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It has been claimed that the minimal (nonsupersymmetric) SO(10) grand unified theory, with a
single breaking scale MU, is ruled out by the measurements of the standard-model gauge couplings
at the Z mass, and by the nonobservation of proton decay. We argue here that, if the threshold
eGects are taken into account, that theory is still quite satisfactory. We present an example in which
the masses of all superheavy particles dier from MU by at most a factor of 10. Our picture of
SO(10) breaking requires the rate of proton decay to be close to the present experimental limit.

PACS number(s): 12.10.Dm, 11.15.Ex

I. INTRODUCTION

The grand unified theory (GUT) SQ(10) [1] is the sim-
plest GUT that unifies all the quarks and leptons of one
family in a single representation. The original minimal
SO(10), breaking at a single scale M~ to the standard
model, seemed very attractive, because it gave what ap-
peared to be a good prediction for sin 8~, as well as the
correct ratio between the bottom-quark mass mb and the
r-lepton mass m . The SO(10) theory also provides a
motivation for a small but nonzero neutrino mass. How-
ever, with the accurate determination of the gauge cou-
plings at the Zo mass [2], it has been claimed [3] that
the SO(10) theory does not really unify those couplings.
Furthermore, it predicts too fast a rate for proton decay.
Thus, the minimal SO(10) model has been declared dead.
In this note we want to argue that this conclusion need
not be correct.

Two solutions have been proposed to save SO(10). One
was the observation that in supersymmetric SO(10) uni-
fication is easily achieved [3]. The other one [4] was the
use of an intermediate scale MI much different from M~,
with SO(10) breaking to one of.its subgroups at M~,
and that subgroup afterwards breaking to the standard
inodel (SM) at Mr. Typically, MU 10i GeV while
MI ~ 10 —10 GeV [5], depending on the specific sub-
group. We wish to point out here that the minimal non-
supersymmetric SO(10) with a single breaking scale is
a satisfactory theory, provided one allows some gauge-
and Higgs-boson masses to be a factor between 10 and
30 below the highest scale M~. Such a spread is, from a
theoretical point of view, quite reasonable [6], and indeed
the practical importance of allowing for such threshold ef-
fects has been previously emphasized by Dixit and Sher
[7]. We next discuss the relation of this analysis to a
quantitative theory of fermion masses [8].

In order to generate fermion masses we use the Higgs-
multiplet structure consisting of a 10 and a 126 of
SO(10). We label the relevant components of the Higgs
representations by their SU(2)1. C3 SU(2)1t Ia SU(4)+$'
(= Gqz4) dimensions [9, 10]. The (2, 2, 1) component
of the 10 gets a vacuum expectation value (VEV) vi,

generates the major part of the quark and lepton mass
matrices, and is responsible for the qualitatively good
ratio between mb and m . The (1, 3, 10) component
of the 126, which acquires a VEV v~, is needed in or-
der to give a large mass to the right-handed neutrinos,
so as to make the physical-neutrino mass small, by the
Gell-Mann —Ramond —Slansky mechanism [11]. It is nec-
essary to go beyond the 10 to get a quantitative fit of
the fermion masses; here we follow Babu and Mohapatra
(BM) [12] and use the (2, 2, 15) component of the 126.
As pointed out by BM, it is natural that the (2, 2, 15)
have a nonzero VEV vq5 smaller than vi provided that
the mass mrs of the (2, 2, 15) is larger than vR. To be
specific,

vis - v, (va/mis) .

Since we want to maintain the qualitatively correct pre-
diction for the ratio between mb and rn, we consider the
(2, 2, 15) as a relatively small correction to the dominant
(2, 2, 1). This suggests that (vis/vi) lie between 0.1 and
0.01, so that

mrs = (3 to 10) vR

The breaking of SO(10) to the standard model requires
the presence of at least two VEV's. One of these may be
chosen to be vR, but v~ cannot be the only VEV, since by
itself alone it only breaks SO(10) to SU(5) [13]. We con-
centrate on one possible choice for the second VEV, the
VEV v~ of the (1, 1, 1) of the 210, which by itself alone
would break SO(10) to Gzz4. In order to achieve unifica-
tion it is necessary that vU be greater than vR. We as-
sume that all the gauge bosons in SO(10) that can cause
proton decay have a mass MU —vU, so that MU defines
the unification scale. To satisfy the present experimental
bound on proton decay I'(p ~ e+7r) ) (5 x 10 yr)
[14], we require [15] Mp ) 1 x 10is GeV, for a unified
coupling constant wr1 = 47r/n& —40. In SO(10) there
also are nine gauge bosons of Gq24 which are not gauge
bosons of the standard model, but do not lead to pro-
ton decay. We assume these to have a mass M~ v~.
Our basic assumption of a single unification scale with
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threshold efFects leads to the requirement

M~/M~ & 3O.

We thus might say that we have an intermediate-energy
range, from MU to M~, in which the gauge symmetry
is G224, but, as M~ is so close to M~, we find it more
appropriate to describe the process as a direct breaking
of SO(10) to the SM, with threshold effects; and we will
not bother to trade the gauge couplings of the SM by the
ones of G2~4 at v~. We require all the Higgs represen-
tations to have masses between MR and MU, except for
the standard-model Higgs doublet, coming from the (2,
2, 1) of the 10, which necessarily lies at the Fermi scale.
By doing this we restrict all the threshold effects to the
energy range from M& to M~, which is constrained by
Eq. (3). No fine-tuning, other than the minimal one re-
quired to have one Higgs doublet at the Fermi scale, is
needed in our picture of the breaking. The mass of the
(2, 2, 15) of the 126 is restricted by Eq. (2). Finally,
the mass of the (1, 3, 10) of the 126 is required not to
be greater than 3v~, because v~ is precisely the VEV of
one component of the (1, 3, 10).

II. THE THRESHOLD EFFECTS

fixed values (their error bars are very small) [3]

1
0.016887 '

= 0.120 + 0.007.1

~s Mz (8)

At the one-loop level, the problem can be solved analyt-
ically, because in that case the three ~, have constant
slopes relatively to in@. The solution is

MU 1
ln = [ 60 ui (Mz) —60 aq(Mz)

Mz 218
+5(Ai —A2)],

1
~G(Mv) = 95ai(Mz) + 123&2(Mz)218

~2(Mz) = (Mz = 91.173GeV) .
0.03322

Similarly, the A's will be treated as input, and the output
values will be MU, which we require to be larger than 10
GeV, w~(MU), and ws(Mz), which should agree with the
experimental value [2]

We use the two-loop renormalization-group equations
(RGE's) for the evolution of the gauge coupling constants
of the SM from Mz to M~. We define cu, = 4x/g, , where
the hypercharge gauge coupling g1 is normalized in the
GUT fashion. The two-loop RGE's are

1
~s(Mz) =

218

95A1 + 123A2

12'

—115wi(Mz) + 333~2(Mz)

(1o)

d ~, (p)
ding ~.-8~'~ '

3
(4) +

—115A1 + 333A2 —218A3 (»)
where cui corresponds to U(1)y, ~2 to SU(2)1., and ~3
to SU(3)~. The matrix of the one-loop coefFicients a and
the matrix of the two-loop coeKcients 6 are

19
6

199 27 44
1O

129 35
10 6

26)
(5)

These coeKcients include the effects of the standard-
model gauge bosons, of three generations of fermions,
and of one Higgs doublet. The threshold effects at MU
are taken into account, following the prescription of the
"effective gauge theory" [16,17], by means of the bound-
ary conditions at MU.

A1 A2
cdG(M/) = cd] (MU) + = Dig(M/) +

127r 127r

In practice, all the numerical results that we shall give
were found numerically by integration of the two-loop
RGE; nonetheless, the one-loop analytical solutions are
useful in guiding us as to what behavior we should ex-
pect from the two-loop numerical ones. If we neglect the
threshold effects, i.e. , set all three A's equal to zero, we
obtain from Eqs. (9) and (11) the results M~ = 7.8 x loi2
GeV and &us(Mz) = 14.7. Clearly, M~ is too low and
ws(Mz) is too high, and these are the problems referred
to in the Introduction.

The gauge bosons with mass M~ & MU help us solve
this problem. It is important to realize that this is possi-
ble in the GUT SO(10) but not in the GUT SU(5) [13],
because in SU(5) there are no gauge bosons such as the
ones of Gqg4, which do not cause proton decay and there-
fore may have a mass somewhat lower than MU. The
gauge bosons give a large contribution to the A' s:

= u)s(M~) + A3

127r '
A

~ = ) l, (l + 21ln
Mv

(12)

where the subscript G stands for SO(10), and the three
constants A1, A2, and Aa include the effects of the super-
heavy gauge and Higgs bosons having masses which are
not exactly equal to MU.

We shall treat cui(Mz) and w2(Mz) as input, with

where the index m runs over all the standard-model rep-
resentations of superheavy gauge bosons, which are listed
in Table I, and the t, are the corresponding Dynkin
indices relative to the standard-model gauge group i,
multiplied by their dimensions relative to the other two
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TABLE I. Standard-model representations of the superheavy gauge bosons, their Dynkin indices
and their masses.

SU(2) SU(3) [U(1) ]

(11)[.o]

(1 1)[~5]

(1,3) [-:

(1 3)[--'.

(2 3)[6 5]

(»3)[- ]

(2 3)[6

l1
0
3
5
3
5
4
5

5
1
10
1
10
5
2
5
2

l2

0
l3
0
0
0
1
2
1
2
1

1
1
1

P
0
3
3
4
4
7

-7
5

5

0
- 69
— 69
- 201
- 201
270
270
-6
-6

Mass
MR
MR
MR
MR
MR
MU

M~
MU

M~

standard-model gauge groups. From Eqs. (9) and (11)
we see that we should be particularly interested in the
quantities

elude that

A~ =8+ ln )

294 M~
R

P = 5(lg —lg),
Q—:—115l& + 333l~ —218ls,

(13)

(14)

Aq
——6)

A3 ——5+ 21ln

(15)

which therefore are also listed in Table I.
It is appropriate to note that the assumption that all

the gauge bosons which may cause proton decay have a
single mass MU, while all the superheavy gauge bosons
which do not lead to proton decay have a common mass
M~, is only a symplifying assumption. In principle, the
nine representations of superheavy gauge bosons in Ta-
ble I are allowed, from our point of view, to have nine
different masses, in the neighborhood of M~ and M~.

The fact that P is positive for the gauge bosons with
mass MR ( M~ indicates that these gauge bosons help
render M~ larger; similarly, the fact that Q is negative
for those gauge bosons indicates that they also render
us(Mz) smaller. Both effects are desirable, and they are
stronger the larger the ratio MU. M~ is. Notice that it
is desirable that as many gauge bosons as possible have
mass MR & MU, that is the reason why it is desirable,
from our point of view, that the intermediate-energy sym-
metry group be G~~4 instead of one of its subgroups.
(Compare for instance the cases lb and 2b of Ref. [5].)

From the data in Table I and from Eq. (12) we con-

Let us now turn to the threshold effects of the super-
heavy Higgs bosons. These are given by

= —) l "ln
Mg„

(16)

where the sum runs over all the scalar representations
which are not Goldstone bosons of the breaking of SO(10)
to the SM. The meaning of the l, is the same as before,
being understood, however, that, if the scalar-boson rep-
resentation is complex, the l, must be multiplied by 2.
Notice that the contributions of the Higgs bosons to the
threshold effects are much smaller than the ones of the
gauge bosons just because of the presence of the factor
21 in Eq. (12). But there are many more Higgs bosons
than gauge bosons.

In order to simplify our study, we shall not decompose
each representation of scalars of SO(10) into representa-
tions of the SM, and take into account that each SM rep-
resentation may in principle have a different mass; rather,
we shall make the simplifying assumption that all the SM

TABLE II. Gz&4 representations of the superheavy scalars contained in the 210 of SO(10), and
their Dynkin indices.

G224

(1, 1, 1)
(2, 2, 6)

(1, 1, 15)

(2, 2, 10)

(2, 2, 10)

(1, 3, 15)

(3, 1, 15)

l1
0
26
5

54
5
54
5

114
5

24
5

l2

0
6

10

10

30

l3
0
4

12

12

P
0

114

528

—1056

—528

—528

—5238

6822 M5
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TABLE III. G&24 representations of the superheavy scalars contained in the 126 of SO(10), and
their Dynkin indices.

G'224

(1, 1, 6)

(2, 2, 15)

(1, 3, 10)

(3, 1, 10)

154
5

156
5

36
5

l2

0

40

l3
2

18

—528

—7512

Mass
My

representations contained in one representation of G224
have the same mass. Then, we need only give the branch-
ing of each SO(10) representation into representations of
G'224

We first consider the scalars in the 210 of SO(10).
The branching of that representation in representations
of G2s4 is given in Table II. We need not take into account
the (1, 1, 1) of G224, because it does not contribute to the
A' s. We must also discard the (2, 2, 6) of G224, because
it consists of the Goldstone bosons of the breaking of
SO(10) to G224. Considering the values of P and Q of the
other representations given in Table II, we conclude that
most Gq24 representations in the 210 have very small
effects on M~ and on ws(Mz). The exceptions are the
(1, 3, 15), which is strongly detrimental (if its mass is
lower than M~) for unification, and the (3, 1, 15), which
is strongly beneficial.

We now consider the scalars of the 126 of SO(10). The
branching of this representation into representations of
G224 is given in Table III. However, implicitly included in
Table III are also the three SM representations of Table
IV, which are contained in the (1, 3, 10) of G2q4 and
should not be taken into account, because they are the
Goldstone bosons of the breaking of G224 to the standard
model. In both Tables III and IV, the values of li, l2,
and ls have been multiplied by 2, because the 126 is
complex. Considering the values of P and Q of each
scalar representation in Table III we conclude that the
(1, 1, 6) and the (2, 2, 15) of G224 have relatively small
effects on M~ and on &us(Mz), such that they would
not be able to contribute significantly to correct the bad

274 MU
ln5'M,

114 MU

142 MU 36 MU
ln ——n

5
'

M, 5
'

M.

A2
———50 ln —40 ln —30 ln

M~ MU MU

1 3 5

A3 ———62 ln
1

—12 ln
MU

4

—17 ln"M2
—12 ln

MU

5

—18 ln"M.

Together with the threshold effects from the superheavy
gauge bosons, see Eqs. (15), we then obtain from Eqs.
(9) and (11), and from the input data in Eq. (7), the
one-loop-level results

values of these parameters, except if their masses were
very far from M~, the (1, 3, 10) has bad effects on MU (it
makes it decrease) and on ws(Mz) (it makes it increase)
if it has a mass smaller than M~, the (3, 1, 10), on the
other hand, contributes to increase M~ and to decrease
ws(Mz), if it has a mass smaller than M~.

For our numerical examples of the next section, we

group the Higgs bosons together in five sets with differ-
ent masses Mi —Ms, as indicated in Tables II and III. On
considering the multiplet (1, 3, 10) with mass M2, we
naturally exclude the Goldstone bosons indicated in Ta-
ble IV. Then, from Tables II—IV and from Eq. (16), we
find the scalar contributions to the A' s:

ln = 25.220233+
~

1471n —121n —711n + 821n —571n + 631nM~ 1 |' M~ M~ M~ M~ MU M~'i
Mz 109 ( M~ Mi M2 3 4 Ms p

(18)

~s(Mz) = 14.742162 +
~

—945 ln + 264 ln + 581 ln —714 ln + 436.5 ln —568.5 ln
MU M~ M~ M~ MU&

218vr i, MR Mg Mg Ms M4 Ms )
(19)

TABLE IV. Goldstone-boson representations contained in the (1, 3, 10) of G224, and their
Dynkin indices.

SU(2) r, Cm SU(3)c [U(1)i t

(1 3) 3 ~~(
(1 1)[oj
(1 1)[-~~i

I,g

8
5
0
6
5

I,2

0
0
0

l3

1
0
0

P
8
0
6

- 402
0

— 138
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TABLE V. Numerical examples, obtained using the two-loop RGE, for how the threshold effects
can lead to correct values for MU and ns(Mz)

M~
M~
30
25
20
15
10

Mg
M1

8
3
4
2

2.5

Mg
Mg

20
23
10
7

3.5

Mg
Mg

12
18
16
9
9

M~
M4

5
2
2

1.5
1

M~
Mg

25
10
7
14
10

MU/(10' GeV)

1.727
1.773
1.628
1.695
1.529

37.427
39.037
39.023
40.017
39.938

o,s(Mz)
0.119
0.123
0.121
0.126
0.125

which may be compared with the two-loop numerical ex-
amples presented in the next section.

III. NUMERICAL EXAMPLES

We have numerically integrated the two-loop ROE, for
values of Mp/M~ between 10 and 30 and for random
choices of M~ —M5 lying between MU and MR, subject
to the following constraints: (1) Mi = 3—10 times MR,
in order to satisfy Eq. (2), and (2) Mz & 3M~. Us-
ing Eqs. (7), we have solved for n, (Mz), M~, and ~G.

The solutions in general do not dier very much from
those obtained using the one-loop RGE. It is easy to
find solutions that give satisfactory values for o., (Mz)
with Mz ) 10 s GeV as required from proton decay. A
few examples are given in Table V. For all the examples
given and for nearly all our solutions the minimum ex-
pected rate of proton decay is within a factor of 5—10 of
the present experimental limit. The values of n, (Mz) for
our solutions are generally 0.12 or higher.

It is interesting to visualize what the threshold effects
are really doing to the coupling constants. This can be
seen, in one particular example (the third example of
Table V), in Fig. l. In that figure, the values of

65--

(a)

45-- 42--

25-- 40--

log10(p/iGeV)
16

38 I I I I I13.5 14 14.5
logf0(p/1GeV)

I I I I I I

I I I I I I15.515.

FIG. l. (a) Graphs of wi(p) (full line), w2(y) (dashed line), and cu3(p) (dashed-dotted line) as functions of p, for the third
example of Table V, and with the threshold effects taken into account as explained in the last paragraph of Sec. III. (b) Same
as (a), but displaying only the region p, ) 10 ' GeV, so that the individual threshold effects may be recognized.
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~i(S) = ~i(S)+» +
5

8 294 8(p, —M~) p,
ln

12~ 5 12sr Mtt

ln
274 8(p —Mi) p

5 12~ M,
~ ~ ~

8(p —Mi) p,&Q(lt)—:~2(p) + —50 ln —,(20)127' 127t Mg

Op —MR p~g(p) —= ~s(p) + + 21 ") ln
12& 12m MR

8(p —Mi) p
12~ My

(where Heaviside 8 functions have been used to simplify
the notation) were plotted against logiop, . For p = M~
we obtain ioi(p) = uq(p) = wq(li), as in Eq. (6). In
Fig. 1(a) one sees that wi and u2 meet before M~ and
then diverge from each other, but before they are too far
away the threshold effects set in and unify them again,
this time, however, also with us, at the energy scale M~.
In Fig. 1(b) one observes in detail the various thresholds:
at M~ the gauge bosons of G224 deflect the P functions
upwards, and after that, at the various scalar thresholds,
the scalars have the effect of deflecting the P functions
downwards, till finally the gauge couplings meet.

IV. CONCLUSIONS

ln this work we have speculated on the possibility
that threshold effects may resuscitate SO(10) and re-
store grand uni6cation. While other popular ideas re-
store unification by "populating the desert" at low en-
ergies, as with supersymmetry [3], or at medium ener-
gies, as in the intermediate-scales approach [4, 5], we do
it at high energies, by assuming that some superheavy
particles have masses 10 times smaller than the ones
of the gauge bosons responsible for proton decay. We
find that this is indeed possible in the case of the GUT
SO(10), because that model contains some superheavy
gauge bosons which do not lead to proton decay, and
some large and left-right-asymmetric representations of
superheavy scalars, which have a powerful effect on the
P functions, such that they may unify the coupling con-
stants even if they are given only one order of magni-
tude in the energy scale to act. Our picture of symmetry
breaking is, however, quite constrained, such that it only
works if n, (Mz) is not below the present experimental
value, and such that it predicts the rate of proton decay
not to be very far from the present experimental bound.
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