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Equations of motion for spinning particles in external electromagnetic
and gravitational fields
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The equations of motion for the position and spin of a classical particle coupled to an external
electromagnetic and gravitational potential are derived from an action principle. The constraints
ensuring a correct number of independent spin components are automatically satisfied. In general the
spin is not Fermi-Walker transported nor does the position follow a geodesic, although the deviations
are small for most situations.
PACS number(s): 03.20.+i, 04.20.Fy

The derivation of the equations of motion of classical
spinning particles in external axed fields has occupied
physicists for over 50 years. In special relativity it was
first attacked by Frenkel [1]. Using his work as a ba-
sis Bargmann, Michel, and Telegdi [2] discussed the pre-
cession of spinning particles in external electromagnetic
fields. It is amusing to note that, even today, there is a
controversy as to the torque and force on such particles
in space- and time-dependent fields [3]. The discussion of
a spinning particle in an external gravitational potential
goes back to Papapetrou [4] who endowed a particle with
spin by considering a rotating mass-energy distribution
in the limit of vanishing volume but with the angular
momentum remaining finite. Results were obtained us-
ing Grassmann variables and supersymmetry [5, 6]. In
Ref. [7] a crucial constraint, Eq. (5) below, is satisfied by
expressing the spin tensor as a product of two Grassman
variables; the equations of motion are then derived us-
ing a Dirac-Poisson brackets formalism. There is an ear-
lier work relying on finite representations of the Lorentz
group [8]. An attempt at a general procedure was made
by Khriplovich [9]. Much of the emphasis in the above
works is on the equations for the spin components; in
Refs. [1,3, 4, 6—8] the equations for the motion of the posi-
tion of the particle are discussed while in the other works
these are either ignored or are incomplete. In Refs. [7,
8] either the mass or the relation between proper and or-
dinary time has a spin and field dependence. Recently,
the phenomenological eKects of an ad hoc, parity violat-
ing term in the equations for the position were studied
[10]. We shall present a canonical procedure, not rely-
ing on any analogy with relativistic quantum equations
or on the use of Grassmann variables, for obtaining the
equations of motion, both for the spin and position. The
results are identical to those that would have been ob-
tained using the method of Ref. [1].

We shall obtain the equations of motion in terms of
the proper time w of the particle. The position of the
particle will be denoted by x" and the spin will be de-

scribed by the antisymmetric spin matrix S b. As usual,
Greek indices will denote covariant vectors, tensors, etc. ,
and Latin ones those in local Lorentz frames; these are
connected by the vierbein field e (x). The spin matrix
satisfies the Poisson relation

8 f dry =0,
hx~

= {'R,S b),
(2)

w is the proper time. All the variables we have consid-
ered are not independent, but satisfy various constraints.
With u", the four-velocity, these are

D D~=l)
S bs =28',
S bu =0.

(3)

(4)
(5)

Equation (3) guarantees that r is the proper time and will
be satisfied as long as 'R is written in a reparametriza-
tion invariant forin and Eq. (5) is satisfied. Equation (4)
ensures that the spin of the particle is constant and is
equal to 8; it is automatically satisfied for all situations
considered. Equation (5) results from the fact that in the
particle's rest frame the spin tensor has only three inde-
pendent components; it is this constraint that causes all
the complications.

For a particle in an external field derived from a vector
potential A& and a gravitational field specified by the
spin connection u a tempting Routhian is

{Sabr Scd) = 'gacSbd + 'gbdSac 'gadSbc gbcSa'd
&

with g b the Oat space metric. It will prove to be conve-
nient to obtain the equations of motion for the position
from a Lagrangian and those for the spin &om a Hamilto-
nian; such a combined procedure calls for the introduc-
tion of a Routhian [11] 'R(x", S b). At the end of this
work we shall provide an expression for the action. The
equations of motion are
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u ub u ua
Sab Sab Sac Scb (7)

m is the mass of the particle and e is its charge; g is
the gyromagnetic ratio and v specifies the strength of
gravitational magnetic moment coupling introduced. in
Ref. [9]. This is the most general Routhian not involving
derivatives of the field strength tensor or of the Riemann
tensor and not involving terms of the form S bu . Un-
fortunately, the equations of motion derived using 'Ro do
not satisfy the constraints of Eq. (5). There are two pro-
cedures that will guarantee this constraint; both give the
same equations of motion. One can follow the method of
Ref. [1] and add to 740 the constraint multiplied by a La-
grange multiplier. We shall follow a different procedure.
First define

u b D S bub'R = m u2+ euA. ——w S b+

+ I" S Vu2 — R '"S S vab cd

Here, D denotes a covariant derivative and we have used
the identity

du S ub

d7 u 2 D7 u 2
Sab = ——(d Sab .

The spin vector satisfies s s = s and the constraint
s u =0.

A desired Routhian is obtained by replacing all S b s
in Eq. (6) by S b's and by adding (du /dr) S bu /u to
it:

The Poisson brackets of the S b's is the one given in
Eq. (1) with the metric tensor q b replaced by q b-
u ub/u . The S b are related to the spin vector s by

a 1 abed ~
&bcud )

2
c dSab &abed S

The fourth term in Eq. (9) involves the acceleration ex-
plicitly; it adds the Thomas precession term to the equa-
tions of motion for the spin and ensures that S bu may
be set equal to zero.

The equations of motion, with Eqs. (3)—(5) satisfied,
for the spin tensor are

DS b Du eg d K d y

D~
+ ( S b—ubu Sb ) = — F + S S d) )S (Sbd —ubud) + S d(71 b—u u )]Dw 2m 2m

This expression is consistent with Eq. (4) and Eq. (5). The equations of motion for the coordinates of the particle are

m " —eF„„u ——B„SduD "" 2

eg d K d y
Cd Cf Jtl

Dud ~

e„E u Sp, d — B S du Shy
D h, eg, d v. cd~ y

D~ " 2m 2m

These equations are exact. Except in the case of large gravitational field gradients the modifications due to the spin
will be small [12]. It is interesting to study various limits of Eq. (12). If we ignore the right-hand side of that equation
and plug the results into Eq. (11) we obtain

DS b eg d r+ + Scf (Sacgbd + Sbdgac) + + + + Scf (Sacubud + Sbduauc)
e(g —2),„(K—1)

D7 2m 2m 2m 2m

We know that the electromagnetic part of the equations
of motion for the spin simplify in the case g = 2; we also
see that there is a simplification for the gravitational part
in the case K = 1. That the Dirac equation

transport are very small, except as mentioned earlier, in
the presence of large gravitational fields and gradients.

Another interesting limit is the situation of no electro-
magnetic field and v = 0. The equation of motion for the
position of the particle is

p e"
~

iaaf„—eA„+ —~'„"Sd
~

@ —mQ = 0, (14) Du„ l,d „tD2u" l'

(15)
with S d expressed in terms of the Dirac p matrices,
yields g = 2 is well known; it also yields K = 1. We
note that even in the presence of only gravitational cou-
plings, but with K g 0, the spin is not Fermi-Walker
transported [12, 13] and Eqs. (11) and (12) difFer from
those in Refs. [7, 6]. The corrections to Fermi-Walker

This agrees with the equations in Ref. [4] but diff'er from
those of Refs. [7, 6]; we note that spinning particles do
not follow geodesics. The term involving the time deriva-
tive of the acceleration has been interpreted, in Ref. [4],
as being responsible for classical Zitterbemegung; in the
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following sense we agree with this interpretation: in the
absence of gravitational interactions a spinning particle
will oscillate in the plane perpendicular to the spin di-
rection with a frequency cu = Ejs; s = S S s j2 is the
magnitude of the spin vector. If we set ~s[ = h/2 we re-
cover the quantum mechanical Zitterbetoegung frequency.

In the nonrelativistic limit Eq. (12), for a purely mag-
netic dipole interaction, is

dv' cg eg d
m = V(H s)+ —(E x s),

2YD 2m dt

s is defined in Eq. (8). This expression agrees with the
force equation advocated in Ref. [3].

For completeness we present an action which corre-
sponds to the Routhian of Eq. (9). A convenient ap-
proach is to add a Wess-Zumino [14] term. For closed

paths in proper time we introduce a two-dimensional
manifold M parametrized by y~, y2 whose boundary is
the path ~. The action is

BS BS
dye dy2& TrS + d7 R .

By By@
(17)
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The canonical equations obtained from the double inte-
gral yield the Poisson brackets of Eq. (1). The above
action may be amenable to quantization by path integral
methods.
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