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Basis of the Ponzano-Regge-Turaev-Viro-Ooguri quantum-gravity model
is the loop representation basis
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In three dimensions (3D} the Ponzano-Regge-Turaev-Viro-Ooguri model provides a combinatorial
definition of quantum gravity. The model is written in terms of a specific basis in the Hilbert spaces as-

sociated with the 2D boundaries of spacetime. We show that this basis is the same as the one that
defines the loop representation of quantum gravity. We extend this construction to the physical 4D case,

by defining a modification of Regge calculus in which areas, rather than lengths, are taken as indepen-

dent variables. We provide an expression for the scalar product in the loop representation in 4D. We
discuss the general form that a nonperturbative quantum theory of gravity should have, and argue that
this should be given by a generalization of Atiyah s topological quantum-field-theory axioms.

PACS number(s): 04.60.+n

The problem of describing physics at the Planck scale
and the quantum properties of gravity is the problem of
understanding what is a nontrivial generally covariant
quantum-field theory. The last years have seen several
developments in our understanding of these theories:
Witten s introduction of topological field theories, in
their two versions, Chem-Simons [1] and Donaldson [2];
Atiyah's axiomatization of these [3];dynamical triangula-
tion techniques [4]; Ashtekar's reformulation of general
relativity [5], which opened the way to the loop represen-
tation [6], which led to the discovery of solutions of the
Wheeler-De Witt equation, of the relevance of knot
theory in quantum gravity, and of a discrete structure of
space at the Planck scale [7]; the Turaev-Viro [8] refor-
mulation of the Ponzano-Regge model [9] in terms of
quantum groups, which provides a combinatorial
definition of three-dimensional (3D) topological field
theories; the Crane-Vetter [10] extension of this construc-
tion to 4D; the pioneering work of Ooguri, which in 3D
has tied the Euclidean, combinatorial, canonical, and to-
pological definitions of quantum gravity [11]. These re-
sults share a remarkable common flavor, in addition, of
course, to the common long-term aim of quantizing grav-
ity. In this paper, we find the bridge between the 3D
Ponzano-Regge-Turaev-Viro-Ooguri (PRTVO) model
and the loop representation, and we sketch a general
theory of physical 4D gravity in which all these lines may
converge.

Ponzano and Regge [9] considered Regge calculus [13]
in 3D, but made the ansatz that the lengths l; of the
Regge-calculus links be constrained to be half-integers:
l; =j;=—,'n; (integer n;) Half-int. egers j, can be interpret-
ed as labels of SU(2) representations. The Regge-calculus
action can then be written as a very simple expression,
which is essentially a sum over the triangulation's
tetrahedra of the 6-j symbols of the six (half-integer)
lengths I; =j; of the links of each tetrahedron. The parti-
tion function of quantum gravity can then be constructed
by fixing a sufficiently thin triangulation 6, and summing

over its colorings c (assignments of half-integers to every
link). The reason for taking half-integer lengths, as well
as the relation between lengths of links and SU(2) repre-
sentations, appeared to be quite mysterious at the time.
In this paper we throw some light on this relation.
Turaev and Viro [8] were able to show that the Ponzano-
Regge partition function is independent from the triangu-
lation chosen [and transformed it in a finite sum by re-
placing SU(2) with a corresponding quantum group with
a finite number of representations]. Ooguri [11] related
the quantization of 3D quantum gravity based on this
model to the Witten quantization of the same theory.
Ooguri construction can be summarized in short as fol-
lows. The quantum states of the Ponzano-Regge theory
have to be taken, following Atiyah's general formulations
of topological quantum field theories, as quantum com-
binations 4z(c) of the colored triangulations (h, c) in-
duced on the 2D boundary BM of the 3D manifold M. In
Witten's theory, quantum states are wave functions %'(to)
over the moduli space of the fiat SU(2) connections A, on
the 2D boundary (to being the equivalent classes of A' s).
Ooguri relates the two representations of the theory by

V(to) =g @z(c)%'z,(ai),

where we have absorbed in 4t, (c) a normalization factor
appearing in Ooguri's Eq. (16). The "matrix elements of
the change of basis" (co~a„c ) =4'z, (to) will be described
in a moment. The relations between the Ooguri con-
struction and the loop representation was suggested by
Crane and Smolin [14]; in this paper, we show, indeed,
that (1) is nothing but the loop transform, which was in-
troduced in Ref. [6], and relates the connection represen-
tation of quantum gravity to the loop representation.
The Ooguri representation C&&(c) is thus essentially
equivalent to the loop representation. In doing so, we
provide a physical interpretation to the Ponzano-Regge
ansatz that the links have half-integer length, and are re-
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lated to SU(2) representations, and we find the physical
justification of Ooguri's construction.

Ooguri's functions %z, (co), are constructed as follows.
Given the triangulation 4, we construct the correspond-
ing dual trivalent graph. The arc C; of this graph crosses
the ith link of the triangulation; we associate with C; the
SU(2) representation j;, j; being the half-integer that
colors the ith link of A. We associate with C; a function
over fiat SU(2) connections A, given by the Wilson line

Uj [ A, C;]=P exp( jcA, t~ dx'), where the SU(2) genera-

tors t are taken in the j; representation. To the full
graph, we associate the product of all these Wilson lines,
where 6-j symbols are used to contract the indices at the
trivalent intersections. The resulting object is a function
of the triangulation, the coloring, and the connection. It
is gauge invariant, and thus it defines a function over the
moduli space of the fiat SU(2) connections for every
( b„c); this function is %z, ( co ).

In order to relate this construction with the loop repre-
sentation, the first observation is that, since any represen-
tation of SU(2) is obtained by tensor multiplication of the
j = —, representation with itself, a Wilson line Ui [ A, C] in
the j representation is equivalent to 2j Wilson lines
U, &z [ 2, C] in the —,

' representation. Thus, we replace
each arc C; of the trivalent graph with precisely 2j,- lines.
Accordingly, the sum at the trivalent intersections ob-
tained with the 6-j symbols can simply be replaced by the
sum over all the possible rootings of these lines at the in-
tersection; and %&,(cv) can be expressed as a combina-
tion of products of traces of holonomies of 2 along the
resulting closed loops, all taken in the —,

' representation.
This follows from elementary properties of SU(2) repre-
sentation theory. In other words, the colored triangula-
tion (b„,c) uniquely determines an ensemble
Eb, =

I a i, a&, . . . } of multiple loops (sets of closed
loops) a; =(a;„a;z, . . . , a;~ ), where a;~ are (single)
loops: Each multiple loop a; has the property that pre-
cisely 2j single loops cross a link of the triangulation with
color j. The ensemble Ia„az, . . . } is formed by all the
homotopically inequivalent multiple loops with this prop-
erty. By construction we have the main relation

%~,(co)= g + TrU, ~~[A, a;.] .
a,. GE(h, c) j

Now, given a multiple loop a;, the product

+JTr U, &z [ A, a; ] is nothing but the loop state
l a; ),

written in the connection representation, namely,

( A la;) =+ (A)=+ TrU, ~~[A, a; ] .
J

This relation is at the root of the loop representation.
Using this relation, and its gauge invariance, we have

(~lb„c ) =0'~, (ei)

a,. EE(h, c) a,. EE(h, c)

b„c)=
a,. EE(,h, c)

la, ) .

dC' dCb
l [C]=I dt gb

1/2

c dt dt ~ac ~bd

1/2

where E is the variable conjugate to the connection and
c„ is the antisymmetric two-dimensional pseudotensor.
We refer to [6] for the notation. In order to promote
I [C] to an operator, we have to deal with the product of
the two E's. Following Ref. [7], we point split the prod-
uct E(x)E(x), by means of a gauge-invariant two-point
object:

This equation provides the identification between the
loop representation states la) and the Ooguri states
lb„c ). (Recall that the loop representation states are not
independent. ) This is our first result.

In Ooguri's work, relation (1) is postulated, and the
equivalence of the combinatorial theory with Witten's
quantization is derived a posteriori by showing the iso-
morphism of the two structures. Still, the half-integer
lengths remain as mysterious as they were in the original
Ponzano-Regge paper. To provide an interpretation of
this fact, let us calculate the lengths of the links of a tri-
angulation in a fixed quantum state %z, (co) of the gravi-
tational field. [Gravity is geometry, and in a quantum
state of gravity lines have (expectation values of) length. ]
A recent calculation in (3+ 1)-dimensional quantum grav-
ity indicates that the area of any surface is quantized in
the loop representation in multiples of —, (in Planck units);
the area being precisely given by the number of intersec-
tions of the surface with the loops of the quantum state.
It is natural to suspect that a similar relation may work
in one dimension less. In fact, let us show it does. The
length I of a curve C in BM is given in 3D gravity by

E"(x)E'b(x):=lim Tr[ U[A, yx']E'(y„'(0))U[A, y"']E (y'(~))}
v~0

= lim T' [y' ](0,n. ) .
c~O

Here y' is a loop with radius e, and center in x, y" and y'" are its two components from the value 0 to ~ and from ~ to
0 of the loop parameter, and in the second line we have introduced the standard loop representation notation [6] for this
point-split observable. The operator corresponding to the observable T' [y' ](O, vr) is well defined: using the loop rep-
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resentation, it is given [6] by

d de&a~T' [y'„](O,vr)= f ds 6 (a(s), y„'(0))f du 5 (a(u), y'(~))g &ag„,y'
~

.
a ds a dQ

Following Ref. [7], we may regularize the 5 functions by
a further replacement of y' with a one-parameter family
of loops. We can then compute the action of the operator
I [C] on a loop state &a~. The square root of the square
of the (regularized) 5 function gives an absolute value; in
the limit, the intersection rearrangement g, gives just a
multiplicative factor, and in the limit we obtain, in
Planck units,

&a~l[C]= —,
' f ds f dt E., &a~ .

The double integral is precisely the positive intersection
number between C and 0.. Thus, we arrive at the follow-
ing results: (i) the length of every' curve C is quantized in
units of —„' (ii) if the gravitational field is in the state & a~,
the length of a curve I is given by

~Planck
I [C]=n [C,a]

where n [C,a] is the number of times a crosses C.
Now we can return to the PRTVO model. Result (i)

above implies that summing over independent states in
quantum gravity means to sum just over quantized half-
integer lengths, precisely as in the Ponzano-Regge ansatz.
Second, the relation between the two-dimensional colored
triangulation on the boundaries of M and the Witten
theory now becomes physically transparent: Recall that
the ith link C, of the triangulation, which has color j, , is
crossed precisely by 2j; loops; thus, n [C;,a]=2j;; there-
fore, using result (ii), the physical length in Planck units
in the quantum state defined by these loops is

l; = ,'n[C, a]=—,'—2j,=j; .

Thus, the physical length of the ith link in the Ooguri
state is precisely equal to its coloring. Therefore, the
state 0'z, (co), which Ooguri associates with the colored
triangulation (b„,c), is a quantum state in which the phys-
ical length of the links of the triangulation is precisely
equal to their coloring, in Planck units. This is our main
result.

Before getting to the second part of this paper, let us
note that the relation between the loop representation
theory and the PRTVO model allows us to write the sca-
lar product of two-loop states y ) and ~y') by means of a
sum over colorings: we put y and y' on the boundaries
of a (c)MX [0,1]) three-manifold M, we fix a triangula-
tion 6, and we have

&y ~y'&= X II&. ('»

Here we disregard states for which the loops have self-
intersections on the line [7].

where the sum is over all the triangulations c (y, y') such
that the coloring of the links of the boundaries is deter-
mined by the number of times the loops y and y' cross
the links, and QPPR(c) is the Ponzano-Regge product for
the coloring c.

The above result indicates a direction for constructing
the physical 4D theory. We will now briefly sketch this
theory; a similar set of ideas is discussed by Carfora,
Martellini, and Marzuoli in Ref. [15]. Let us consider the
4D spacetime manifold M, with, say, two boundaries
BM& and BMz, and begin by fixing a 4D triangulation 6
of spacetime, which induces 3D triangulations of the two
boundaries. In 4D, they are the areas of surfaces, not the
lengths, that are naturally quantized in —,

' the Planck unit.
Thus, it is natural to use the areas of the faces, rather
than the lengths of the links, as independent variables for
Regge calculus. A key observation is that a 4D simplex
has the same number (10) of faces (2D simplices) and
links (1D simplices). Therefore, we can generically invert
the relation between lengths and areas, and express the
lengths of the 10 links of each four-simplex as functions
of the areas of the 10 faces. Let a&

- a,o be the areas of
the 10 faces of a fixed four-simplex s. The Regge action
of the simplex can be expressed as a function of these
areas: SR, ,(s)=SR, , (a& a&0). Note that SR,ss,
must be a function of 10 variables with the full symmetry
of the four-simplex. We expect that the corresponding
quantity SR,ss, (a, . a,o), seen as a function of half-
integer variables, has an interpretation in terms of group
representation theory, at least in the large a; limit, ana-
logous to the 6-j symbol's interpretation of its 3D ana-
logue. Concrete results along these lines are obtained in
Ref. [15]. The above construction defines a combinatori-
al quantum theory in 4D (for a fixed triangulation). In
the absence of boundaries, we have

Z(b, ) =g ZR, ,(c)=g II exp[ —Sa, ,(s)],

where the sum is over the colorings, the product over the
four-simplices. The states of this theory are given by the
induced colorings of the induced triangulation on the 3D
boundary of the 4D triangulated spacetime. These states

The reason the group SU(2) is still the relevant group, in spite
of the fact we are one dimension above, is in the very fact that it
is the roots of Ashtekar's magic construction: the
(complexified) Lorentz group splits naturally in two
(complexified) SO(3) groups, its self-dual and anti-self-dual
parts, and, as shown by Ashtekar, the full theory can be con-
structed using only one of these two SO(3) components.

We disregard the important problem of the fact that the areas
of a triangulation are not independent.
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are physically determined by the fact that there is a
three-dimensional triangulation of space such that the
(2D) surfaces of the triangulation have assigned areas,
these areas being half-integers in Planck units. These
states are therefore in correspondence with the states of
the loop representation. The correspondence being given
by the result of Ref. [7]: the physical area of any surface
is —,

' the number of loops that cross the surface. Since the
states can be written in terms of loop states, and vice ver-
sa, this theory defines a scalar product in loop space by

To clarify the meaning of Eqs. (3) and (4), let us rewrite
them in terms of the original continuous Ashtekar s vari-
ables 2 and E. We have

(y, ~y'& = f [d A ][d E]exp[ —SE[ A, E]]
X 4~( A)*'Pr ( A),

where

q, (A)=e, ('A)=&'A~@&=TrPexp f A

where y is on BM„y' is on BM2, and the sum is over all
the colorings of the interior areas, the colorings of the
areas on the boundaries being determined as —,

' the num-

ber of times the loops cross the surface. The idea that
states of the loop representation can be better understood
in terms of the area they induce on a 3D triangulation
was proposed by Smolin in Ref. [16].

We still do not have a well-defined diffeomorphism in-
variant theory, since the above construction depends on
the triangulation A. We eliminate this dependence by
summing over all the triangulations of M. The key point
is that this is now possible because we have a way of
determining the quantum states on the boundaries, which
is independent from the triangulation of the boundary it-
self, namely, the loop basis. Thus, we define the theory as

Z =g g ZR, ss, (c),
c

(3)

and the scalar product between two loop states by

[If in Eq. (3) we perform the sum over the colorings first,
the theory takes a form strictly related to the dynamical
triangulations approaches to quantum gravity [4]; this re-
lation, we believe, deserves to be explored. ] The impor-
tant point is that the scalar product defined in this way is
invariant under independent diffeomorphisms on each of
the two loops, because the sum is also. Therefore, it
defines a scalar product (K ~IC'& between knot states by

and each loop is in one of the two boundaries of space-
time. It is easy to convince oneself that this is the correct
formal expression for the scalar product in the loop rep-
resentation, up to the problem of definition and finiteness
of the functional integration. To our knowledge, this ex-
pression was first proposed by Martellini [17]. This ex-
pression is the connection representation equivalent to
Hawking's expression [18]

(%,4)= f [d g]expI —S [ g]]%'( g)*&&( g'),
where the integration is over all the 4D metrics g on M,
and g and g' are the restrictions of g to the two com-
ponents of the boundary of M. Of course, these function-
al integ rais do not mean anything until one has a
definition for them. The combinatorial expression given
above could be used to find this definition. In this con-
tinuum case, Hawking does indeed give a formal deriva-
tion of the fact that the functional integral defines a pro-
jection on the solutions of the Wheeler-DeWitt equation.
This indirectly supports our claims about the sum (4).

We conclude with a consideration on the formal struc-
ture of 4D quantum gravity, which is important to under-
stand the above construction. Standard quantum-field
theories, as QED and QCD, as well as their generaliza-
tions such as quantum-field theories on curved spaces and
perturbative string theory, are defined on metric spaces.
Witten's introduction of the topological quantum-field
theories has shown that one can construct quantum-field
theories defined on a manifold which has only its
differential structure, and no fixed metric structure. The
theories introduced by Witten and axiomatized by Atiyah
have the following peculiar feature: they have a finite

These equations provide an expression for the Hilbert
structure of quantum gravity. We expect that Eq. (4)
defines a projector on the knot states, which projects on
the solutions of the Wheeler-DeWitt equation, as happens
in 3D [11],so that both canonical constraints are imple-
mented in the combinatorial theory. This is our main
proposal for a 4D theory.

4There is an optimistic scenario, which is that the scalar prod-
uct above does not depend on the triangulation. While we do
not hope for so much (general relativity is not topological in the
naive sense), still we do not think that this is totally impossible,
as some considerations below may suggest.

sOoguri suggests [12] that one may have two conjugate vari-
ables in the continuum version of the theory, which correspond,
respectively, to the choice of the triangulation and the choice of
the coloring in the combinatorial version of the theory. Note
the similarity between Ashtekar's fF A E h E action, with the

(topological) BF theory action fF AB which seems to underlie

the Ooguri-Crane-Vetter invariants [10,12]. The relation be-
tween the construction proposed here and the (triangulation-
independent) Ooguri-Crane-Vetter construction deserves to be
studied in detail.

Of course, each of the above equations can be immediately
generalized to nontrivial topologies, Hartle-Hawking states,
disconnected universes, and so on, if one is interested in those
directions.
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number of degrees of freedom, or, equivalently, their
quantum-mechanical Hilbert spaces are finite dimension-
al; classically this follows from the fact that the number
of fields is equal to the number of gauge transformations.
But not every diffeomorphism-invariant field theory on a
manifold has a finite number of degrees of freedom.
Witten s gravity in (2+ 1)-D is given by the action
S [ A, E]= fTrF h E, which has a finite number of de-

grees of freedom; consider the action S[A, E]= fTrF h E AE in (3+1)-D. This theory has a strong
resemblance with its (2+ 1)-D analogue: It is still defined
on a differential manifold without any fixed metric struc-
ture, and is diffeomorphism invariant. We expect its
quantization to be more similar to the quantization of the

ITrF h E theory than to the quantization of theories on
Aat space based on the Wigthman axioms, namely on
n-point functions and related objects. However, the
theory has genuine field degrees of freedom: its physical
phase space is infinite dimensional, and we expect that its
Hilbert state space will also be infinite dimensional.
There is a popular impression that a theory defined on a
differential manifold without metric and diffeomorphism
invariant has necessarily a finite number of degrees of
freedom ("because thanks to general covariance we can
gauge away any local excitation"). This belief is, of
course, wrong. A theory as the one defined by the action

fTrF h E R E is a theory that shares many features with
the topological theories, in particular, no quantity defined
"in a specific point" is gauge invariant; but it has
genuinely infinite degrees of freedom. Indeed, this theory
is, of course, nothing but (Ashtekar's form of) standard
general relativity.

The fact that "local" quantities such as the n-point
functions are not appropriate to describe quantum gravi-
ty nonperturbatively has been repeatedly noted in the
literature. As a consequence, the issue of what are the
quantities in terms of which a quantum theory of gravity
can be constructed is a returning issue. The above dis-
cussion indicates a way to face the problem: The topo-
logical quantum-field theories studied by Witten and Ati-
yah provide a framework in terms of which quantum
gravity itself may be framed, in spite of the infinite de-
grees of freedom. In particular, Atiyah s axiomatization
of the topological field theories provides us with a clean
way to formulate the problem. Of course, we have to re-
lax the requirement that the theory has a finite number of
degrees of freedom. These considerations lead us to pro-
pose that the correct general axiomatic scheme for a
physical quantum theory of gravity is simply Atiyah's set

7For a (self-dual) SO(3, 1) connection 3 and a (real) one form E
with values in the vector representation of SO{3,1).

of axioms [3] up to the finite dimensionality of the Hil-
bert state space. We denote a structure that satisfies all
the Atiyah's axioms, except the finite dimensionality of
the state space, as a generalized topological theory.

The theory we sketched in this paper is an example of
such a generalized topological theory. We associate with
the components BM; of the boundary of M the infinite di-
mensional state space of the loop representation of quan-
tum gravity. Equation (4) then provides a map, in
Atiyah's sense, between two of these boundary com-
ponents. Equivalently, it provides the definition of the
Hilbert product in the state space.

Finally, we must recall that the computation of the
evolution of expectation values in physical time (as op-
posed to coordinate time, which has no diffeomorphism
invariant meaning) requires the use of a physical clock
coupled to the theory (in principle, this could also be a
component of the gravitational field itself) [19]. In this
sense the integration (or the sum) over M is physically
very analogous to the derivation of the propagator of a
relativistic particle by means of an integral over the paths
x"(r), where p=0, . . . , 3; in the particle case too,
indeed, the scalar product between two wave functions on
Minkowski space can be obtained by integrating over a
five-dimensional manifold that interpolates two Min-
kowski spaces (see, for instance, [20]). Physical evolu-
tion, of course, is in x, not in ~. In addition, the quanti-
zation of the physical area is a non-gauge-invariant re-
sult, unless reinterpreted in a suitable gauge-invariant
context [21].

Summarizing, we have shown the following. (i) The
"colored triangulation" basis of the Ponzano-Regge-
Turaev-Viro-Ooguri quantization of 30 gravity is pre-
cisely the loop representation basis. (ii) We can interpret
the quantization of the length in half-integer units in
physical terms: the spectrum of the length operator has
discrete half-integer eigenvalues. (iii) These lengths are
related to the SU(2) representations because the quantum
states that diagonalize the lengths are given (in the con-
nection representation) by Wilson lines that cross the
curve 2j times, or, equivalently, by one Wilson line in the
j representation that crosses the curve. Motivated by
these results, we have sketched a 40 combinatorial
theory, based on a modification of Regge calculus. Many
questions remain open as far as this theory is concerned,
the most relevant ones being the relation between the Eu-
clidean and the I.orentzian theory, and the convergence
properties of the sum (3). Finally, we have proposed that
Atiyah's axiomatization of topological field theories can
be extended to theories with infinite degrees of freedom,
and that this extension can be taken as the general formal
structure of a quantum theory of gravity.
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