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We investigate a controversial issue on the measure of CP violation in strong interactions. In the
presence of nontrivial topological gauge configurations, the 8 term in @CD has a profound effect: it
breaks the CP symmetry. The CP-violating amplitude is shown to be determined by the vacuum
tunneling process, where the semiclassical method makes most sense. We discuss a long-standing
dispute on whether or not the instanton dynamics satisfies the anomalous Ward identity (AWI).
The strong CP-violation measure, when complying with the vacuum alignment, is proportional to
the topological susceptibility. To solve the IR divergence problem of the instanton computation,
we present a "classically gauged" Georgi-Manohar model and derive an effective potential which
uniquely determines an explicit U(1)~ symmetry breaking sector. The CP-violation efFects are
analyzed in this model. It is shown that the strong CP problem and the U(l) problem are closely
related. Some possible solutions to both problems are also discussed with new insights.

PACS number(s): 11.30.Er, 11.15.Kc, 12.38.Aw, 12.40.Aa

I. INTR.DDU CTIDN

The discovery of instantons [1] has been associated
with some of the most interesting developments in strong
interaction theory. It has led to a resolution [2] of the
long-standing U(l) problem [3], and also pointed to the
existence in @CD [4] of vacuum tunneling and of a vac-
uum angle 8, which combined with the phase of the de-
terminant of the quark mass matrix, signals the CP vi-
olation in strong interactions. The difhculty in under-
standing the very difFerent hierarchies of the strong CP
violation and weak CP violation in the standard model
has been targeted as the so-called strong CP problem (for
a review, see Ref. [5]).

The theoretical understanding of weak CP violation
is well established in the framework of the Kobayashi-
Maskawa mechanism [6] in spite of the challenge in
higher-precision experimental measurements. It has been
shown [7] that the determinant of the commutator of the
up-type and down typ-e quark mass matrices [M, M"] =—

iC given by

det C = —2g „I,(m, &
—m, )(m, —m„)(m„—m&)

x (m& —m, ) (rn, —m&) (m& —mb), (1.1)

where

j~enk = siii 81 sin 82 siI1 gs cosgi cos82 cos gs slIlh (1.2)

is the unique measure of the weak CP violation. All
CP-violating eKects in weak interactions must be pro-
portional to det C. Even though the CP-violating phase
sin b can be of order 1, the physical amplitude is naturally
suppressed by the product of Cabibbo mixing angles.

However, the measure of CP violation in @CD, which
we shall denote as g,t,n„g,is not so clear. It has long been
realized that 0@gD and phases of quark masses are not
independent parameters in @CD. In the presence of the
chiral anomaly [8], they are related through the chiral

transformations of quark fields. Thus Qt»ns must be
proportional to a combination

8 = 0@cD+argdetM, (1.3)

which is invariant under chiral rotations. It is well known
that if one of the quarks is massless, 8 can take an ar-
bitrary value since one can make arbitrary rotations on
the chiral field. This suggests that the 8 dependence of
J,'&, „gdisappears in the chiral limit. Thus in the case of
L = 2 where L is the number of light quarks, gt, „shas
the form

~7strong muIIId~ Sin 8

where we have written sin61 instead of 8 to take care of
the periodicity in 8. Is there any other common factor
that we can extract from strong CP effects or is K in
(1.4) only a kinematical factor which varies with difFerent
physical processes?

To answer the question, we need to know whether there
is any other condition under which the strong CP viola-
tion vanishes. Recently, the reanalysis of strong CP ef-
fects has shed some light on this issue. Several authors
[9] have pointed out, in studying an effective Lagrangian,
that the strong CP violation should vanish if the chiral
anomaly is absent. We regard their work as construc-
tive and enlightening. However, how to appreciate such
a feature in @CD with quarks is not apparent in their ap-
proaches. In /CD theory, indeed, if the chiral anomaly is
absent, the phases of quark masses can be rotated away
without changing the 8 term. But it is not clear why
8@cD itself does not lead to CP violation in strong inter-
actions. In addition, the presence of the chiral anomaly
in a gauge theory may not be directly related to CP viola-
tion. One example is @ED.It is well known that @ED is
a CP-conserving theory even if it is chirally anomalous,
and, in principle, could have a 8 term and a complex
electron mass term.
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In this paper, however, we show that the measure of
strong CP violation does acquire a factor referred to as
the measure of the nontriviality of the non-Abelian gauge
vacuum. It is simply due to the fact that the 8 term is a
total divergence whose integration over space-time yields
a surface term. It ean be dropped unless there are non-
trivial gauge configurations at the boundary. K in (1.4)
will be shown to be the vacuum tunneling amplitude be-
tween difFerent vacua characterized by the winding num-
bers

2
d xFF-=

327r2

where a semiclassical method makes the most sense to
deal with it. To probe the property of the K factor, we
proceed to consider a classically gauged linear cr model.
A derivation of a U(1)~ sector of the model can be made
by taking into account the fermion zero modes in the in-
stanton fields. Contrary to the conventional result [10,
ll] where K has a singularity in quark masses such that
g, t,, „sis a linear function of the quark mass, our model
clearly shows that K is to be explained as the mass differ-
ence between the U(1) particle and pions. Thus, g,i, „s
has the form

U(1) problem. It has long been pointed out that instan-
ton physics, in some ways, suffers from difficulties. It is
well known that the integration over the instanton size
is infrared divergent. It is further argued by Witten [13]
that the semiclassical method based on the instanton so-
lution of the Yang-Mills equation is in conflict with the
most successful idea of ~ expansion in @CD.The reason

1

is that instanton efFects are of order e ~~ or e ~ (for g2

of order —in the large K, limit), which is smaller than
Ãc

any finite power of & obtained by summing Feynman
diagrams. These problems, as they stand now, indeed
refiect various defects in the instanton calculation (we
will come back to these points in later sections).

However, there was another type of objection initiated
by Crewther [10] followed by others [12], which would be
even more serious if they were correct. For many years
Crewther has emphasized that the breakdown of U(l)~
symmetry by the chiral anomaly and the instanton is
related to the breakdown of the SU(L) x SU(L) symme-

try. This relation is represented by the so-called anoma-

lous Ward identity. He claimed that instanton dynamics
failed to satisfy the AWI and one would still expect the
unwanted U(1)~ Goldstone boson. He further showed

that the topological susceptibility de6ned as

Jstrong = mama(m„—m„)sin 9.2 2 (1.6)
d'~(r OFF(*) OFF(0)) (2.1)

In the context of the effectiv model, the strong CP ef-
fects can be explicitly calculated and various solutions
to the strong CP problem will be discussed with new
insights.

The paper is organized as follows. In Sec. II, we dis-
cuss a long-standing problem raised by Crewther [10, 12]
on whether or not the instanton is consistent with the
anomalous Ward identity (AWI). We find that the AWI
does not put any constraint on the topological suscep-
tibility ((v )) in @CD. The AWI is automatically satis-
fied by instanton dynamics if the singularity in the chiral
limit of some fermionic operator is taken care of. Section
III deals with an instanton computation of ((v )) in the
dilute gas approximation. The vacuum alignment equa-
tions of the quark condensates are derived based on the
path integral formalism. Upon making alignment among
strong CP phases, we rederive an efFective CP-violating
Lagrangian. In Sec. IV we present a classically gauged
linear cr model. In the semiclassical approximation, the
instanton fields are integrated out. An effective one-loop
potential is obtained by integrating over fermions in the
instanton background where the fermion zero modes are
essential to yield an explicit U(1)~ symmetry breaking.
The strong CP efFects and the U(l) particle mass are cal-
culated in the model. Section V is devoted to discussions
on various possible solutions to the strong CP problem.
Section VI is reserved for conclusions.

D(A, @,Q)
—8[A,g,gj

where the @CD action in Euclidean space is

(2 2)

S[A, Q, Q] = d &(Q pQ+ ming+ 4F —i8FF) (2.3)

and Z is the normalization factor, V is the volume of
space-time. Under an infinitesimal U(1)~ transforma-
tion,

must be equal to m(@Q) in order to satisfy the AWI; m is

the quark mass. We have assumed that all quarks have

equal masses. As we shall see in Sec. III, ((v )) is to
be identified as the measure of strong CP violation. If
Crewther is right, it would seem that strong CP has no
direct relation to the topological vacuum structure.

To see where the problem lies, we carefully follow a
path integral derivation of the AWI. Consider a fermion
bilinear operator QL, QR with chirality +2 (a sum over

fiavor indices is understood). Its vacuum expectation
value (VEV) is formally given as

II. DOES THE INSTANTON SATISFY THE AWI?
THE TOPOLOGICAL SUSCEPTIBILITY' ((v~))

4R - "c(~)0a, A - e-'e (~)OL„ (2.4)

Let us leave our discussion on Q,t, „saside for the mo-
ment and turn to a problem which turns out to be the
key to understanding both strong CP violation and the

the measure 'D(A, g, g) will change because of the ehi-
ral anomaly. However, the integral (2.2) will not change
since (2.4) is only a matter of changing integration vari-
ables. Equation (2.2) then becomes
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D(A, @,g) d xe ' *i&1,&~(x)exp —S[A, Q, Q]+ ia(x) d x[8„J 2—mgpsg —2L FF],(2.5)

where the U(1)~ current is J„=Qp„ps@and L is the number of light quarks. The independence of (@L,g~) on n(z)
implies the vanishing of its first derivative which yields the A&I:

d xO„(TJ„(x)QI.Q~(0)) = 2m d x(T QipsQ(x) QI, Q~(0)) + 2L d x(TiFF(x) QI,Q~(0)) —2i(QL, Q~). (2.6)

Crewther's arguments go as follows. If there is no
U(l)& Goldstone boson coupling to Js, the I HS of Eq.
(2.6) vanishes. In the chiral limit, the first term on the
RHS would vanish too. Thus one has, when m —+ 0,

d x(T FF(x) $1,&~(0)) = (@I,QR). (2.7)

The instanton dynamics assumes that the integration
over the gauge field is separated into a sum over gauge
configurations characterized by the integer winding num-
ber v in (1.5), i.e. , f [dA] = P f [dA], and (QI,Q~) =

f (@L,@R) Equat. ion (2.7) would then imply {gipsg) = Tr = —T(m ),P(A)+m m

w~ere

(2.12)

function of m, which, again, contradicts the instanton
computation.

We argue, however, that all these inconsistencies arise
from dropping the first term on the RHS of (2.6) in the
chiral limit or treating it as a higher-order term. The
U(1)~ fermion operator Jigsaw, when the fermion fields
are integrated out first as they should be, may reveal a-
singularity in certain gauge configurations. To see this,
we first calculate the VEV of pips@ in a fixed background
field A„.Upon the fermion integration, one has

= i d4x(T FF(x) $1,$~(0)) (2.9)

By assuming the spontaneous chiral symmetry breaking
caused by (QI.QR) g 0, (2.8) cannot be satisfied if v is
an integer. Moreover, by noting that

T(m )=Tr

)5m
D2+ ~~+~ I'~ + m2

(2.13)

one obtains
It is easy to check that &",T(m ):—0, i.e. , T(m ) is
independent of m . Thus it can be calculated in the
limit m~ ~ oo [14],

lim T(m )
fA ~OO

(2.10)

which is unacceptable because the 8 dependence of
(QI.QR) would have a wrong periodicity 2mL Along the.
same line, one could derive the AWI for operator QRQL,
and FF and combine them with (2.6) to obtain

iL d x Trps(—~~a„„F„)z
= iLFE

and therefore

(Jigsaw) = iL—
d4p m'

(2~)' (p'+ m2) s

(2.14)

(2.15)

By noting that the first term on the RHS of (2.11) is of
order O(m ), one would conclude that ((v )) was a linear

It has a pole at m = 0. It is clear that m(gi p5$) + may be
finite in the limit m —+ 0 if FF is nontrivial. Performing
the fermion integration for the first term on the RHS of
(2.6), we obtain

(2.17)



MEASURE OF STRONG CP VIOLATION 273

(&) =
g

J' g4 (g y)2+ (y2 2l2
(2.18)

Since the action is perfectly reflection symmetric and P
is an odd operator under reflection, we have (P)

—= 0.
Mathematically this is true because of the equal weight
of the degenerate vacua. But what is of physical interest
is a situation where one of the degenerate vacua is chosen
as the ground state. The way to do it is to introduce a
source term f d4x JP into the action which breaks the
symmetry explicitly. The degeneracy of the vacua in the
absence of the source implies that (P) g is a multivalued
function of J at J = 0. The VEV's of P crucially depend
onthewaythat Jtendstozero. Inparticular, (P)g p+ =
—(4)J-0- W 0.

The same procedure should follow for the spontaneous
chiral symmetry breaking in /CD. In order to define the
quark condensate (@L,QR), one ought to add the source
term f d x J@igR(x) to the action. Then a U(l)~ trans-
formation changes the source term as well

d x Je ' gr, @R. (2.19)

We also need to take this change into account because

(QL, QR) defined by the way that J -+ 0 would be different
from the one de6ned by Je ' —+ 0. By differentiating

(QL, QR) with respect to o. we obtain an equation exactly
the same as (2.6) except that m, is replaced by J. For
the same reason as we have discussed, the RHS of the
equation is identically zero for any value J (even in the
limit J —+ 0). There is no U(1)~ Goldstone boson, and,
in general, (2.7), (2.8), and (2.10) do not hold.

We have shown that the AWI for the isosinglet current
Js is trivially satisfied by @CD dynamics including the
axial anomaly. Equation (2.11) is an identity satisfied

Identifying the second term in (2.17) with (QL, QR), we
find that the RHS of (2.6) vanishes identically for any m.
This is not surprising since if we had considered a global
U(1)~ transformation instead of a local one in (2.4) at
the beginning, we would have come up with the same
conclusion immediately. Similarly, (2.11) is an identity
to be satisfied (trivially) by any dynamics which respects
the basic rule of the fermion quantization. [Of course it
should also respect the anomaly relation. If there were no
anomaly, the second term on the RHS of (2.6) would be
absent. The cancellation would be incomplete indicating
the existence of a massless excitation coupling with Js.
Thus the chiral anomaly is essential to solve the U(1)
problem. ]

There is a delicate problem about taking the chiral
limit. One may ask what if the quark mass term is simply
absent in the Lagrangian in the first place. Crewther's
problem seems to come back if the first term on the RHS
of (2.6) is not present. Actually this is where the puzzle
comes about. In this case, however, a nonvanishing value
of the quark condensate is not well defined. It relates to
a general feature of the spontaneous symmetry breaking
mechanism. For example, in the P4 theory with sponta-
neous breaking of the reflection symmetry (P ~ —P), the
VEV of P is calculated

—6'—(@y) = o. (2.2o)

It can be readily checked by integrating the fermion fields
that (2.20) is satisfied in @CD. Unlike the singlet current
in (2.12)

A
A A ip5

pips Q= Tr—— =0
2 2P+m (2.21)

because A 's are traceless. Assuming that pions are the
lowest-lying resonances which dominate the correlation
function, one obtains

m d x Tgip5 Q(x) pips 'Q(0)— = F m b

res

(2.22)

leading to Fzm2 = zm(g@). —Can we do the same
analysis for the correlation function of the singlet opera-
tor

m d x(T Jigsaw(x) Qip5$(0))„, (2.23)

such that we may get a phenomenological value for ((v ) )
from (2.11)without resorting to instanton computations'?
This turns out to be of some difhculty. For the axial
singlet operator, we cannot generally assume pion domi-
nance. In fact, mgip5$ does not couple to pions because
A s commute with the identity [ll]. In addition, ging
has pole behavior at m = 0 whose residue is FF. It may
couple to a gauge ghost [15] as well as glueballs and the
U(l) ~ particle. It may also exhibit a nonzero subtraction
constant in the spectral dispersion representation [16],
which by itself is not surprising in the presence of the
anomaly. All these factors may further fall into overlap,
causing double counting. They have made an estimation
on (2.23) extremely dificult if not impossible.

In summary, the AWI and the low-energy phenomenol-
ogy may not put a constraint on the topological suscep-
tibility. Therefore, it leaves us the task of calculating
((vz)) and the measure of strong CP violation from in-
stanton dynamics. To avoid the infrared divergence, we
further relate ((v )) to the U(1)~ particle mass in an
effective theory.

by any dynamics if the singularity of the singlet operator
Jigsaw in the zero-mass limit is appropriately handled.
It does not put any constraint on how the topological
susceptibility ((v )) should behave as a function of the
quark mass. Thus, it does not, from the context of the
field theory, rule out the instanton computation. How-
ever, this should not be confused with the case of the
AWI's for nonsinglet currents where the assumption on
the lowest-lying resonances have to be made. For a non-
singlet axial-vector current J„=Qp&ps 2 @ [A 's are
generators of SU(L), a = 1, . . . , L —1], the correspond-
ing AWI reads

d'» 4~~~ 0(*)0—~~~ 4P&))—2 2
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III. THE EFFECTIVE CP-VIOLATING
LAGRANGIAN IN +CD

In Sec. II we have shown that the axial singlet operator
Jigsaw is related to FF in a fixed gauge background.

When the gauge fields are integrated out, (2.15) becomes
a relation on VEV's. It can be easily proven that such
a relation is true for each flavor. In general, when the
quark mass is complex, one derives

i(m—'e"'(OiCR) —m'e "(OR&1.)) = —
(

' *'
2p+ ...,„)™"' 2p+m, ,'y, g.

= (iFF), (3.1)

where p, is the phase of the ith quark mass (i = 1, . . . , L),
no sum over i is understood in (3.1). Now define

where Z+ (Z ) is the single instanton (anti-instanton)
amplitude

or

(g'Q') = —C, cos P, , (@'ipse')—:C, sin P, ,

(3.2)

(3 3)

2Nc

Z i8 d4& PCp' &g'(p)

Z Z+
with

Sm

e ~'~~& d(M p),

(3 7)

where C; ) 0 and P, is the phase of the ith quark con-
densate. Equation (3.1) yields

(iFF) = —m, C, sin(&p, + t9, ) (i = 1, 2, . . . , L), (3.4)

v=0, +l, ...
v(A, @,g)e' '

which is to be referred to as the vacuum alignment equa-
tion (VAE) [17]. It can also be derived directly by taking
vacuum expectation values on both sides of the anomaly
relation [18]. Equation (3.4) means that if the first mo-
ment of the topological charge is nonzero in the presence
of instanton, the quark condensate develops a phase P,
different from —y;. If the phase of the fermion mass y,
is zero as it can always be made so by making a chiral
rotation, the fermion condensate has a nontrivial phase
P, g 0, i.e. , develops an imaginary part which is deter-
mined by the topological structure of the theory. This
of course would not happen in a theory like @ED where
only the trivial topological configuration exists. We shall
see that it is the combination &p, +P, that determines the
CP-violating amplitude in strong interactions.

(FF) can be calculated from instanton dynamics in
the dilute gas approximation (DGA) [19]. The vacuum-
to-vacuum amplitude in the presence of the 8 term is
given by

d(Mp) = f(m, p),

f(x) =1.34m(1+x21nz+ ), z « l.
Combining (3.8) and (3.8) with (3.6) one obtains

Z(e) = exp[2V cos 8mim2 ml. K(L)],

where K(L) is of dimension 4 —L:

(3.8)

(3.9)

K(L) = (1.34)

2Nc
dp & 8~2 'I"

I,e'(p)

(3.10)

4.6 exp( —1.68N, )
7r2(N, —1)!(N,—2)!

The factor d(Mp) in (3.8) is connected with the so-
called fermion determinant, which introduces important
physics. It was first discovered by 't Hooft [20] that there
exists a zero mode of the operator P in the instanton
field. Thus we expect d(Mp) oc det M (M is the quark
mass matrix). For small quark masses, d(Mp) is equal
to [20, 21]

—J d z Q Q'(P+m, )Q'+ 4
F~

xe (3.5)
The first moment (iFF) is calculated by taking an aver-
age of the topological charge over four-space,

where we have not explicitly included the gauge fixing
and the ghost terms. Inclusion of them must be under-
stood when a practical computation is performed. The
phase of the quark masses have been rotated away and
8 = eqoD + g,. Ip, . In the DGA,

4 . - 1(iFF) = — d xiFF = —=lnZ(8)
V V ddj

= —2m mg mL, K(L) sin 8,

and the topological susceptibility is equal to

(3.11)

z(e) = ) ) (z,)".(z )"-
n+ ——0 n =0

(3.6)

1 d2
((v')) =

V de, ln Z(e)

= —2m„mq mr, K(L) cos e. (3.12)
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Clearly, when 8 is small we have

('«) = ((-'))8 (3.13)
(~ ~"14cDFFln) = —

F (~'l[Qs, FF]ln),

(3.17)

(@'i~.0') = o (i = 1 2 " L). (3.14)

Then the phases of the quark masses are no longer ar-
bitrary. They are uniquely determined by the vacuum
alignment equation (3.4),

((~'))
8

m, C (i = 1, 2, . . . , I),
(3.i5)

8qcD =8 —) (pi= 1 —) 18,
- ((~')) &-

,
- m, C)

where we have assumed p, 's are small and C, 's are all
equal to C. To be aligned with the vacuum, the strong
CP phase 8 must be distributed among the 8 term and the
quark mass terms according to their determined weights.
The effective CP-violating part of the /CD Lagrangian
reads

Ze'p ——i8qcDFF ——m„mg ml K(L)87/)ipseP;=0

(3.i6)

with 8@cD given in (3.15).
It is worth emphasizing that the efFective CP-violating

interactions in (3.16) are only valid in the CP-conserving
vacuum where P, 's are zero. One can alternatively choose
a certain pattern of the phase distribution and ask in
what direction the vacuum is to align with it. In general,
the vacuum angles are not zero and should be determined
by the VAE (3.4). For example, we ean choose p, = 0
(i = 1, . . . , L) such that Z~&p ——i8FF. In this case, the
vacuum condensates are complex where P, = —

& 8.((-'))—
A physical CP-violating amplitude is from both the CP
violating part of the Lagrangian and the CP-violating
part of the quark condensate. A proof of the equivalence
of different chiral frames on strong CP effect is given in
Ref. [22] where it is shown that the vacuum alignment
equation (3.4) plays an essential role.

Does the leftover 6I term in the effective Lagrangians
play any role in computing the strong CP effects? So far
there have been only two CP-violating processes avail-
able: g -+ 2m and the electric dipole moment (EDM) of
the neutron. The latter process depends on a computa-
tion on the effective CP-odd ~ Ncoupling [23,24].-Both
of them would involve in an evaluation of the commutator
[Qf, FF] if the 8 term were to contribute

The vacuum alignment in @CD can be readily made
through the VAE in (3.4). By defining the quark field,
one can change the phase of the quark mass y, and phase
of the quark condensate P;. However, the p, +P, 's will not
change under the redefinition. They are only functions of
8 as shown in (3.4). One may choose P, = 0 (i = 1, . . . , L)
such that the vacuum is CP-conserving:

(7r Nl8qgDFF]N') = — (Nl[Q&, FF]lN'),

where we have used the soft-pion theorem. It is obvious
that [Qf, FF] = 0 since Qs is a nonsinglet charge and
thus the canonical commutation relation applies. The 8
term in our particular choice of the effective Lagrangian
and the vacuum direction can be ignored. However, it
is emphasized that this should not be considered as a
general statement. The whole point has to do with the
vacuum alignment. What really matters is the correla-
tion relation between P, 's and P, 's given by (3.4).

The above statement can be exemplified in the follow-
ing. For simplicity, let us assume m„=mp =
mL, = m and L = 3 where pions and q are all light
pseudoscalars and the soft-pion theorem applies. The
amplitude of rl —+ 27r is readily calculated when the p, 's
are zero:

A(rl —+ 2~) = (vr ~ lZ~~p lq)
3

[Q, [Q [Q

4 1
m„mmmm, K6I. (3.18)

A(~ - 2~) = -(~'~olmqql&)
3

I ([Qs [Qs [Qs A]]l)
2

3m sin

4 1
m„mmmm, K8, (3.19)

where P, = —~~ &i8. Both (3.12) and (3.19) yield the
same result.

We conclude that the measure of strong CP violation
is given by the topological susceptibility

Zs«»s = ——((i'))8 = mim2 .ml, K(L)8. (3.20)s rong

However, K(L) is still an unknown factor, in addition,
the integral in (3.10) is simply divergent for large in-
stanton density. This is the shortcoming of all instanton
computations if one uses the dilute gas approximation
(DGA). More seriously, as we shall see below, K(L) is
to be related to the mass of the U(1)~ particle. If K(L)
is of order e ~ as argued by Witten [13], it would be
in conBict with Witten and Ueneziano's solution to the
U(l)~ problem [15) in which the mass of the U(l)~ par-
ticle is of 0(+). This suggests that we should not take

In deriving (3.18), we have dropped the FF term. In a
chiral frame where the P, 's are zero, we can still drop the
8 term. But the CP-conserving part of the Lagrangian
will contribute because the vacuum condensates are CP
violating:
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the expression for K(L) in (3.10) too seriously since it
is divergent after all. Furthermore, the DGA may not
be valid in the IR region of the @CD theory. It has
been suggested in Ref. [25] that the instanton liquid can
in principle avoid the IR problem, and gives rise to a de-
scription on the U(1)~ particle mass consistent with Wit-
ten and Veneziano's scenario. Nevertheless, some main
features of the instanton computation do not depend on
the detail of the topological configurations. For instance,
those mass factors appearing in (3.20) will not change
since they are a direct result of the Atiyah-Singer index
theorem [26] on the fermion zero modes.

IV. THE EFFECTIVE CHIRAL MODEL

A. The model and the instanton induced
quantum corrections

We consider an effective chiral theory where meson de-
grees of freedom are explicitly introduced. The virtue of
the model is that it refiects all fiavor symmetries in strong
interactions as described by @CD and the mesons as in-
dependent field excitations coupled to fermions through
Yukawa couplings. Unlike a conventional effective theory
[27] in which the nucleons are involved, the model that we
will be discussing contains quarks, gluons, and mesons.
It is a linear version of the gauged o. model suggested
by Georgi and Manohar [28], which describes strong in-
teractions in the intermediate energy region between the
scale of chiral symmetry breaking and the scale of quark
confinement.

The model reads

0P4 —-+—+ i8&F —fez, 4'4a —fOR4'A.

TrB„QB„Q——Vo(P(6 ) —V~(P, Q ), (4.1)
where P is a complex L x L matrix, Vo(ggt) is the most
general form of a potential invariant under U(L) x U(L)
(renormalizable):

Vo(ggt) = p, Trggt + —(—Ay —Ag)(Trggt)
2

and
+A2 Tr(pp')' (4.2)

Qa ~ URER

p ~ UI QU~, p ~ URQ Ul.
(4.4)

In the absence of V, l: is invariant classically under (4.4)
but broken down to SU(L)r, x SU(L)R x U(l)v by the
chiral anomaly. V~, replacing the quark mass (m, now is
of dimension 3), serves as an explicit symmetry breaking
and must be treated as a perturbation. f is the Yukawa
coupling, chosen to be real by redefining P. Under U(l)~

V (P, P ) = ——me'~Trg — me '"Trgt— (4.3).4 4

Equation (4.1) needs some explanations. Under U(L)I, x
U(L) R, the quark field as well as the complex meson field
transforms as

transformation

QR~e ' @a,

2iw
y yt —2iu yt

(4 5)

the 8 term and V~ change as 8 ~ 8 —2Lw, g —+ g+ 2u.
But 8 = 8+ Ly remains unchanged. Except for the me-
son sector, the gauge interaction in (4.1) looks identical
to @CD. One may wonder if we are double counting the
degrees of freedom. This is explained in [28] by pointing
out that these quarks and gluons are not the same as in
@CD. In particular, quarks are supposed to acquire con-
stituent masses about 360 MeV, which is huge compared
to the current mass in @CD. The gauge coupling g, be-
tween quarks and gluons in the effective theory is found
to be

n, = 0.28, (4.6)

z= x(y, yt). "[~~'[-~(g q y)& ~[0 0'& 4»4't]'
~(y yt) c ~,g[4»0t) (4.7)

where

~"[e,4'] = ~.[4 &']+»(4 4']
and the quantum correction is given

(4 8)

»[y yt] =-ln V(X q q). '~~ ~"~ ~'j-
—:—ln Z[P, Pt]. (4.9)

The calculation of Z[p, pt] in the instanton background
follows the standard derivation of the vacuum-to-vacuum
amplitude as illustrated in [20]

much less than its @CD counterpart. This may ex-
plain why the nonrelativistic quark model works since
the quarks inside a proton could be treated as weakly
interacting objects.

However, the drawback of the model is that it has a
very serious U(l) problem. Indeed, if one calculates the
physical spectrum from Vp + V~, one finds L would-be
Goldstone modes. In addition, the nontrivial topologi-
cal structure of the theory has been totally overlooked.
The classical excitations such as instantons have not been
accounted for in the model, which, according to the orig-
inal idea of 't Hooft [2], are crucial to solving the U(l)
problem.

We therefore consider the quantum correction to the
Lagrangian (4.1) in the presence of nontrivial classical
gauge fields known as instantons. We argue that the
effective gauge coupling n, in (4.6) is obtained only if
those classical extrema to the action have been effectively
summed over by semiclassical methods. We find that the
one-loop quantum fluctuations around instantons lead to
a dramatic change on the U(1)~ sector of the model. The
U(1) particle acquires an extra mass from the vacuum
tunneling eKects, which, in turn, result in the so-called
strong CP problem.

The effective action of the meson field is calculated as
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where

ice —s[A, ~j,~e

x (Det M~) Det M@Det Mzh, ,

(4.10)

(4.11)

eigenvalue product. Since [P, ps] g 0, Wq cannot be
diagonalized in the basis of eigenvectors of P. The
nonvanishing eigenvalues always appear in pairs, i.e. , if
Py„=A„p„,where A„g0, then Pps&p„=—ps Ptp„=
—A„p5p„,namely both A„and —A„are eigenvalues of
P. In addition, ps takes p„to p „.Therefore

Det'M@

~t'iA„+~z(P+ Pt)

If only the efFective potential is of concern, P and Pt
in JH~ are to be taken as constant fields. The fermion
determinant, as usual, needs special treatment:

DetM@ = Det~ iM@Det'Mq. (4.12)

Det i denotes contributions from the subspace of zero
modes of P. In a single instanton field, P has a zero
mode with chirality —1 (ps ———1) [14]. Thus we have

D t&'lM = d t —(Q+ Qt) + —(Q —Qt)( —1)
f f
2 2

= det( fPt),

= det
I 4 k

A„~O

et" '(—P'+ f'448) (4.13)

Now we are ready to make the DGA. We need to further
assume a weak-field approximation of P and Pt. This can
be justified since P and Pt fluctuate about their VEV's,
which are about 300 MeV. The large Huctuations are ex-
ponentially suppressed by exp( —Ai ~P~ ). In the DGA

Z[& &'] = D«( —&'+ f'4'4') exp(Z + Z-),

where det only acts upon flavor indices. The prime in
Det'My reminds us of excluding zero modes from the where

(4.14)

Z+ [P, Pi] = e' det( fPt)

Z [P, P ] = Z+ [P, P ],

dp ( 8irz 5

&8'(P) )
= VK(L)e' det(fPt),

Sn. ~

e ~'«& det 1.34p(l+ f //tin f PPt+ )

(4.15)

and K(I) is given in (3.10).
Combining (4.14) with (4.9) and noticing that

lnDet( —Bz + fzPPt) contains terms which can be ab-
sorbed into the tree-level Lagrangian by redefinition of
its bare parameters, we obtain the following effective La-
grangian:

Z,e= —@p.g — F,' —(foal. p&R—+ H.c.)

Tr(a„ya„yt)—V-, (dye) —V (4, 4t) —V„(4,y~),

(4.16)

where

Vk(g, gt) = K(L)f e' detPi ——K(L)f e ' detP.
(4.17)

Several remarks on (4.16) are in order. The presence of
Vg in (4.16) is the direct result of fermion zero modes
in the instanton field. It is invariant under SU(L)1, x
SU(L)~ x U(l)v but not invariant under U(l)~. Under
U(1)~ rotation (4.5), e'edetp ~ e'~e z~+~ detp. Thus

Vk takes over the role of the 8 term and respects the
anomaly relation. Again, 8 = 8+ gL remains invariant.
The prototype of VA,. was suggested a long time ago by
several authors [29] and rediscussed by 't Hooft [30] in
the context of instanton. It is different from the model
originally proposed by Di Vecchia [31] and recently ana-
lyzed in Ref. [9], although the physical contents of both
models may be similar. The gauge interactions between
quarks and gluons are still present in (4.16) as required
in the nonrelativistic quark model. However, they dier
from QCD in that the gauge coupling g, has a smaller
value, and most importantly, the gauge field A, now pos-
sesses a trivial topology at infinity. The gauge interaction
sector in (4.16) is very analogous to QED: the fermion
chiral anomaly still exists, but any 8 term I d x 8F,F,
in the action would be simply a vanishing surface term
and can be dropped.

B. U(l) particle mass and strong CP violation

We would like to discuss the physical spectrum of the
model (4.16) (this part has been worked out in Ref. [30])
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P=-(~+iq)+ (n-+i~) ~,
2 2

(4.18)

and show how the strong CP effects can be calculated
effectively. To simplify the problem, we take L = 2 and
u and d quarks have equal masses. In this case, rl is
identified as the U(1) particle and there will not be a
mixing between vro and g.

The complex meson field P contains eight particle ex-
citations o', )7, n~, and n~ (a = 1, 2, 3):

Assuming, for convenience,

1 1
(&) = -{~+in) = -ve"

2 2
(v) 0), (4.22)

we get, by taking the extremum of Vo + V~ + VA, with
respect to v and p,

2p 2m 2Kf2
v = + cos(A + (f2) — cos(8 —2(i2) (4.23)

Ay Ayv 1

where ~ ' 3 are the Pauli matrices. In terms of physical
Belds, Vo, V, and VA can be rewritten as

and

msin(y+ p) —Kf v sin(8 —2(i2) = 0. (4.24)

2

Vo(gyt) = ——"(~'+q2+ n'+ ~')
2

Ag (~2 + q2 + n2 + ~2)2
8

+—[((Tn + r17r) + (n x 7r) ], (4.19)

Equation (4.24) plays a role of the vacuum alignment
in the effective theory. If we take y = 0 as we wish,
(4.24) implies a consistency constraint on y and 8: They
are not separately independent parameters. They can be
expressed in terms of the physical parameter 8 = 8+ 2y
as

1
V (P, (tt) = m—e'—x(o + irl) — me —'~(rr —i'),

(4.20)

Kf v
sing = — sin 8,m+ 2K 2v

m
sin 8 = — — sin 8,m+ 2K 2v

(4.25)

(4.26)

&&(p, &t' ) = Kf (—o——rl —n + m ) cos8
2

—K(oil —n 7r) sin 8. (4.21)
I

where we have assumed that sing is very small ((( 1).
Rewriting Z, ir in terms of the shifted field P —+ (P) +P,

we get

&n= P(P. + ,'fo)A———F—.' —(f4cfP~+H') —T (ns4ns0') — (o, n)M.'s I -) ——(o, ~)M.'. I )
Alv 2 2 2 2 2 2 2 2 2 A2 2

2
cr((T +)7 +n +n ) —A2vn (o.n+rl7r) ——(o +g +n +n ) ——(crn+ rim) — (n x m), —

8 2 2
(4.27)

where the meson mass matrices are given

( Ar v + ™cosy Kf2 sin 8—-

( —sfff sion —cosy+ ff csns) c'os

(4.28)

)f Arv + —„cosy+2Kf cos8 2Kf sing
2Kf2 sin 8 —cos g

The quark acquires a large constituent mass

mz ———cosA+ 2Kf cos8,2 2

2m = —cos y,
V

2= 2 m
m = Ayv + —cosy,

V

m~ = A2v + —cos y + 2Kf cos 8 .2 2 2

V

(4.30)

my= — v=
2 Ai Aiv Ai

(4.29)

It is interesting to note that mg arises from three parts:
the spontaneous chiral symmetry breaking (from Vo),
the explicit chiral symmetry breaking (from V~), and
the instanton induced symmetry breaking (from V~).
The instanton does spontaneously break chiral symmetry
SU(L)i, x SU(L)R [32]. The mass spectrum of mesonic
states can be read off from diagonalizing (4.28). The
mixing probability is proportional to (Kf2sin8)2
m sin y, which is of high order, thus it hardly affects
the physical masses:

Equation (4.30) clearly shows how the instanton induced
Vj, leads to a mass splitting between pions and the U(1)
particle g. When 6I thus 8 is small,

m —m =2Kf

and in the chiral limit m —+ 0, m ~ 0, but m„~2Kf
We conclude that the U(1) problem is solved in the frame-
work of the efFective theory if 2Kf2 is big enough.

The CP-violating effects originate from the mixing be-
tween the scalar and pseudoscalars even though the mix-
ing is negligible in computing the meson masses. To di-
agonalize the quadratic terms in (4.27), we define the
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I

Im m—~(I~ ~eSF m„

I

I m' m'—-~ (I-~)e
8 F„m'„

J'

1-
Zv„io, o = ——@(sing+ its cosy)@ri

2

——Q(sing + its cosy )7 g m.~ / e I

2
(4.37)

(a)

The Feynman rules for CP-violating vertices and the typ-
ical CP-violating qq —+ qq amplitude are shown in Fig.
1.

The amplitude of il ~ 2vr decays reads from (4.36)

(4.38)

sin y'(y) cos y'(y)

(b)

FIG. 1. (a) Feynman rules for rI and rl7r couplings.

(b) The Cp-violating qq + qq scattering. We have assumed

thag m )) m ~ )) m and'U = 2F

where F = v2. It is worth noting that (4.38) does not
have a direct comparison with the @CDcalculation (3.18)
and (3.19) where we worked in the L = 3 case and rl is one
of the mould-be Goldstone bosons. In (4.38), however, rl

has been referred to as the U(l) particle.

C. The EDM for the constituent quark

The CP-violating Yukawa coupling in (4.37) results in
an important strong CP effect: the electric dipole mo-
ment (EDM) of the constituent quark. It can be exam-
ined by computing the effective interaction of the type
when an external electromagnetic field A'„ is introduced:

physical meson fields (the primed fields)
PEDM Vps &ij,v Q+pv ~ (4 39)

Kf2sin8
(4.34)

m2 m2
cr

Kf sin 8
m2 —m2

'I

2m2 —m2 i m2

which meet the criteria that the mixing and thus the
strong CP violation must disappear as m2 —+ 0 or m2 =
rn2 or 8 = 0. In terms of the physical fields, the CP-
violating part of the eff'ective potential is identified (for
simplicity we drop the prime notations),

2rn2 —m~q ( m2)I
1 — I8,

(4.35)

Vcp = Aiv

2
sinpil(~2+ rl2+ n2+ 7r2)

+A2v cos p sin(p —'7 )cx ' (r/cL —Eric)

+Azvsinpcos(p —p')m (em + iln'), (4.36)

and the Yukawa coupling between quarks and mesons
contains a CP-violating part too:

cr = o'cosy+ rl sing, rl = —cr'sing+ rl cosy, (4.32)
cx = o. cosy +msinp, m = —o. sing +mcosp,

(4.33)

such that the oK-diagonal elements in (4.28) vanish. The
mixing angles p and p' are determined

—gq PPQq —D'„~+
where

(4.40)

D'„q——B~ y eQA'„ (4.41)

and Q is the electric charge of the particle. Follow-
ing Schwinger's formalism [33] on the derivation of the
anomalous magnet moment of electron, we obtain the
effective interactions

The coefFicient pEDM is defined as the EDM of the quark.
Since (4.39) is not invariant under the chiral rotation,
the EDM can be converted into the magnetic moment
if the fermion field is chiral (the chirality fiip). When
mq g 0, we have to check the phase of the constituent
quark mass mg since only the phase difference between
the quark mass and the efFective interaction makes sense.
In our convention, mg is real at the tree level. At a
higher level, the mass acquires infinite renormalization.
The renormalizability of our model guarantees that the
renormalized mass will not develop a p5-dependent part.
However, mg may acquire a finite renormalization which

may contain a ps part at high order. But that phase
would be too small to cancel (4.39).

In the background of the em field, the charged quarks
and pions couple to A™through the covariant derivative
Dem

2

d xZ, ir
——— d x ) @q(PP+mq)@q ——,

Q=u, d

f2
2!

(4.42)

d xd y ) @q(x)e'~ ~'S o oSg(x, y)e'~ ~'Qq(y)
Q=u, d

2
Q

~ I

d xd yu(x)e'~ ~'S + —Sz(x, y)e'~ ~'u(y) —— d xd yd(x)e'~ ~'S + Sg(x, y)e'~ ~'d(y),
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7r' - ——- 7t'
gr - 7t The EDM of the neutron is obtained by applying the

SU(6) quark model,

neutron d u
+EDM ~EDM +EDM3 3

e 2 mq2
sin 2p' ln (4.47)

2m' 167rs m~ '

where we have used mq « m and p' is given in (4.35).

I
U

l

(b)

~. POSSIBLE SOLUTIONS TO THE
STRONG CP PROBLEM

In above, we have studied extensively the measure of
strong CP violation and its physical effects from view-
points of QCD and an effective chiral theory.
is a product of quark masses, t9, and the instanton am-
plitude K(L). It should vanish when any one of them
vanishes. The most stringent experimental constraint on
J,'«»s comes from the EDM of the neutron, which has
been measured at a very high precision [34]:

FIG. 2. Diagrammatic representations of Schwinger's for-
mulation on the EDM's for constituent quarks.

where the S„'sand Sz's are pion and quark propaga-
tors in the background of Aem,

pneutron ( 1 2 ~ 10—25e Cm

This implies

Zstrorrg & 10 GeV—16 4

(5.1)

—m iDem)2 —m2

s~= 1

PP+ mq

(4.43)

At a typical hadron energy scale, one would suspect
A&cD 10 10 GeV, enormously larger

than the upper limit. This is the so-called strong CP
problem. It has puzzled us for more than a decade, ever
since the instanton was discovered.

2
Because 4 &( 1, we can expand these propagators per-
turbatively in e:

Pq™—my ( ~eQrr~ F„'s~= 1+ +
(Dem)2 m2

~
(Dem)2 m2 )

(4.44)

1S+ -=, , i1+H —m2 0 —m

(4.45)

O'EDM l EDM

ef2
sin 2p'mg

32vr2

3 m~q —rn~ (rnzq —m2)~ mz

(4.46)

where the ellipses denote O(e ). The extraction of the
effective interaction of (4.39) is done with the aid of Feyn-
man diagrams in Fig. 2. The contributions from the sec-
ond term in (4.42) correspond to Fig. 2(a), the third to
Fig. 2(b), and the fourth to Fig. 2(c). Summing them
up, we get

A. m„=0 scenario

~hen m„=0 and J,'t,o„s——0, the strong CP problem
is most neatly and elegantly solved. In the meantime,
the U(1) problem can be solved by instantons without
resorting to other assumptions. There is an additional
U(l)~ symmetry associated with the u quark. m„=0,
unlike setting 8 = 0, does increase the symmetry of the
system and thus does not violate 't Hooft's naturalness
principle. However, m„=0 seems to contradict with the
phenomenology where m„" 5 10 MeV [35].

However, there is a loophole in this argument [36]. The
instanton explicitly breaks U(1)A, as well as U(1)& asso-
ciated with the massless u quark if all other light quarks
are massive. The instanton is acting as a Havor-changing
force, as a result, the u quark acquires a radiative mass
from other Bavors. This is again due to the existence
of the zero modes of P in the nontrivial instanton field.
In the presence of a massless fermion, the vacuum tun-
neling effect is suppressed unless we insert an operator
that contains enough Grassmann fields to eliminate all
the zero modes. In the v = +1 sector, the only operator
which survives is uu. To see how it works, let us recall
the partition function Z(e) in (3.9). (uu) is calculated
by taking the average over space-time:
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d xuu(~)
1

ln Z(8)
1
V dm„

= —2m' mI, K(L), (5.3)

where we have rotated 8 to zero as we can when m„=
0. Equation (5.3) implies that the U(1)& symmetry is
broken by the instanton. Of course we would not have
the Goldstone boson associated with it since it is referred
to as an explicit breaking. We should not confuse the
condensate (uu) caused by the spontaneous symmetry
breaking with (uu);»t „t».The former can be nonzero
even if all quarks are massless while the latter vanishes if
the d quark mass is zero. The instanton induced u quark
mass can be roughly estimated [37] in the L = 2 case
where K(2) is related to m„,

The PQ symmetry is broken at the quantum level by the
chiral anomaly, and efFectively

8t y
—+ 2t y

—2inFF. (5.8)

Choosing ct = $ yields 8 = 0.
The effective potential of the scalar fields can be cal-

culated in a similar way to (4.16),

&.~(4, 4*) = ~'4-&'+ 4~«&')

K—f*e ' det P* —Kf e' det P, (5.9)

(f0) = ve (f'P*) = ve', (5.10)

where K is the instanton amplitude. The last two terms
in the effective potential breaks the PQ symmetry. The
VEV's of P and P" are found to be

&&s (p) +Fp (uu) i»tsnt»
2 2,m„—m= —~a'8(P)P F z mg

3 mQ

2u'If I' 2Klf I'
v = + (5.11)

=4 MeV, (5 4)

B. Peccei-Quinn symmetry

where we take p (sAqcD), K = —,(m„—m ),
and f = &~. m'„"'t "' " must be viewed as an explicit
mass because of its proportionality to mg. What seems
remarkable is that the order of magnitude of m'""~"t " is
consistent with the phenomenological value. The mass-
less u quark is still the most favorable solution to the
strong CP problem.

8 = 8 + arg(fP) = 0. (5.12)

The axion [39] mass is readily derived from (5.9) by di-
agonalizing the quadratic terms

2KIf
maxion

Unfortunately, we have not yet been able to discover this
particle so far.

(5.13)

Thus the fermion mass is read o6' from the Yukawa in-
teraction m = fve '8 and

Zt y ———Q p@ — F+ i8FF —(f—@I,QRQ+ H.c.)
B„QB„Q*——Uo (P, Q*), (5.5)

where

Vo(P, P*) = APED'+ —A(P—P') . (5.6)

Equation (5.5) is invariant under the PQ symmetry:

JR~ e' Q~,
(5.7)

4~e "0, edict Q4

Another possibility of rendering J,t,»s ——0 is that
8 = 0 for some dynamical reason. This is realized if the
phase of the quark masses 8g~~ = P, y, is equal to
—8qgD. A decade ago, Peccei and Quinn [38] suggested
that the strong CP problem may be naturally solved if
one or more quarks acquire the current masses entirely
through the Higgs mechanism where the Lagrangian of
quarks and scalars exhibits an adjoint chiral symmetry:
the Peccei—Quinn (PQ) symmetry.

For simplicity, let us examine a toy model of a single
quark

VI. CONCLUSIONS

We have studied the measure of CP violation in strong
interactions. It arises from the nontrivial topological
structure of Yang-Mills Gelds, a nonzero vacuum angle
8, as well as nonvanishing quark current masses. The in-
stanton dynamics makes the most sense in dealing with
the topological gauge configurations where the semiclas-
sical method applies. It has been shown that the in-
stanton dynamics, as a consistent field theory, automat-
ically satisfies the so-called anomalous Ward identity.
Crewther's original complaints on the topological suscep-
tibility and 0 periodicity of the fermion operator are a
result of inconsistently handling the singularities in some
fermion operators. We conclude that QCD theory itself
does not put any constraint on the instanton computa-
tion.

In the presence of the chiral anomaly, there is no would-
be U(1)& Goldstone particle. By studying an effective
chiral theory, we And that the instanton leads to an ex-
plicit U(1)~ symmetry breaking. If the instanton is to
solve the U(l) problem, the measure of the strong CP
violation is connected to the mass of the U(l) particle.
It may be natural to think that the strong CP problem
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is the side effect of the U(1) problem and both problems
cannot be solved simultaneously in the context of @CD.

However, we point out that the massless u quark sce-
nario to solve the strong CP problem may not be such
a silly idea. The u quark may acquire a mass from the
d quark through the instanton interaction in which the
fermion zero modes play an essential role. In any case,

with the failure so far to observe axions experimentally,
the strong CP problem is wide open to new mechanisms.
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