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Arlen Anderson* and Jonathan J. Halliwell
Theory Group, Blackett Laboratory, Imperial College, South Kensington, London S8'72BZ, United Kingdom

(Received 19 April 1993)

We study an information-theoretic measure of uncertainty for quantum systems. It is the Shannon in-
formation I of the phase-space probability distribution (z~p~z ), where ~z) are coherent states and p is
the density matrix. As shown by Lieb I 1, and this bound represents a strengthened version of the un-

certainty principle. For a harmonic oscillator in a thermal state, I coincides with von Neumann entropy,
—Tr(plnp), in the high-temperature regime, but unlike entropy, it is nonzero (and equal to the Lieb
bound) at zero temperature. It therefore supplies a nontrivial measure of uncertainty due to both quan-
tum and thermal fluctuations. We study I as a function of time for a class of nonequilibrium quantum
systems consisting of a distinguished system coupled to a heat bath. We derive an evolution equation for
I. For the harmonic oscillator, in the Fokker-Planck regime, we show that I increases monotonically, if
the width of the coherent states is chosen to be the same as the width of the harmonic oscillator ground
state. For other choices of the width, and for more general Hamiltonians, I settles down to a monotonic
increase in the long run, but may sufter an initial decrease for certain initial states that undergo
"reassembly" (the opposite of quantum spreading). Our main result is to prove, for linear systems, that I
at each moment of time has a lower bound I, '", over all possible initial states. This bound is a generali-
zation of the uncertainty principle to include thermal fluctuations in nonequilibrium systems, and
represents the least amount of uncertainty the system must suffer after evolution in the presence of an
environment for time t. I, '" is an envelope, equal for each time t, to the time evolution of I for a certain
initial state, which we calculate to be a nonminimal Gaussian. I, '" coincides with the Lieb bound in the
absence of an environment, and is related to von Neumann entropy in the long-time limit. The form of
I, '" indicates that the thermal fluctuations become comparable with the quantum fluctuations on a time
scale equal to the decoherence time scale, in agreement with earlier work of Hu and Zhang. Our results
are also related to those of Zurek, Habib, and Paz, who looked for the set of initial states generating the
least amount of von Neumann entropy after a fixed period of nonunitary evolution.

PACS number(s): 03.65.8z, 05.40.+j

I. INTRODUCTION

One of the most important features of quantum
mechanics is the uncertainty principle:

AxAp ~—
2

Although frequently interpreted as a statement about the
precision of measurements, it may also be taken to mean
that there is intrinsic uncertainty in any phase-space
description of quantum systems. This uncertainty may
be especially significant for systems in certain states, such
as the ground state. However, in many quantum systems
of interest there is additional uncertainty due to thermal
fluctuations, and moreover, there may be regimes in
which the thermal fluctuations dominate. A number of
questions then naturally arise: Is there a useful measure
of uncertainty due to both quantum and thermal Auctua-
tions? And, if so, what is the lower bound on this uncer-
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tainty, analogous to (1.1)'? What are the regimes in which
each type of fIuctuations dominate? This paper addresses
these questions.

Apart from being of interest in their own right, there
are a number of specific motivations for studying these is-
sues. The principal one concerns the general question of
the emergence of classical behavior in quantum systems.
Understanding this issue is one of the main aims of the
decoherent histories approach to quantum mechanics
[1—4]. There (and in other approaches [5—9]), the pro-
cess of decoherence is held to play an essential role. This
process typically occurs as a result of interaction of the
system under scrutiny with a wider environment. But
this same interaction also leads to essentially random dis-
turbances of the system, driving it off its classical path.
The probabilities for histories are typically found to be
peaked about classical histories, with some width deter-
mined by quantum effects and broadened by thermal Auc-
tuations induced by interaction with the environment [1].
It therefore becomes important to gain a quantitative un-
derstanding of both types of fluctuations, and to find the
regimes in which each are important.

In this paper we will explore an information-theoretic
measure of uncertainty due to both quantum and thermal
effects, suitable for the nonequilibrium quantum systems
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used in decoherence models.
We begin in Sec. II by describing the necessary back-

ground. We first review some aspects of information
theory. We then introduce a quantum-mechanical
phase-space distribution. It is the distribution

p(p, q) = (zip lz &, (1.2)

where p is the density matrix of the system and ~z ) are
the coherent states. Our chosen measure of uncertainty
is the Shannon information I of this distribution:

I = — p p, q lnp p, q
dp dq
2~%

(1.3)

(1.4)

This is sometimes called Wehrl entropy [10]. As we shall
explain, the uncertainty principle manifests itself through
the inequality

decrease the uncertainty.
(3) There is the uncertainty due to the coupling to a

thermal environment. This has two components: dissi-
pation and diff'usion (the latter being responsible for the
process of decoherence). This generally tends to increase
the uncertainty as time evolves.

The point is that the lower bound I, '" includes the effects
(1) and (3), but avoids (2).

Finally, in Sec. VII, we summarize and discuss our re-
sults. We compare our results with calculations of Hu
and Zhang [12], who calculated the time evolution of the
usual uncertainty function for a particular initial state,
and determined the time scale on which the thermal Auc-

tuations catch up with the quantum fluctuations. We
also compare with the results of Zurek, Habib, and Paz
[7,8], who looked for the set of initial states which gen-
erate the smallest amount of von Neumann entropy after
a fixed period of nonunitary evolution.

with equality if and only if p is a coherent state [10,11].
Our main aim is to generalize (1.4) to include the effects
of thermal fluctuations in nonequilibrium systems.

In Sec. III we study the properties of I for a simple
equilibrium system —the harmonic oscillator in the
thermal state. This simple example clearly illustrates
how I supplies a useful measure of both thermal and
quantum fiuctuations. We then go on, in Sec. IV, to con-
sider nonequilibrium systems, the main topic of this pa-
per. We describe an important class of nonequilibrium
systems consisting of a distinguished system coupled to a
heat bath (often referred to as open quantum systems).

In Sec. V, we discuss the time evolution of I for non-
equilibrium systems. We show that I, generally settles
down to monotonic increase. There is, however, the pos-
sibility of an initial period of decrease for specially
chosen initial states which reassemble (the opposite of
wave-packet spreading).

In Sec. VI, we describe our main result. This is the
demonstration that I, has a nontrivial lower bound, the
generalization of the Lieb result (1.4) to include thermal
ItIuctuations in nonequilibrium systems. The function
I, '" bounding I, from below is generally not the time
evolution of I for some particular initial state, but is an
envelope. The initial state which achieves I, '" at time t
(but generally not at any other time) is a nonminimal
Gaussian t. I, '" is a measure of the least amount of
quantum and thermal noise the system must suffer after
nonunitary evolution for time t. The bound reduces to
the Lieb bound in the absence of an environment.

As we shall explain, there are three contributions to
the uncertainty.

(1) There is the uncertainty intrinsic to quantum
mechanics, expressed through the uncertainty principle
(1.1). This is not dependent on the dynamics. It is this
uncertainty that is referred to by the expression "quan-
turn fluctuations. "

(2) There is uncertainty that arises due to the spreading
or reassembly (the reverse of spreading) of the wave pack-
et. This effect depends on the dynamics, and because
quantum mechanics is time symmetric, it may increase or

II. BACKGROUND

We now review the necessary background.

A. Information theory

Suppose one has a set of probabilities p; for a data set S
consisting of discrete set of alternatives labeled by i,
i =1,2, . . . , %. One has 0(p, (1 and g,p,. = l. Then
the Shannon information of the data set is defined to be

N

I(S)= —g p,.lnp, (2. 1)

Here, ln is the logarithm to base e. I(S) satisfies the ine-
qualities

0(I(S)& in% . (2.2)

I(X)=—J dxp(x)lnp(x) . (2.3)

Unlike the discrete case, I(X) is no longer positive, since
p (x) is not a probability, but a probability density, so
may be greater than 1. However, it retains its utility as a
measure of uncertainty. This is exemplified by a Gauss-

It reaches its minimum if and only if p,. =1, for one par-
ticular value of i, and so p; =0 for all the other values. It
reaches its maximum when p, =1/N for all i. The infor-
mation of a probability distribution is therefore a mea-
sure of how strongly peaked it is about a given alterna-
tive. For this reason, I (S) is sometimes referred to as un
certainty, being large for spread out distributions and
small for concentrated ones. This nomenclature is ap-
propriate for purposes of this paper. The expression (2.1)
is also often referred to as the entropy of the distribution,
but we will not do so here, reserving the word entropy for
the von Neumann entropy of quantum statistical
mechanics (discussed in later sections).

In a similar manner for continuous distributions, let X
be a random variable with probability density p (x).
Then fdx p(x)=1. The information of X is defined to
be
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ian distribution of variance Ax:

1p(x)=
[2m(bx ) ]' exp

It has information

(x —xo)
2(hx )

(2.4)

coherent state wave functions. The function p(p, q) is
normalized according to

It is readily shown that p(p, q) is also equal to
I(X)=in[2vre(bx ) ]' (2.5)

From this we see that I(X) is unbounded from below,
and indeed, approaches —oo as b,x ~0 and p (x) ap-
proaches a 5 function. I(X) is also unbounded from
above, as may be seen by taking the width Ax to be very
large. However, if the variance is fixed, then a straight-
forward variational calculation shows that I(X) is max-
imized by the Gaussian distribution (2.4). We therefore
have the important inequality

I(X) (1n[2~e(b,x) ]' (2.6)

The generalization to probability distributions of more
than one variable is straightforward. For example, one
has

I(X, Y)= —f dx dy p(x, y)lnp(x, y)

and it is easy to show that

I(X, Y) (I(X)+I(Y),

(2.7)

(2.8)

where I (X) is the information of the distribution

f dy p (x,y), and similarly for I ( Y) We .also record
another useful result. Let f (x),g (x) )0 and let

fdx g (x)= 1. Then
l' r

f dx f (x)g(x) In f dy f (y)g(y)

)—f dx f (x)g(x)lnf (x) . (2.9)

This is essentially due to the convexity of the function
x lnx, and also holds in the discrete case. Further details
on information theory may be found in the literature [13].

B. Phase-space distributions in quantum mechanics

As stated above, our work is partly aimed at discussing
the emergence of classical behavior. In this connection,
it is often useful to introduce quantum-mechanical
phase-space distributions. There are a variety of phase-
space distributions that may be employed in quantum
mechanics [14]. In this paper we shall focus on the func-
tion

p(p, q)=2f dp'dq'exp
2cTp 2cT

q

X W (p', q'), (2.11)

where W (p, q) is the Wigner function of p, defined by
[14]

W' (p, q)= fdge '~~~"p(q+ —,'g, q
—

—,'g) .
1

(2.12)

The distribution p(q, p) is therefore a Wigner function,
smeared over an A sized region of phase space. This
smearing renders the distribution function positive, even
though the Wigner function is not in general [15]. The
distribution (2.11) is sometimes known as the Husimi dis-
tribution [16], and has appeared frequently in discussions
of the Wigner function (e.g., Refs. [1,15,17]).

The utility of the distribution function p(p, q) will be-
come apparent as we expose some of its properties. We
remark, however, that p is of the form

p(p» q) =Tr [P.p] (2.13)

where P, = lz ) (zl is a coherent state projector (actually
only an approximate projector due to the overcomplete-
ness of the coherent states). p(p, q) therefore has the in-
terpretation as the probability of a simultaneous but ap-
proximate sampling of position and momentum. More-
over, it may be shown that by taking suitably weighted
sums over p and q of (2.13), an object of the form

p (xz, &2,X„&, ) =Tr[P (t2 )P (&, )pP (t, )] (2.14)

may be obtained, where P (t) denotes an imprecise posi-
tion sampling at time t. Equation (2.14) is the probability
for the history characterized by the initial state p, and
samplings of position at times t, and t2. The distribution
p, (p, q) is therefore closely connected with the decoherent
histories approach to quantum mechanics, which focuses
on objects of the form (2.14). In particular, it may be
shown that the degree to which expressions of the form
(2.14) are peaked about classical paths is limited by the
degree of peaking of p(p, q) in phase space. This is dis-
cussed in another paper [18].

p(p» q) = (zl plz ),
where

(2.10) C. An information-theoretic measure of uncertainty

(xlz) =(xlp, q)
1

27TO
q

1/4
(x —q)exp — +&px

4o.

are the coherent states, with o. o. =
—,'A. We find it useful

to work with units with dimension, and for this reason it
is necessary to introduce the parameter cr into the

I(P, Q)= — p(p, q)lnp(p, q) .dp dq
27711

(2.15)

We are interested in the extent to which p(p, q) is
peaked about some region of phase space. As we have
discussed, the Shannon information is a natural measure
of the extent to which a probability distribution is
peaked. We shall therefore take as our measure of uncer-
tainty, the information
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The uncertainty principle strongly suggests that a
genuine phase-space probability distribution in quantum
mechanics cannot be arbitrarily peaked about a point in
phase space. We therefore expect the information (2. 1S)
to possess a lower bound. Furthermore, since coherent
states are normally regarded as the states most concen-
trated in phase space, we expect the lower bound to be
the value of I on a coherent state. It turns out that both
of these expectations are true. It was conjectured by
Wehrl [10],and proved by Lieb [11],that

I(P, Q) ~ 1 (2.16)

with equality if and only if p is the density matrix of a
coherent state, lz') (z'l.

The inequality (2.16) may be related to the usual uncer-
tainty principle (1.1). One has the inequalities

ln —b,„qAg ~I(Q)+I(P)

~I(P, Q) . (2.17)

(b„q) =(6 q) +o~,
(h~ )'=(hg )'+o~,

(2.18)

(2.19)

where 6 denotes the quantum-mechanical variance.
Now (2.16)—(2.19) together imply that

The second inequality is an elementary property of infor-
mation (2.8); the first is the inequality (2.6) applied to
each of the marginal distributions for p and q, where A„q
and b.~ are the variances of the distribution p(p, q) (the
difference by a factor of 2~% is due to our choice of phase
space measure). These variances are, however, not the
quantum-mechanical variances, since they include the
variances of the coherent states. Indeed, one has

I ~ — z n p„lnp„
dp dq
2~%

= —g p„lnp„

= —Tr(p lnp)—:S[p] . (2.23)

III. FLUCTUATIONS AT THERMAL EQUILIBRIUM

To see some of the features of I more clearly, consider
the equilibrium case. Let the density matrix be thermal,
p=Z 'e ~, where Z =Tr(e ~

) is the partition func-
tion, and P= 1 /k T. One has

(zlplz&= —ge "l&z n&l', (3.1)

where
l
n & are a set of energy eigenstates with eigenvalues

E„. For simplicity we restrict attention to the simple
harmonic oscillator, for which

That is, I is bounded from below by the von Neumann
entropy S[p]. As we shall see in the following section,
this inequality can be close to equality in the regime
where thermal Auctuations are large. This close connec-
tion with von Neumann entropy is one of the virtues of
our chosen measure of uncertainty, over other measures
one might contemplate [e.g., the usual uncertainty func-
tion U=(A q) (hg) ].

From the above we therefore see that I is a useful mea-
sure of both quantum and thermal Auctuations. It
possesses a lower bound expressing the effect of quantum
fluctuations, and is closely connected to entropy, which
in turn is a measure of thermal fluctuations. In the fol-
lowing sections we will explore the further properties of
I, especially for nonequilibrium systems.

[(5 q) +o ][(hg) +o ]~Pi~ . (2.20)

2

H =— +Mco q2 M
(3.2)

Now note that the width o. in the coherent state is so far
arbitrary. Minimizing (2.20) over o (and recalling that
cr o =

—,'iri), we thus obtain the standard uncertainty rela-
tions, (1.1). An alternative method of connecting the
standard uncertainty relations with (2.16) has been given
by Grabowski [19].

Suppose now we have a state which is genuinely mixed.
It may therefore be written

and so E„= icoir( +n—,' ), and

n! (3.3)

p(q, p) = (zlplz &

Here, z =
—,'(q/cr +ip/o ), where o o =

—,'A, and we
have made the choice o =(A/2M')' . See Ref. [20] for
details about the coherent states. One thus has

=(1—e ~" )exp[ —(1 —e ~ ")Izl ] . (3.4)

p=g p„ ln ) (n
l (2.21) The information (2.15) may then be computed explicitly.

It is

for some basis of states
l
n ), and where p„( 1. One has I = 1 —ln(1 —e ~"") . (3.&)

p(q, p)= &p„l&zln &I' (2.22)

The information of (2.22) will always satisfy (2.16), but
this will be a very low lower bound for a mixed state.
However, from the inequality (2.9), one has

Equation (3.5) is exactly the sort of result one would
expect. As the temperature goes to zero, P~ ~, and the
uncertainty reduces to the Lieb-Wehrl result (2.16) ex-
pressing purely quantum fluctuations. But for nonzero
temperature, the uncertainty is larger, tending to the
value —ln(pirico), as the temperature goes to infinity. This
limit expresses purely thermal fluctuations. For more
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S = —Tr(p lnp) .

The partition function is readily shown to be

(3.6)

z=
2 sinh( —,

' Ph'co )
(3.7)

and the entropy is

S= —
/3 (lnZ)+lnZa

a

general Hamiltonians we expect the information I of the
equilibrium thermal state to behave similarly (although
we have not been able to derive its explicit form).

It is of interest to compare (3.5) with the entropy,

g =ln —P
2

(3.15)

This shows that, in this simple case, there is a complete
equivalence between U and I as measures of uncertainty.
We do not expect this equivalence to hold more general-
ly, however.

Finally, we note that an information-theoretic uncer-
tainty relation including the effects of thermal Quctua-
tions at thermal equilibrium has been derived by Abe and
Suzuki [21], using thermofield dynamics. Their
information-theoretic measure is different from the one
used here.

= —in[2 sinh( —,'/3A'co)]+ —,'PA'co coth( —,'Ph'co) . (3.8) IV. NONEQUILIBRIUM SYSTEMS

For large temperatures (small P)

S= —In(/3A'co ), (3.9)

U=(b, q) (hg) (3.10)

Here, (6 q) is computed using (q ) =Tr(q p), etc. One
readily finds that

(bg) =co (b, q) (3.1 1)

Now Eq. (3.4) is a product of Gaussians in p and q, with
variances A„q, b,~, say. The information of such a distri-
bution may be written

S therefore coincides with I in the high-temperature lim-
it. On the other hand, S~O as the temperature goes to
zero, while I goes to a nontrivial lower bound.

We therefore see that I is a useful measure of uncer-
tainty, in both the quantum and thermal regimes. Entro-
py, by contrast, supplies a measure of uncertainty due
only to thermal Auctuations. It is therefore good in the
thermal regime, but in the quantum regime, it underesti-
mates the intrinsic quantum uncertainty since it goes to
zero for pure states.

It is also useful to compare this measure of uncertainty
with the more standard measure:

Consider now the case of nonequilibrium systems, the
main topic of this paper. An important class of such sys-
tems in the present context are those in which the total
system naturally decomposes into a distinguished system,
4 say, and the rest, summarily referred to as the environ-
ment. 4 is then often referred to as an open quantum sys-
tem. One is interested only in the behavior of 4 and not
in the detailed behavior of the environment. The dis-
tinguished system is most completely described by the re-
duced density matrix p obtained by tracing out over the
environment. The environment leaves its mark, however,
in that the effective evolution of the reduced density ma-
trix alone is nonunitary.

A useful model of the type described above consists of
a particle moving in one dimension in a potential V(x),
linearly coupled to a bath of harmonic oscillators in a
thermal state. The environment is characterized by a
temperature T and a dissipation coe%cient y. This mod-
el has been the subject of many papers, so we will give
only the briefest of accounts here (for further details, see
Refs. [22—27]).

After tracing out the environment, the reduced density
matrix p of the distinguished system evolves nonunitarily,
according to the relation

p, (x,y)= f dxady0J(x, y, t~xa, y0, 0)pa(x(), y0) . (4.1)

eI =ln —b, qb~ (3.12)

Here, J is the reduced density matrix propagator. It is
given by the path integral expression

J(xf yf tlxa, y0, 0)
As in (2.18) and (2.19), the variances of q and p in (3.12)
are not the same as the quantum-mechanical variances,
because they also include the variances of the coherent
state:

= fXlx 2)y exp —S[x]——S [y]+—W[x,y]fi

(4.2)

(b.„q) =(b, q) + fi
(3.13)

(3.14)

where

S[x]=f dt[ —,'Mx —V(x)] (4.3)

Inserting these in (3.12) and using (3.11) one obtains
and IV[x (t),y (t)] is the Feynman-Vernon infiuence func-
tional phase,

W[x(t),y(t)]= —f ds f 'ds'[x(s) —y(s)]r/(s —s)[ x( s) +y( s)] +if ds f 'ds'[x(s) —y(s)]v(s —s')[x(s') —y(s')] .
0 0 0 0

(4 4)
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2M@co
(4.5)

In the Fokker-Planck limit (see Ref. [26]), one first takes
the high-temperature limit A/kT «A ' and then lets
the cutoff go to infinity, A —+ ~. One finds

g(s —s') =My5'(s —s'), (4.6)

g

)
2M) kT

5( g (4.7)

This limit is a simple and useful one, but our main results
do not depend on it.

The propagator J may be evaluated exactly for the case
of the simple harmonic oscillator V(x) =

—,'Mco x . Intro-
ducing X =x +y, (=x —y, one has

J(XI,g~, t~Xo, go, 0)=F (t)exp —S— (4.8)

The explicit forms of the nonlocal kernels g and v may be
found in Refs. [26,23]. We have assumed, as is typical in
these models, that the initial density matrix of the total
system is simply a product of the initial system and envi-
ronment density matrices.

Considerable simplifications occur in a purely Ohmic
environment at high temperature. Take a regularized
Ohmic environment with cutoff frequency A having the
spectral density

where

S=K ( t )Xy ft' +K ( t )Xogo L ( t )Xo(I N ( t )Xg go (4.9)

(4.12)

We remark that S is in fact the action of the solution to
the boundary value problem for the harmonic oscillator
with (nonlocal) dissipation, for which the equation of
motion is

X+co'X+2 f ds'g(s —s')X(s')=0 .
0

(4.13)

In the classical limit we expect that the quantum system
reduces to motion described by this equation.

One may also derive an evolution equation for p, for
general potentials. Its most general form is [26]

P = A ( t)g +B (t)gogo+ C (t)jo . (4.10)

Explicit expressions for the coefficients K, E, L, X, A, B,
and C are given in Refs. [23,26]. F (t)=N/~ is a nor-
malization factor, fixed by imposing the condition

f dx dy5(x —y)J(x, y, t~xo, yo, O) =5(xo —yo) . (4.11)

This ensures that Trp, =l at all times. On the other
hand, tracing over the initial arguments of J leads to

X
dx0 dyo5(xo —

yo )J (x,y, t
~ xo,yo, 0)=—5(x —y) .

L

~ B

Bt
B'p B'p . Bp Bp+ [ V~(x) —V~(y)]p —i Al (t)(x —y) — —i I (t)h (t)(x —y) p

By
2 Bx By

+A'I (t)f (t)(x —y) +Bp Bp
Bx Bg

(4.14)

Here Vz (x ) is the renormalized potential
V~(x)= V(x)+ —,'M50 (t)x . The explicit forms for the
time-dependent coefficients 5A(t), I (t), f (t), h (t) are in
general rather complicated. Explicit expressions for
them may be found in Ref. [26]. In the Fokker-Planck
limit one has

I (t)=y, h(t)=, f(t)=0.2MkT
(4.15)

V. TIME EVOLUTION OF I,

We now study the evolution of I as the density matrix
p evolves under the nonunitary evolution discussed in the

The first two terms on the right-hand side of (4.14) gen-
erate purely unitary evolution (but with a renormalized
potential). The third term is the dissipative term, and the
fourth and fifth terms are diffusive terms. In particular,
the fourth term is responsible for the process of decoher-
ence discussed elsewhere [5—9).

previous section. For simplicity, consider first the uni-
tary evolution of p, without an environment. One has

p, (p, q) = (z~e ' 'p e' '~z &, (5.1)

where po is the density matrix at t =0, and may be pure
or mixed. The operators e ' ', evolving po forward in
time, may be equally regarded as evolving the coherent
states backward in time. For a harmonic oscillator, the
width o.

~ of the coherent states z & may be chosen to be
the width of the ground state (although this choice is by
no means obligatory). With this choice, the coherent
states are preserved under unitary evolution, with their
centers following the classical evolution:

' '
p, q &

= Ip,i(t), q,&(t) & . (5.2)

The same is true for evolution backward in time, with
t~ —t. It is a standard result that the transformation
from (p, q) to (p,i(t), q,i(t)) is a classical canonical trans-
formation. The effect of unitary evolution in (5.1) is
therefore to perform a canonical transformation on the
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arguments of p, (p, q) at t =0. It is straightforward to see
that our measure of uncertainty (2.15) is invariant under
canonical transformations of the variables of integration.
We therefore find that I is constant under unitary evolu-
tion for the harmonic oscillator, with the above special
choice of o. .

If the width o. is not set to the above special value,
then the coherent states are not preserved under evolu-
tion by the harmonic oscillator Hamiltonian. Likewise
for more general Hamiltonians. For example, if the ini-
tial state is a coherent state, it will spread as time evolves,
and thus I will increase from its initial value, I =1.
Whether I increases or decreases, however, depends very
much on the initial state. For example, the pure state
e+' '~z ), which could have a very large value of I, will
evolve under e ' ' into the coherent state z ), possessing
the minimum value of I. This "reassembly" of a state

sharply peaked in phase space from a very spread out
state will therefore cause I to decrease with time.

One would in fact expect initial states undergoing an
initial decrease of I to be just as likely as ones undergoing
an initial increase, since quantum mechanics is a com-
pletely time-symmetric theory. However, I does in a cer-
tain sense capture the intuitive notion that entropy in-
creases, " even for pure states, in that it will increase for
initial states which might reasonably be described as
highly organized or special (namely, states that are sharp-
ly peaked in phase space).

Now consider the coupling to an environment, as de-
scribed in the previous section. We shall derive an evolu-
tion equation for I, . We will first use the evolution equa-
tion for p, (4.14), to derive an evolution for the Wigner
function of p (2.12). Performing the Wigner transform of
(4.14), one obtains

+ V' (q) +2I (r) (pW)+%I (t)h (r) +%I (t)f(t)
Bt M Bq Bp Bp Bp2 ~q~p

iR

k=1

2k+1
V(2x+ i)

(2? +1)! gp'~+~
(5.3)

The infinite power series incurred for general potentials makes progress rather difficult. We shall therefore restrict at-
tention to the harmonic oscillator, V(q) =

—,'Mco q, returning at the end to a heuristic discussion of the possible effects

of more general potentials. Now using the expression for p(p, q ), (2.11), one obtains

"+M~', (r)q "—
Bt M Pq ()p

2 a2
Mco~(—t)o' —&I (&)f(r)

Bp Bq

+2I (t)p+21(t) p+o +A'I (t)h(t)Bp 0 p
Bp Bp Bp

(5.4)

Here, cuz(t)=co +50 (t) is the renormalized frequency. Differentiating the expression for I, (2.15), one obtains, at
some length,

I= —21 (t) — Mcus(t)o——&1 (t)f (r) J —~ ~ +[fil (t)h(t)+21'(t)o jJOp dpdq 1 Bp Bp dp dq 1 Bp
2M P Qp Qq 21Tfl p Qp

2

(5.5)

This is the exact result for the time evolution of I for
linear systems.

Now the interesting question is whether we can say
anything definite about the monotonicity properties of I,
given Eq. (5.5). First, note that in the case of no environ-
ment, and for the harmonic oscillator (i.e., co&0), it is
possible to make the choice

sider the remaining terms in (5.5). The first term is —2y
and the coefficient of the last term is approximately
2MykT (the o term is negligible in the Fokker-Planck
limit). Now the question is, what are the relative sizes of
the first and last terms in (5.5)'? Introduce the time scales

d ~ ~~ 1

g =—'Meekfi

2m ' (5.6)

and thus I=0, as expected.
The next interesting case to consider is the Fokker-

Planck limit (4.15) in which it is again useful to make the
choice (5.6), and the second term in (5.5) vanishes. Con-

The time scale td„ frequently emerges in studies of
decoherence and is therefore called the decoherence time
scale. We are not of course discussing decoherence per se
here, but we will use the nomenclature. t„& is the relaxa-
tion time scale. On dimensional grounds it is clear that
the first term will cause I to decrease on a time scale t„&
and the last term will cause it to increase on a time scale
td„. The important point is that the relaxation time is
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typically very much longer than the decoherence time [6],
so the decoherence term will dominate in (5.5). Thus for
the harmonic oscillator, with the choice (5.6), and in the
Fokker-Planck limit, I will increase monotonically for
any initial state.

Now consider the case in which the choice (5.6) is not
made. Closely related is the case of the free particle, in
which co=0 in (5.5), and o. is arbitrary. The question is
whether I may be rendered negative by the indefinite
term in the integrand (which is associated with spreading
or reassembly). Physically, it is reasonably clear how this
may come about. As discussed above, it is possible to
choose special initial states that reassemble, at least under
unitary evolution, and will cause I to decrease. One
would expect to be able to identify a spreading or
reassembly time scale, t, . If the decoherence time scale is
much shorter than the spreading time scale, one would
expect I to increase monotonically, since the environment
acts before the system has time to undergo reassembly.
On the other hand, if the spreading time is shorter than
the decoherence time, an initial decrease may occur for
carefully chosen initial states, but this will eventually go
over to increase after a time of order td. A similar situa-
tion could be expected to hold for more general Hamil-
tonians. The Hamiltonian terms [in (5.3), say] may make
I increase or decrease, but eventually the diffusive terms
will take over and cause I to increase.

These statements all apply to the high-temperature re-
gime, in which thermal effects will eventually dominate.
Equation (5.5) is valid for all regimes, and it would be of
interest to explore these, although we do not do so here.

We now have a general picture of the behavior of I un-
der time evolution. This sets the stage for the next sec-
tion, in which we derive a lower bound on the behavior of
1.

Finally, we note that the analogue of Eq. (5.5) for von
Neumann entropy is very hard, if not impossible, to
derive, even for linear systems. Generally it can be ob-
tained only if explicit diagonalization of p is possible, e.g.,
for Gaussian density matrices. For this reason, I may be
more practically useful than S as a measure of uncertain-
ty, quite simply because it is easier to calculate.

VI. A LOWER BOUND FOR I,

We now come to the main point of this paper, which is
to establish a lower bound over all possible initial states
for I„thus generalizing (2.16) to include thermal fiuctua-
tions in time-evolving nonequilibrium systems. We there-
fore seek a time-dependent function I, '" such that, for
every time i,

(6.1)

I, '" represents the least amount of uncertainty the sys-
tem must suffer, after evolution for time t in the presence
of an environment. Clearly for consistency we must have
I, '"=1 in the absence of an environment.

To fix ideas, consider first the case of no environment,
for which the evolution is unitary. The I.ieb-Wehrl result
is that the information (2.15) at a fixed time is minimized

by a system in a coherent state p0= ~z') (z'~. A harmonic
oscillator initially in a coherent state with a width given
by Eq. (5.6) evolves so that it remains in a coherent state,
and therefore I, =1=I, '". It is easy to see that this
behavior is very special and cannot be realized for other
Hamiltonians. This is because Hamiltonian evolution
generally does not preserve the coherent states. As de-
scribed in the previous section, for every time ~, there is
an initial state e+' '~z'), with nonminimal I, at r =0,
which evolves to a coherent state at time ~, there minim-
izing I, . After this, it disperses, and I, is no 1onger
minimal. I, is only minimized at t =~.

The implication of this is that I, '" is actually an en-
velope. No particular p0 realizes the minimum for all
time —instead there are a succession of states which
achieve the minimum. The minimum I, '"=1 is realized,
at each time t, by the value of I, for the initial state
e ' '~z'); that is, for the initial state obtained by evolv-
ing the coherent state ~z' ) at time t backward to t =0.

Now consider the situation with an environment, as
discussed in the previous section. Instead of unitary evo-
lution under e ' ', we now have nonunitary evolution
under the propagator J. As we have seen, interaction
with the environment will cause I, to increase in the long
run, but there is the possibility of an initial decrease of I„
due to the reassembly effect. We therefore expect I, '" to
again be an envelope: there will be many initial states
which achieve I, '" for some value of t, but there will be
no initial state for which I, =I, '" for all t.

To find I, '" we will exploit the Lieb-Wehrl inequality
(2.16). It cannot, however, be applied immediately to the
case at hand. To see why, consider again the case of no
environment. One is interested in the information (2.15).
Application of the inequality (2.9) shows that the
minimum is achieved for a pure rather than mixed state.
One is thus minimizing the integral

(6.2)

q z e
—iHt 21n z e

—iHt 2d d
2~@ 0 (6.3)

Minimizing this over all square-integrable wave functions
~1t0) is easy because e ' '~1t0) is itself a square-integrable
wave function, so the previous result applies, giving

~ $0 ) =e '
'~ z ' ), as discussed above.

Now we are interested in the more general case in
which the propagator is not unitary. We would like to
know what the new lower bound on the uncertainty is for
systems that have undergone interaction with the envi-
ronment for time t. Denoting the coherent state density
matrix by p, = ~z ) (z~, and the initial density matrix by
p0, the information at time t is given by

over all square-integrable wave functions g. The
minimum is found to be achieved for ~P) =~z'), a
coherent state. If one expresses the state at a later time
in terms of unitary evolution from its initial value,
f) =e ' '~$0), one has the expression for the informa-

tion at time t:
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I, = — Tr[p, J, (po)]ln Tr[p, J, (po)] .dp dg
27rA

(6.4) p, (P, q ) =2vrA f dp dq W„,(p, q) W (p, q) . (6.8)

XJ(x,y, tlxp, yp, 0)pp(xp yp) (6.5)

where J is the reduced density matrix propagator. p, is
then conveniently written in the form

pt(p q)= f dxodyo~i'(yo xo)po(xo yo)

where

=Tr( 2;po), (6.6)

3;(yp, xo)= f dx dy&zlx ) &y z)J(x,y, tlxo, yo, 0) .

(6.7)

The quantity 2,' is therefore the final density operator
lz) &zl brought back from time t to time zero using J.
Note, however, that 2,' is not a physical density matrix,
since from (4.12), TrA;=X/L [although one does have

f (dPdq/2m%')A;=1]. Using the Wigner representation
(2.12) one may write

Here, J, (po) denotes the nonunitary evolution of po, Eq.
(4.1). For each time t we seek the po that minimizes (6.4).
Differently put, we need to minimize (6.4) over all density
matrices of the form p, =J, (pp), where pp is an arbitrary
density matrix. The feature that distinguishes this case
from the Lieb-Wehrl case discussed above is that this
class of density matrices is smaller than the class of all
density matrices, since evolution under J is not invertible.
It is therefore difficult to characterize the class over
which to do the minimization. Since J, (po) is linear in po,
and using the convexity property (2.9), we again deduce
that the minimizing po must be pure. This simplifies the
problem somewhat, but the inconvenience stated still
remains.

To get around this difFiculty we adopt the following
strategy. We are interested in the quantity

p, (p, q)=&zip, z&

= f dx dy dx pdy p &zlx & &ylz &

(q' —q)
z

W (p', q'),
2o

q

(6.9)

is bounded from below by I = 1, with equality if and only
if p is a coherent state. Now the point is that (6.8) and
(6.9) have a very similar form: they are both Wigner
functions of an arbitrary density matrix with a Gaussian
smearing, but the Gaussian factors are not the same. Our
aim, therefore, is to perform a series of transformations
to bring (6.8) into the form (6.9), and then apply the
Lieb-Wehrl result (2.16). As we shall see, the information
of p is not preserved under these transformations, and
thus we obtain a nontrivial lower bound, different from
(2.16), and depending on the quantity A,'. The difficulty
outlined above is avoided because the evolution under J is
contained entirely in 3, , and the minimization is now
over all pure po, a well-defined class to which the Lieb-
Wehrl result may be applied.

Turn now to the details. Consider first Eq. (6.7). The
final density matrix is

&xlz &&zly &

1 (X —2q) i

(2TTO )' 8CT 8CT
exp — — +—pg

(6.10)

where as in Sec. IV, X=x+y, g=x —y. Under evolu-
tion backward in time by the nonunitary propagator J it
yields

Since J is the Gaussian for the linear case considered
here, A;(xp, yp) and W„,(p, q) are also Gaussian.

Compare this to the Lieb-Wehrl result (2.16). The
latter may be regarded as stating that the information of
the distribution,

(p' —p )'
p(p, q)=2f dp'dq'exp

20p

2QO
3;(yp, xp) =—

1/2

exp —a (X —2q )
—

/3 g +—g [I (X —2q )+Pp] (6.1 1)

where

L 2

32o- 5
(6.12)

Here,

3+ +—K1 1 1 —
p

So 8o- 4
q q

(6.15)

(B —4o. XK)
/3o —C+2cr X—

32o. 6

r,=++ ~
4A 4o~

q

(6.13)

(6.14)

(These coefficients may be obtained by a straightforward
modification of the calculations described in Ref. [4].)
Also, po, qo are the classical evolution of p, q, evolved
backward in time under the dissipative equation of
motion (4.13). They are given explicitly by
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po = — (—NL K—E )q+ —P,2 — K

K
q. =—q+ ' p,L 2L

(6.16)

(6.17)

cal, because the evolution is dissipative:

c)(qoIPo ) N

&(q,p)
(6.18)

where the various quantities appearing are defined in Sec.
IV. This transformation from p, q to po, qo is noncanoni-

Performing the Wigner transformation, one thus obtains
the explicit form of (6.8):

N &0
p, (p, q) =2-

L Po

1/2

f dp dqexp
1

[p —
po

—2I o(q
—qo)] —4ao(q —qo) W (p, q) .

0
(6.19)

We would like to bring this expression into the form (6.9).
Introduce

resides entirely in p, q, via the transformations (6.16),
(6.17), and (6.22). It is convenient to write (6.23) as

ao
@=&8cr (Poao)' (6.20) V (P q)= LI (P, q) . (6.25)

=1q'=Vq p'= —(p —2I'oq»
p

(6.21)

Now perform the following canonical transformation on
the integration variables, together with the same change
of variables on po, qo

..

The factor N/L is nothing more than the Jacobian of the
transformation from p, q to p, q. The transformation
(6.21) and (6.22) is canonical so the only contribution to
the Jacobian comes from (6.16) and (6.17), whose Jacobi-
an is (6.18). The information of p,„I„is then simply re-
lated to that of p,„I,. It is

1
q Vqo p = (Po 21 oqo) (6.22) NI =I —ln

L
(6.26)

Eq. (6.19) thus becomes

s(Pq)
1/2

1=2-
L A,

(p' —P)' (q' —
q )'f dp'dq'exp

2A o p
2A 0

qE

X W (p', q'), (6.23)

where we have introduced

r

W (p', q')= W pp'+2 q', (6.24)

There arises the question of whether W (p', q') defined
P

by (6.24) is still a Wigner function, i.e., of whether there
exists a density matrix p whose Wigner transform is
(6.24). The answer is in the affirmative: linear canonical
transformations on the arguments of the Wigner function
are readily shown to correspond to unitary transforma-
tions of p.

The dependence on p, q on the right-hand side of (6.23)

The distribution p, , is almost of the desired form (6.9),
but fails to be because of the presence of the factor of A, .
The positivity of the density matrix (6.11) implies that
Jtlo) ao, and in fact equality holds only at t =0, and thus
one has A, ) 1. One might have thought that the next step
is to simply scale p' and q' by A,', thus taking A, into the
Wigner function. However, this scaling would lead to a
phase-space distribution function which is not a Wigner
function; i.e., it is not the Wigner transform of a density
matrix. This is easy to see: under such a scaling, the de-
gree to which the Wigner function may be peaked about
a region of phase space becomes enhanced by a factor of
A, ) 1, and thus it is possible to violate the uncertainty
principle. Wigner functions scaled in this way cannot
therefore correspond to density matrices.

Instead, the next step is carried out using the following
simple fact about convolution integ rais: when two
Gaussians with variances o.

&
and o.

2 are convoluted, the
variance of their convolution, o.3, satisfies o.

3 o ]+0
Let us therefore express the Gaussian smearing function
in p, as the convolution of two Gaussians:

(p' —p )' (q' —
q )'

2 2g 2
P q

I 2 I 2= f dpdq exp
~A 2cr2 2g 2

Jr

1
exp

(
— )'

~A'(A, —1)
(q —q)

2(A, —1)cT
(6.27)

We may therefore write p, as

~Pi(A, —1) 2(A, —1)cr 2(A.—1)
(6.28)
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where p, is precisely of the form (6.9), with Wigner func-
tion W (p', q'), given above by (6.24).

P
The result (6.28) is as close as we can get to casting

p(p, q ) in the form (6.9). However, the form (6.28) may be
exploited: it is the convolution of a Gaussian with the
function p, . We may therefore appeal to a theorem of
Lieb on the information of convolutions [11]. Let f and g
be functions defined in L'(R"), where s ) 1, and let f eg
denote their convolution. Then the information of
f e g, I (f e g), satisfies the inequality

%,(x)=
' 1/4

exp — 2(a(PO)'~ +—I o

LX(x —q, ) +—p, x

VII. DISCUSSION AND SUMMARY

(6.34)

exp I(f—eg) ~ exp I(f)—+exp I(g)—2 2 2
n n n

(6.29)

Equality holds if f and g are both Gaussians differing
only in the location of their centers and in an overall
scale of their covariance matrices.

In our case the Gaussian function in (6.28) has infor-
mation

I =ln —(X—1)
e

2
(6.30)

Since p, is of the form (6.9), it satisfies the Lieb-Wehrl in-

equality (2.16), with equality if and only if the Wigner
function (6.24) is the Wigner function of a coherent state:

Io, q'8 pp'+2 q',
p

'
p

1
exp

20' 20
q

(6.31)

Applying (6.29) we therefore have the lower bound on the
information of p, :

I, ~1+In@(A,+1)] . (6.32)

l
L

2X cxo
(6.33)

This is our main result. The right-hand side is the value
ofI, '" at time t.

Now consider the conditions for equality in (6.33), to
determine the initial state which meets the envelope at
time t. The information of p, achieves its lower bound
when (6.31) is satisfied. p, is then a Gaussian, difFering
only from the smearing Gaussian in (6.28) by an overall
scaling of their covariance matrices. The conditions for
equality in (6.29) are therefore also satisfied. This means
that the inequality (6.33) achieves equality when the ini-
tial state is given by (6.31). Inverting the Wigner trans-
form we find that the initial state is the pure state:

Finally, inserting this in (6.26) we obtain the desired
lower bound on I, :

1/2

We first discuss the properties of the lower bound
(6.33).

Consider Eq. (6.19). We have been seeking the Wigner
function 8' that minimizes the information of (6.19).

Po

Loosely speaking, this means finding the Wigner function
which has the best overlap with the exponential in (6.19),
and hence gives the most peaked probability distribution
p, (p, q). We found that the initial state doing the job is
(6.34), whose Wigner transform is, from (6.31),

1 (p 2Poq pp ~1 )
W+(p, q) = exp —

zmA 2P20 2

2

p
20

q
q

q,
(7.1)

Setting o. to the value (5.6) one thus has

I, '"=1+in 1+ —1 yr+O(r~)2kT
15cog

(7.3)

N ow consider the exponential function in (6.19). It is
the Wigner function of the final coherent state evolved
backward by J. The contours of the Wigner function
start out as circles. Each contour suffers three effects un-
der this nonunitary evolution: it is distorted into an el-
lipse, its axes are rotated, and its area increases. The dis-
tortion factor is given by p in (6.20), the amount of rota-
tion is given by I o, and the area increase is given by A, .
(There is in addition a translation of the contours, but
this preserves the information. )

Now the point is that the Wigner function (7.1) giving
the least overlap in (6.19) is the Gaussian pure state
which matches two out of three of these effects: it has
the same distortion and rotation factors. It does not have
the same expansion factor A,—it cannot because we know
that the minimizing state must be pure, and pure Gauss-
ian states must have A, =1.The minimizing state is there-
fore the state whose Wigner function is close as possible
to the exponential in (6.19) subject to the constraint that
it be pure.

Turn now to the explicit form of the lower bound. Us-
ing the result of Refs. [4,12,26,23] it may be shown that
in the Fokker-Planck limit, and for short times, one has

80. MykT=1+2yr+ q
r +O(r') . (7.2)

cxo
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The Fokker-Planck limit involves kT »AcoR, so I, '" in-

creases with time. Equation (7.3) indicates that the
thermal contributions to the uncertainty principle start to
become appreciable after a time

SCAR

', mykT ykT
(7.4)

The important thing to note is that this is the decoher-
ence time scale defined in Eq. (5.7)—the time scale on
which interference is destroyed by the interaction with
the environment.

Our results should be compared with the work of Hu
and Zhang [12]. They calculated the usual uncertainty
function (3.10) for the density matrix obtained by evolv-

ing an initial coherent state for time t in the presence of
an environment. They found that for short times and
high temperatures

(7.5)

It was these authors who first noted, on the basis of this
calculation, the significance of the decoherence time scale
for the comparative sizes of thermal and quantum Auc-
tuations. We thus find close agreement with their work.

This result has a consequence for the decoherence pro-
gram. A reasonable question to ask in decoherence mod-
els is whether there is a regime in which the interaction
with the environment is sufhcient to induce decoherence,
yet induces a noise level less than that due to intrinsic
quantum fluctuations. Our results, and those of Hu and
Zhang [12], show that this is not the case: in the
Fokker-Planck regime, decoherence and thermal Auctua-
tions become important on the same time scale. This
means, loosely speaking, that the uncertainty principle
plays little role in these models.

It is of interest to explore the form of the lower bound
in other regimes. Consider for example, the low-
temperature regime. In the Fokker-Planck (high-
temperature) regime discussed above, the di6'usion is con-
trolled by the diffusion constant D =2MykT. However,
as argued by Caldeira and Leggett [23], in the low-
temperature regime the appropriate diffusion constant is
D =MykcoR. An order of magnitude estimate on the size
of I, '" is therefore obtained by substitution of diffusion
constants. One thus discovers that in the low-
temperature regime, the environmentally induced Auctua-
tions (we can no longer call them thermal) grow on a time
scale y ', the relaxation time scale. This shows that I, '"

is not just a measure of quantum Auctuations of the dis-
tinguished system plus thermal fluctuations of the envi-
ronment: it also includes the quantum Auctuations of the
environment (although these are of course negligible in
the high-temperature regime).

Another question to ask is whether it is possible to ex-
press our new uncertainty principle (6.33) in terms of the
usual uncertainty function U. Recall that the Lieb-Wehrl
inequality (2.16) may be shown to imply the standard un-
certainty principle (1.1) via the steps (2.17)—(2.20). Can a

similar derivation be carried out in the case of (6.33)?
Steps analogous to (2.17)—(2.20) can be carried out, and
one obtains

' 1/2

(7.6)+1 A.b~b, „q ~
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However, as before this is not the proper form of the un-
certainty principle, because the variances on the left-hand
side also include the variances of the coherent state, Eqs.
(2.18) and (2.19). The final step of minimizing over a is
rather tricky to carry out because the right-hand side of
(7.6) depends on o in a nontrivial way, and one ends up
with a fifth-order polynomial in u . Also, the alternative
method suggested by Grabowski [19]cannot obviously be
generalized so as to apply to this case. Therefore, we do
not give an explicit form of our uncertainty relation in
terms of the variances of p. The possibility of deriving
such a relation directly [rather than from (7.6)] will be
considered elsewhere [28].

We should also compare with the work of Paz, Habib,
and Zurek [7,8], who looked for the set of initial states
which generated the least amount of physical entropy,
S [p], after evolution in the presence of an environment
for time t. The motivation for doing this is that these
states are in a sense the ones most stable under evolution
in the presence of an environment. This is clearly closely
related to our work, since we essentially looked for the
set of initial states with the smallest value of I after time
t. Indeed, Paz et al. claimed that the minimizing states
are coherent states, whereas for us the minimizing states
are more general Gaussian states. It turns out that the
quantity I 0 in (6.34) can go to zero quite quickly (on the
time scale to '). In this case we thus see that the results
are in agreement.

In summary, we have discussed the properties of an
information-theoretic measure of uncertainty (1.3) for a
class of nonequilibrium quantum systems. Our measure
is closely related to von Neumann entropy in the thermal
regime, but unlike entropy, it supplies a nontrivial mea-
sure of uncertainty in the quantum regime. It is also
easier to work with calculationally than entropy. Our
main result is the demonstration that, for linear systems,
our measure has a nontrivial lower bound, the generaliza-
tion of the uncertainty principle to include thermal (or
more generally, environmentally induced) fiuctuations for
a class of nonequilibrium systems. We have examined the
form of the lower bound in some regimes of interest. A
more detailed examination is best carried out nurnerical-
ly, but this is beyond the scope of the present work.

Note added in proof. Some mathematical results close-
ly related to the result (2.16) may be found in Refs.
[29,30]. We are grateful to E. Lieb for bringing these pa-
pers to our attention. References [31,32] discuss other
applications of the measure of uncertainty (1.3). An al-
ternative measure of the comparative sizes of quantum
and thermal fiuctuations may be found in Ref. [33].
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