Witten [4], who worked in the Lagrangian formalism,
efFectively calculating the closure of the algebra of the
first-class constraints L+ (the Virasoro operators) and B
(the generator of a. symmetry). Shapiro and Taylor [5]
worked in the Hamiltonian formalism, and calculated
also the covariance of the second-class constraint. Our
calculation will be similar to theirs, but in duality covari-
ant form.

We first consider the Virasoro algebras. Checking
[L+,L+]=0 (where "="means modulo generators of
the constraint algebra L+ and II ) is easy: They give no
constraints on the background, but only verify the ex-

pressions for L+ in terms of g and g . [L+,L ]=0
is then trivial: just use [L+,L+ ] and
L+ +L =

—,'Z Z~.
Witten effectively calculated (in addition to the

Virasoro algebras) [L+,B ) =0 and {B,B~[=0.
Shapiro and Taylor calculated the slightly stronger
constraints [L+,II ]=0 and [B,II&] =0. We will con-
sider conditions that are slightly stronger yet, which
in the conventional gauge are [L+, II ]=0 and
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, llpI =i5y pII, . The calculation of [L+,B ] and
[L+,II ] use just [II~,II ], while [B,Bp] and [B,lip}
uses just [II,llpI.

Invariance of the second-class constraints under con-
formal transformations requires

[L,II ]=0=.F~'~=0 .

[L+,II ]=0 can then be checked easily using
L++I =

—,'Z Z~. We also require that the second-
class constraints satisfy the same type of algebra as in
empty space: For some vector operator A„

III, IIp] =i5F p'ft, .

This can be obtained by constraining

g p p p7 Fp Fpgsg s)-

It then follows from the Bianchi identities that

y ~F ~ —0ap 5 eg a 5

Thus, all torsions are determined except F, ", which can
be fixed to 5, by a GL(D) transformation A,

We can now define the ~ symmetry generators B in
terms of a new tensor h (A' ) =0), with only h p~

nonvanishing (a covariant condition), as

h ~P —0 h ~P)' —h ~P~(g~d) —1 d)'

=B =h 'rl 11 =a P'A 11 +Z.»ll 11C p c p r p

=IB,II ]=i5h" F 'A Ap p~

Using the identity

]
g aha fl i g abII II +g apll 11 + 1 gapll

ft =11 +(g") 'gb I-I .

c( cd) —
lg d)

ap A%=-,g II~n~ =L =0

we then find the condition on h,
Thus, of all the tensors that are first order in derivatives,
only F p' remains undetermined. The last result can also
be written as

[II, IIp] = i 5F p'(g '
)

' II' .

As a consequence of these constraints, the Bianchi identi-
ties imply

F(ap Fys)E F(ap (g ) F) 5)

which is the generalization of the y-matrix identity
y ( py y~)=0forD =3 4 6, 10.

In 3D (D ' =2) the symmetric aP indices on F p
'

represent a vector index under

GL(D') =SO(2, 1)I3IGL(1)
(Lorentz and scale transformations). Thus there is a
GL(D) gauge in which F p' becomes the usual three-
dimensional (3D) y matrices. For a similar procedure to
work in general, we need to further restrict the tangent-
space symmetry A, p on II from GL(D') to the largest
symmetry that leaves the y matrices invariant, as dis-
cussed in the previous section. Then F p

' can be separat-
ed into a y-matrix piece and the rest, which is con-
strained to vanish to "preserve representations. " The ad-
ditional constraint is then

'V

F.c F'
ap 1 ap

V

for some Fd 'r, where y"p are the usual y (o.) matrices,
invariant under GL(2, A). Using the Bianchi identity just
derived, this implies

~a bF cF d gcd

which states that, up to a scale factor, F. is a vierbein
for g'".

In summary, the constraints are

g p=F p
=F

p =F~'&=0,
Y

ap f ap

which is the generalization of the y-matrix identity
y' gyp&=2r)' 5p. The solution to this condition is

g aPc daPF c
d

In fact, even without the earlier representation-
preserving constraint on F p ', the condition implies
that F ' and h P' together form the Dirac matrices
I =(~ ()) up to a unitary transformation [5]; however, at
least for D =4 and 6, an explicit expression for that uni-
tary matrix would be required, to separate chiral and an-
tichiral spinors so that chirality constraints on N can be
imposed. Therefore, we use the stronger representation-
preserving constraint on F p

' given above.

V. CONVENTIONAL GAUGE

We first consider the bosonic case. There are two ways
to choose duality-preserving gauges for the tangent-space
GL(D )SGL(D + n ) gauge invariance: (1) Choose the
gauge g~a =gwa leaving the coset space

SO(D, D+n ) ISO(D —1, 1)I3)SO(D+n —1, 1),
with residual local invariance

SO(D —1, 1) SO(D + n —1,1),
in the style of Duff [6]. Explicit solution of the gauge
condition gzz =g~~ requires breaking manifest duality
covariance. (2) Solve g,&=0 for e~, and use GL(D+n)
to fix the rest of e~M, which leaves for tangent-space in-
variance just GL(D), in the style of Maharana and
Schwarz [7]. In this gauge one works with just II„which
is unconstrained. (Duff and Maharana and Schwarz con-
sidered these reduced gauge groups for the d dimensions
where the fields were constant. )

The usual vierbein formalism can be obtained from ei-
ther of these gauges by further gauge fixing with only
SO(D —1, 1) gauge invariance remaining in the tangent
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space, in a way which breaks manifest duality invariance
but preserves the component A, gauge invariances: We
compare the transformation of ez

m —(gng e m e ng )m)

f' —1I'p =
—,Hp

F p'= —,'(c p' H—p'),

&eg =(&"B„e„+e„„&&")+eg "a[ k„)—e~„B

5e„=(A,"B„e„)—e„"B„X

with the usual gauge transformations

5e, =(A,"B„e, —e, "B„A, ),
fib „=(X~a,b.„b„[a„,X~)—a[.X„)+~, ,a„,X, ,

"=(x&a„w ")—a x",
to identify

II, =e, [P + A "Zb+X ,'(b„+—A
b 3 b+g„)],

II =e, [P + 2 Zb+X'" ,'(b„+A—b3 b
—g„)],

=z —x'

with g'"= —g' =g'" and g "=—
6q b

in 1.~.
The supersymmetric case is treated similarly: (1) Use

the g~~ constraints and some of the A. ~ gauge invari-
ance to fix g„B=rl „B;(2) use most of the remaining A, ~
gauge invariance to eliminate fields which are invariant
under k transformations (or to fix fields which trans-
form in the same way to be equal). The result is

H ='r

+a +a + pX eM Iba

F b'= —V 'b+F b'W' b,
where we have defined the usual duality-noncovariant
field strengths

AB =( [A B) ) M
C M C

M N PH „—=e„e, e, (-,a[„b„„+~[M„-a„~„,-),
M N C

~AB = A eB ~[M~ )

In the conventional gauge, since g' =g', we can use the
invariance to fix F~ =$5, . The remaining

tangent-space gauge invariance is just (the constrained)
Finally, we can use the scale part A, to fix f= l.

This leaves local Lorentz and internal symmetries.
The conventional-gauge form of the constraints is then

Hp=0,
7 ~ =0, c p

'= Hp '=y—'p,
C—

abc a( bc) & ~ah Y baP ~
This is the form of the constraints that comes naturally
from the superstring [8]. As in the bosonic case, making
a field redefinition (superscale transformation) of the viel-
bein to make the fields appear in more conventional form
would also complicate the form of the duality transfor-
mations.

VI. PREPOTENTIALS

+g +a 2X eM Qba

n, =z, —x™w,—w, rr. ,

rr =X'Me +W"rr —-'W Wp rrM 2 8 8 p &

YA—=e A [PM+ AM Zb+X' ,'(bNM+ 3Mb AN—b )],

where e A is the usual superspace vielbein, and eM its
inverse. We also have the super two-form bMN, the
Yang-Mills supervector AM, and a spinor 8' which
will be determined to be the Yang-Mills field strength by
the torsion constraints, and which appears in the affine
Lie algebra as the a component of A~ [3]. (There is
also the gauge where 8' appears in H only as the
linear term in II if we allow g z

= 8'
z and g-&

Wp .) This gauge is not manifestly duality co-
variant because it treats e~ and e~M difFerently. The
remaining A, z gauge invariance is given by just k p and

fab] fa b]'
In this gauge, the duality covariants reduce to

In D =3 and 4, these are the o6'-shell constraints for
N=1 conformal supergravity coupled to a physical ten-
sor multiplet, in the superscale gauge where the tensor
multiplet is gauged to a constant. This is the "string
gauge" [9], and also can be related directly to the usual
Weyl superscale gauge for supergravity by field
redefinitions equivalent to a change of superscale gauge.
In the bosonic case, this field redefinition is the usual one
which strips the dilaton dependence from the curvature
term in the action. The compensator multiplet, which
contains the degrees of freedom which complete confor-
mal supergravity to ordinary supergravity, does not ap-
pear in ez, but appears separately through coupling to
the world-sheet curvature or reparametrization ghosts,
just as in the bosonic case. This coupling has not been
derived in the usual Green-Schwarz formalism, since cou-
pling to the world-sheet curvature (and probably also to
the Lagrange multiplier for A symmetry) cannot be shown
to be gauge invariant without considering one-loop
efFects, which are not fully understood in the covariant
Green-Schwarz formalism; and the covariant ghost struc-
ture of that formalism, and therefore coupling to those
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ghosts, is also not completely understood. However, the
curvature coupling in D=4 has been described in a
modified Green-Schwarz formalism by Berkovits [10],
and the result agrees with that obtained by other argu-
ments [9]: The compensator multiplet is a chiral scalar
superfield, which gives the auxiliary field structure of
"old minimal" supergravity. In D =6, the (self-dual) ten-
sor multiplet is itself a compensator multiplet, though it
appears with the correct sign in the action to describe
physical fields [11]. (In D =10 the situation is not clear,
since the superconformal group does not exist there. )

In D=3 the d.uality covariant torsion constraints of
Sec. IV can be solved in a manifestly duality covariant
way in terms of the components e of the vielbein,
where e is the unconstrained superfield describing 3D
supergravity, as usual [12] (the analogue to e, in the bo-
sonic case), e M describes the tensor multiplet (the analo-
gue to e, ), and e describes the vector multiplets, as
usual (the analog to e, ). In D=4 there is also a
representation-preserving constraint to solve: Again us-
ing 4D Weyl spinor notation to write the spinor index as
(a, a), we solve this constraint as usual [13]:

H. =A. "e Z. e 8'= 8' Za a P

We then have the analogous expression for the deriva-
tions:

e =A "e B e, m=8' iB~.
(We have used the fact that F p

~=0 follows from the
other constraints [14] by the F Bianchi identities. The ex-
pression for e determines e only up to d f terms,
but e is unambiguously determined by the expression
for II .) W is the usual unconstrained superfield
(prepotential) of 4D %= 1 supergravity, WM describes
the tensor multiplet [10], and W is the usual prepoten-
tial for vector multiplets. Duality than acts on the M in-
dex of 8' in the obvious way. 8' is basically a
complexification of the group element A. It has the
(finite) gauge transformation

—'A 8' ':" / ~MZ
M

=0 except B„+&0,
where the new (mostly) antichiral parameter = gives an
invariance because its exponentials can push past the Z„
in II„(or B„ in e„) to cancel, and g" is unconstrained be-
cause A " transforms to cancel that piece. There is also
the additional gauge transformation

WiM WM+ AM(

which leaves W invariant (as the gauge transformation
for gauge transformation did for A). As in supergravity,
it is generally convenient to work with the A-invariant
combination

eU ewew

in terms of which H can be expressed by a suitable
nonunitary similarity transformation. (U is basically the
real part of W. )

Berkovits [10] used the Ogievestsky-Sokatchev form of
U [15], which is related nonlinearly to ours [16], and
thus the resulting duality transformations for his formal-
ism [17]are also nonlinear in it (and so nonmanifest). His
choice of fields corresponds to choosing the gauge
W"= W"= W„=0 (using the gauge parameters A,~, P,
and g„). In this gauge the constraints g &=g.&=0 are
satisfied automatically, while he imposed a constraint
equivalent to g &=O.

In general dimensions the constraint g &=0 (switching
back to arbitrary-D spinor notation) can be solved explic-
itly by imposing an appropriate antisymmetry condition
on e „. Although this solution does not break manifest
duality, since it does not effect the vector indices on
which SO(D, D +n) acts, we can instead treat the con-
straint as a field equation. In fact, in D = 3 all the torsion
constraints can also be taken as field equations, although
there is no advantage, since they are all "conventional"
constraints which simply determine redundant variables
in terms of e . Similar remarks apply in D =4, except
for the representation-preserving constraint, which is
necessary to write chiral actions with N, and introduces
U as the basic field. In D =-4 we already treat the p in-
dices differently when solving the representation-
preserving constraint in terms of W. (In principle, we
could also treat g~=O as a field equation, even in the
bosonic case. ) The four-dimensional case of this super-
space will be considered in more detail in a future paper.

VII. CQVARIANT DERIVATIVES

We now want to construct covariant derivatives in
analogy to ordinary gravity:

V ~ =e~ +co~~ G@ +co~~ G@

where G and G are the generators of the left- and
right-handed GL invariances. They act on all tangent-
space indices in the usual way:

G~ V@ =5@ V~, G~ V

(In the supersymmetric case co„& is restricted on its
group indices, so the only parts of G~ that contribute
to the covariant derivative are the ones appropriate to the
restricted group. ) Since the commutator of two II's in-
cludes 6' terms, a more convenient way to define torsions
and curvatures is through the analysis of group elements
with tangent-space indices A, . We first convert the ex-
pression for the Lie derivative to tangent-space indices by
converting coordinate-space indices with the vielbein
(A, =k e~ ), and adding and subtracting GL-
connection terms to convert derivatives into covariant
ones:

[i 2] [&~&~2] z [» ~] ~i ~z Tac
C C

TAB FAB + (~[AB) +T~ [ AB) )
C & C

C & CK[gg) +—K
[ gg]

+AB ~AB +~AB
C C



SUPERSPACE DUALITY IN LOW-ENERGY SUPERSTRINGS 2833

This torsion can be set consistently to zero in the bo-
sonic case. In the supersymmetric case, where the
tangent-space group is restricted to be smaller than these
GL groups, some torsions do not contain connections;
these torsions were constrained in Sec. IV. Furthermore,
we can set the tangent-space metric to be covariantly
constant:

co-dependent TAB =VAgBc =0—-~~+ = —E~&
C C C

~A(xc] eAg%8 ~ ~[Axe) 3+[A.xc)

and similarly for A+-+A. (The two constraints are partly
redundant, since T~ii =0 —' V' „gi))c=0.) Unfortunate-c
ly, there are no corresponding F"s for the remaining con-
nection co~(&@)+co&(~&), since ~~&& (and 5'~&&) has
the full tensor structure of an arbitrary third-rank tensor,
while E~ contains only F[~+) and e~g.

However, because we have an integration measure N,
we can define V' to satisfy integration by parts:

N V VAR= — 4 AVAV ~TA=4 V' + =0
B— F @2~e + 2

BA A= A

for arbitrary 2 and V". This new F satisfies the Bianchi
identities

(b P)CV' V[C a)

including spinor curl: V'[ V&)
.
,

H g V[E V$) ~
P 6 yE

Another way to see the importance of this gradient and
divergence is to note that the transformation laws of the
vielbein and dilaton written with gauge parameters with
tangent-space indices are

64 =N V„A,

AM )e g (V(g ~c') Tgc ~D )

+(I,„—A, coc„) .

In the second transformation law the latter set of terms
vanishes for appropriate values of the indices (the same
for vanishing of A, ~ as for vanishing of roc„): For ex-
ample,

(5e~ )e~~ = —(5e~ )e~~ = —(V(~k~) —T~~ Xc ) .

In the conventional gauge these covariant derivatives
become fully covariant with respect to the residual
Lorentz gauge invariance: For the bosonic case,

e[ A I'B)—&CFAB
C C

eAF "+—,'F A +—&A Bg —F[ABc)

)(eag~c) =o .

ab ab 2 ab & ab ab 2 ~ab

where A is the usual matter-free Lorentz connection, and
thus the torsion T,b, =+H,b, is the usual left- or right-
handed torsion of the string [18].

This is the analogue of the usual relation

[V„,Vi) I A =Tqii VcA,
where the extra term in TAB from the new Lie deriva-
tive drops out because of the identity (e "A )e„B=0 (and
similarly for the V ~ In& term in T„).

This means that the only kinds of covariant derivatives
defined are

scalar gradient: V~ A;
"o6'-diagonal" gradient: V V+,

Lie derivative:

divergence: V~ V

2] 2 V[1+V 2]

(and A~A. ) and combinations of these (since the covari-
ant derivative is a linear operator). In the supersym-
metric case there are also certain spinor derivatives:

Another reason this new torsion TA occurs is because we
have 8 B~=0 as well as B[~B&)=0. Thus, in addition to
the usua1 torsion, which is generated by commutators, we
have a new torsion generated by a d'Alembertian:

0=5MB A =(e A )e„=(V"A )V'~

-=V V' 3 = —T V "A

VIII. CURVATURES AND ACTIONS

In this section we consider mostly just the bosonic
case. To construct curvature tensors (including field
equations) and actions, we first consider the linear ap-
proximation

M ( M)+h B( M)

Because of the gauge transformations and constraint

~~ AB ~AB d[A ~B) &
0 g~~ h~++h~

we can consider without loss of generality only expres-
sions involving h~ and the linearized dilaton:

C '=1+/,
5$ d A'~ 5h~x d

Then we find there are no objects first-order in derivatives
which are invariant under these gauge transformations
(torsions). In the supersymmetric case, the tangent-space
gauge group is restricted, so there are torsions, as dis-
cussed in Sec. III. However, even under these unrestrict-
ed transformations there are some invariants second-
order in derivatives (curvatures):
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R = P+d d h~~,

R~~ = h~~ —d~d h@~+d~d h~@+d~d~P,

R~xex =d[~ d[c~x]xj
=d~d~= —d~d- .A

The analogous tensors in pure gravity are the Ricci sca-
lar, traceless Ricci tensor, and Weyl tensor (which they
contain). They also have a corresponding physical inter-
pretation: R =0 and R~&=0 are the field equations
from varying N (p) and eA (h~&), while R~&&& is the
on-shell field strength. However, in this case they cannot
be combined into a single curvature tensor because there
are no such covariant traces. (This is similar to super-
gravity, where they fall into separate multiplets. ) The

simplest globally covariant gauge is

f~ =d h~~+ ,'d~—P=f~ = d—h -+—,'d-P=O

'R~~= h~g, R = —,'UP .

These tensors satisfy the linearized Bianchi identities

d [~Rxe —- -0

d[~ R~Ip
x

d~R = —d R~~,
and similarly for A+-+A. .

The linearized gauge-invariant and gauge-fixed La-
grangians are

—J5L=I R6$+R~~5h
=L = ——,'(t P Pd d —h~- ——'h h~~ ,'(d h~—-)—+ '(d h~-—

=L —
—,'f~ + ,'f~ = ———,'P P —

—,'h h~~ .

We now consider the fully nonlinear generalization.
We can define naive covariant derivatives satisfying the
torsion constraints, but we must demand that the un-
determined pieces of the connection drop out of all true
tensors. The naive cur vatures, defined by replacing

f( AB) with F„B in the usual definition to make them
covariant,

D D E D E D
(])ABC = [ A ~B)C +~[A~C I(B)E AB EC

are kA noncovariant as a result of this replacement:

~r(1)ABc (co ariant) —
—,~Bc (e ~(A) )gF)B)

D ~ l D E F

After a modification to simplify this transformation law,

D- D & D E
(2) ABC r(1)ABC 2 ~EC g

D
r(2) ABC

=(covariant) —coze (e XA )gFB,D E F

and a further redefinition to make the transformation
more symmetric,

D D i D E
r(3) ABC = r(2) ABC

—~EC

B D
(3)A C

= (covariant) —
—,coze e X A + —,~BAE B & B E D

we can define a covariant tensor (but still containing
undefined connections)

ABCD =
g ( (3)ABCD +r(3)CDAB )
1

Truly covariant tensors can be defined by taking ap-
propriate traces, so that the remaining components of the
connection are only those that can be defined by the
above torsion constraints. It is sufticient to look for non-
linear generalizations of the curvatures obtained from the
linearized analysis. Unfortunately, because the undefined
components of the connections do not drop out of any of
the above r~&'s, there is no nonlinear form of this cur-
vature. (In particular, because of the index symmetriza-
tion in R ABcD, the desired linearized expression cancels. )

This situation is similar (and perhaps related) to string
field theory, where covariant nonlinear expressions exist
for field equations but not for on-shell field strengths.
However, nonlinear forms of the other tensors do exist:

[&w, ~&) &—:R~&V .R~&=2R&~& =2R&~ =(e&F~ F Fc)—(ecF— -~ —F —@F- ~-),

where we have used the torsion constraints and F Bianchi
identities. We also have

A+

=e~F + —,'F ~ +—,'e~eg ——2F~+

+~~F(~~@) '+ l(e & )(exg~c ) ~

where the last expression equals minus the same expres-
sion with left- and right-handed indices switched.

Since the full nonlinear action must be homogeneous of
order 2 in 4 (since it is the only density around), and
R =0 is the only duality covariant field equation that can
result from varying the action with respect to @ (this re-
quires R be a scalar, since 4 is a density), it follows that
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6S =.S=—f d x@R
54

(We can also write a cosmological term Jd x 4 .) From
the general variation of the action

—gS= J Rgcy2+C2R~&e Mge

we find that invariance of the action 6S=0 under gauge
transformations requires

V R~~+ V~R =V R~ —V~R =0,
which are just the Bianchi identities (as in ordinary gravi-
ty).

For R~+, the torsion constraint T~ =0 is necessary
to make undefined connections drop out. On the other

l

hand, R can be expressed in terms of the torsion and the
vielbein (and its derivatives) alone, which allows the bo-
sonic action to be written in first-order form. The identi-
ty between the —

—,'R~ and —,'R~ + forms holds
only for the second-order formalisms (i.e., after imposing
the torsion constraints); before imposing the torsion con-
straints,

—VgT'+-,'T z '+-, V~Vag

2 2
432 T( ABC] 96 ( ~( A gBC] )

The connection-independent pieces of this identity are a
Bianchi identity of the F 's. The two forms of R give two
di8'erent first-order formalisms for the theory. For exam-

ple,

~&= ~
(

~ ~(~&&]2+ ~ ~(~&(']y )+ 2( ~ ~ (~»2 —2e ~ (~» ~ (~»e Cg )
iZ 2~ [ASC) % A S S AC

1
( l~(ABC"]2+ 1 (ABC]e ) 1( 1 ~ (AX]2+ (AS]ec )+( 1 A%82+~A%C~e(agee] co~ e g~@

(The term —e~co& ( ' produces a term F&co& ( ' upon
integration by parts in the Lagrangian —@ R.) Thus,
varying the connections in the first-order form

S=fd x@ —'(R —R-- )4 ~+ AS

gives the correct second-order form, as well as determin-

ing almost all the connections we have already found.
In the supersymmetric case the form of the oft'-shell

field strengths (appearing in the field equations) follows
from the usual ones for the scalar and vector multiplets,
at least for D =3 and 4 (and to some extent, 6): The gen-
eralization of R comes from varying the action with

respect to the dilaton superfield (scalar multiplet). There-
fore, in D =3 it is a real scalar superfield, while in D =4
it is a chiral scalar superfield; in D =6 the form depends
on the formulation of the scalar multiplet. These
superfields already appear in pure supergravity (since the
scalar multiplet appears as a supersca1e compensator
there also). The generalization of R~& is found by taking

the field equations of the vector multiplets, which carry
an index b, and generalizing that index b ~% to preserve
the local tangent-space symmetry. (So R b, which

represents the field equations from varying the vector
gauge fields A,&, becomes R,+=R~ in the bosonic

case. ) Thus in D = 3 the vector multiplet gauge superfield
3 b leads to R~, while in D =4 the scalar prepotential

Uz yields R~, and in D =6 the scalar, isotriplet prepo-

tential V~, ~
gives R[, .~. For example, in D =4 R is the

usual second field equation for pure supergravity, but it
now has absorbed the tensor multiplet in the string gauge
for super scale transformation s. The bosonic field

strength R, appears at order 00 in R+. This structure

rejects the fact that the closed-string spectrum is the
direct product of open-string spectra: The closed-string
superfield is the direct product of a single left-handed
vector-multiplet superfield (as a function of the left-
handed spinor coordinate 8) with a right-handed bosonic

I

multiplet g~ consisting of a vector g and scalars P~.
(The scalar multiplet, representing the superscale com-
pensator, is the direct product of a left-handed super
Yang-Mills-ghost scalar multiplet with a right-handed
bosonic Yang-Mills-ghost scalar [9].)

IX. SUMMARY

Finally we outline the fundamental results: This ap-
proach to certain field theories is derived from the string
by beginning with the oscillator algebra

[ZM( 1 »zx(2) I
= i&'(2 —1)9'

which defines a global symmetry (duality) acting on these
superindices, as we11 as a local symmetry with group ele-
ments e ' generated by ZM,

A= xMZM .

The gauge invariance of the gauge invariance,

fizM=a X SA=o,

follows from the fundamental identities

~ =z a ~, (a ~)(a a)=a a ~=o,
which reAect the triviality of winding-mode dependence
(but in a weaker way). The group algebra defines a new

Lie derivative

[A„A,]= A„„A,„„=A,"„a„A,„——,'A, „a A,„
Background fields are coupled by covariantizing ZM..

M M NH g eg Z1Lf gag eg eg 1M'

Their algebra defines A, -covariant objects F:

[II (1),II (2) I
=i5'(2 —1)—,'[g„(1)+g„(2)]

+l 5FAB +C
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The definition of the first-class (Virasoro) constraints re-
stricts the tangent-space metric and gauge group:

g~+ =0—L, + =
—,g HH~,A%

in analogy to pure supergravity in ordinary superspace.
Also as ordinary superspace, this solution generalizes the
gauge group:

—iA W i= = PMZ

The resulting gauge transformations of the background
fields are

nil, =
t
—iA, II„]+X„'ll, ,

A, %=RA-%=0 -heAM=(AXB eAM+e B™~N})A ~ A N A AX

B„g =0 except B„g'%0

plus the analogue of the gauge invariance of the gauge in-
variance:

pTlM —~M+ QMg

~g AB ~ ~Mg AB +~( AB I

M

+X 'e, M,
The new transformations replace the old when we work
with the A-invariant combination

The dilaton is introduced as a density to allow actions:

se'=a (x e')
In the most general case (supersymmetry) the indices

take the values M
= (M, , ) and

A =(A,A ) =(a,a, cz;a, a ) .

The identification of H as the second-class constraints
produces further restrictions on the tangent space:

g p=o, a =X P=H P rX =O.a 5

As a result, the connection-independent torsions are

Fp, Fp', Hp ~ F(, F~C c, r r c, r

H r, 'F~'.
The requirement that the constraint algebra takes the

usual form constrains these torsions:
'V~=F =F ~ r=P F ~r=.,d F r

ap apr ~ ~ ap & ap

To preserve the last (representation-preserving) con-
straint, X p must be constrained to Lorentz, scale, and
internal symmetries. This constraint also allows
definition of the ~-symmetry generators. The Bianchi
identities show that the remaining connection-
independent torsions are also constrained:

eU eWeW

Although we would like a fully general co variant
derivative

VA =eA+coA@ GP +coA~ 6@C X C

the new Lie derivative and corresponding gauge transfor-
mations modify the torsion to

AB AB +(~[AB) + 2~ [AB))
c c C i C

so that the connection constraints

~-dependent T» =VAgBc =O=co~z = —F~~

A(xc] e~gp & ~[~+@) F~+p)

do not determine all the connections. Integration by
parts for the measure @ defines the new torsion and con-
nection constraint

T:—NV N =0
A

—-CUBA = —F„—:—4 e A4B 2~ —2

which determines another piece of the connection.
The identity 0 BM =0 makes traces a fundamental part

of the definition of curvatures a well as torsions:

R~& =2R&~& =2R &~ =(e&F~ F~ F&)—C C C

If the tangent-space group is partially fixed to leave
just the usual Lorentz and internal symmetries, the resid-
ual fields can be identified as the usual (super)fields. The
resulting form of the constraints is the string gauge with
respect to (super)scale transformations, obtained from the
usual background formalism for the string.

In D =3 the torsion constraints can be solved oA shell
for eA in terms of e . In D =4 the representation-
preserving constraints further determine the latter (and
thus II ) as

' —Fe~ Fe~'»
AX lR AX

AX

=e~ F + —,'F ~ +—,'e~ e+g —
—,'F~

[~re) ' —'( g )( x&~e) .

These curvatures satisfy the Bianchi identities

H.= W. &e wZ„e-w, H. = A. "e Z. ea a p
V R~~+ V~R =V R~ —V~R =0 .

ZM, e =A )"e 8 e, m=8 iBM In the bosonic case the action is simply
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