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A formalism is presented to treat axisymmetric stationary spacetimes in the most general case, when

the stress-energy tensor is not assumed to be circular, so that one cannot make the usual foliation of
spacetime into two orthogonal families of two-surfaces. Such a study is motivated by the consideration

of rotating relativistic stars with strong toroidal magnetic field or meridional circulation of matter (con-

vection). The formulation is based on a "(2+1)+1" slicing of spacetime and the corresponding projec-

tions of the Einstein equation. It o8'ers a suitable frame to discuss the choice of coordinates appropriate

for the description of asymptotically Hat and noncircular axisymmetric spacetimes. We propose a cer-

tain class of coordinates which is interpretable in terms of extremal three- and two-surfaces. This choice

leads to well-behaved elliptic operators in the equations for the metric coefficients. Consequently, in the

case of a starlike object, the proposed coordinates are global ones, i.e., they can be extended to spatial

infinity. These coordinates are also appropriate for obtaining initial conditions for (instability triggered)

evolution, since they match naturally with coordinates proposed for dynamical evolution, especially with

the "maximal time slicing" condition. The formulation is written in an entirely two-dimensional covari-

ant form, but, in order to obtain numerical solutions, we also give the complete system of partial
di6'erential equations obtained by specialization of the equations to a certain subclass of the proposed

coordinates.

PACS number(s}: 04.20.Me, 95.30.Qd, 95.30.Sf, 97.10.Cv

I. INTRODUCTION

T&Ittsrgs} —()

g T~I&eras}=0
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(1.1b)

where 8=B/Bt and g=B/By are two Killing vector fields
associated, respectively, with stationarity and axisym-
metry and square brackets denote antisymmetrization.
The conditions (1.1) are equivalent to the absence of
momentum currents in the meridional planes orthogonal
to both E and g'. In the case of a fiuid, this means that
there is no convective motion but only circular motion
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In a recent work on "baby" rotating neutron stars (i.e.,
very hot neutron stars just formed at the end of the col-
lapse of a massive star's core), we found that a very
strong toroidal magnetic field ( —10' to 10' G) is likely
to be created by the differential rotation in the core of the
neutron star [2]. Such a strong magnetic field is able to
deform appreciably the neutron star. In order to describe
these objects within the framework of general relativity,
we have to be able to find axisymmetric steady-state solu-
tions of Einstein equations when the stress-energy tensor
is not circular, since a toroidal magnetic field results in a
noncircular electromagnetic stress-energy tensor. Let us
recall that, in an axisymmetric stationary spacetime, the
stress-energy tensor T is said to be circular or nonconuec-
tiue [3] if

around the axis of symmetry. Papapetrou [4] and Carter
[5,3] have shown that when the stress-energy tensor is
circular, the two-parameter group of spacetime
isometrics, R(1)XSO(2), is orthogonally transitiue, i.e.,
there exists a family of two-surfaces everywhere orthogo-
nal to the plane defined by the two Killing vectors c and

In this case, one may choose coordinates (t,x ',x,y)
such that s=B/Bt, g=B/By and (x', x ) span the two-
surfaces orthogonal to E and g. The orthogonality prop-
erty means that the components go„go2, g», g32 of the
metric tensor g in these coordinates are identically zero,
so that

g t3dx dx~= Ndt +g~~(d—P N~dt) +g))(—dx')

+2g]~dx'dx +g22(dx ) (1.2)

here the functions X X', g4~ g11 g12 and g22 depend
on x' and x only. As a consequence, the Einstein field
equations written in these coordinates simplify dramati-
cally.

The circular case, with the above adapted coordinates,
has been studied widely in the past two decades, either in
the slow rotation approximation [6—8] or in the exact
case [9—20]. Especially, it has been shown [10,11,20] that
the Einstein equation can be reduced to a set of four
Poisson-like quasihnear partial differential equations
(PDE's).

As far as we know, no study has been made in the more
general case of noncircular axisymmetric stationary
spacetime. Now, it can be seen easily that the necessary
and sufficient condition for circularity, as stated by Car-
ter [3] in terms of the electromagnetic field tensor F tt, is
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violated by a toroidal magnetic field, i.e., a magnetic field
in the direction of the rotational Killing vector. Thus, in
order to study the magnetized neutron stars mentioned
above, as well as convective relativistic bodies, we investi-
gate the noncircular case in this paper. For that purpose,
we develop what may be called a "(2+1)+1"formalism,
which enables us to write the Einstein equations in a forp-
well suited to numerical work, as well as to the discussion
of the choice of coordinates. In this respect, we propose
a class of coordinates which extends the coordinates
adapted to the circular case described above. We argue
that these coordinates are global ones, i.e., that they con-
stitute a chart which covers the whole spacetime, this
property being not trivial in the noncircular case (and
even in the circular case, see Appendix A of Ref. [20]).
Another interesting feature of these coordinates is that
they satisfy the maximal time slicing condition widely
used in gravitational collapse calculations, because of its
singularity avoidance feature. This makes the solutions
well suited to play the role of initial conditions for
dynamical problems (for example gravitational collapse
with strong magnetic field).

Within the proposed coordinates, the Einstein equa-
tions are reduced to a set of three scalar Poisson-like
PDE's, one two-dimensional vector Poisson-like PDE
and one three-dimensiona1 vector Poisson-like PDE. All
these equations are quasilinear and generalize the well-
known equations of the circular case (as they are present-
ed in Ref. [20]). Moreover all the equations are elliptic
and can be solved by iterative numerical methods, for
which the existence and uniqueness of a solution satisfy-
ing the boundary conditions of asymptotic flatness is
guaranteed at each step of the iteration. As we show
below, this is not the case with parabolic equations, for
which a solution satisfying both the regularity conditions
at the origin and that of asymptotic flatness cannot gen-
erally be found.

The plan of the paper is as follows: in Sec. II, we
present the 3+1 foliation of spacetime and the subse-
quent 2+1 foliation of each 3-slice that we use. We also
derive the corresponding orthogonal decomposition of
the Einstein equation, by means of Gauss-Codazzi type
relations that are established in Appendix A. In Sec. III
we discuss the coordinate choice and introduce our
privileged set of coordinates. The resulting equations are
written in a two-dimensional covariant form. The com-
plete system of PDE's for a specific coordinate subclass
(isotropic meridional polar coordinates) is given in Ap-
pendix B in a form suitable for numerical integration.
The equations governing the energy-momentum distribu-
tion of matter which ensures axisymmetry and stationari-
ty are written in Sec. IV. Finally Sec. V contains the con-
cluding discussion.

Notations and conventions

Greek indices (a,P,p, v, . . . ) range from 0 to 3, Latin
indices alphabetically located after the letter

The circular case corresponds instead to a purely poloidal
magnetic field; we have presented the corresponding Einstein-
Maxwell equations elsewhere [20].

(i,j,k, l, . . . ) range from 1 to 3, whereas Latin indices
from the beginning of the alphabet (a, b, c, . . . ) range
from 1 to 2 only.

Three metric tensors are introduced throughout the
paper: g on the whole spacetime, h and some hypersur-
faces X„and k on some two-surfaces X, . The corre-
sponding covariant derivations are noted on the tensor
indices by a semicolon for the 4-metric g; a single vertical
stroke for the 3-metric h; a double vertical stroke for the
2-metric k. As usual, a partial derivative of a tensor
component with respect to a given coordinate will be not-
ed by a comma on the indices.

The signature of the 4-metric g is ( —,+, +, + ) and
the definition of the Riemann tensor follows the Misner-
Thorne-Wheeler (MTW) sign convention [1].

Geometrized units, for which the gravitational con-
stant G and the speed of light c are set equal to unity, are
used throughout.

II. (2+1)+1DECOMPOSITION OF THE
EINSTEIN EQUATION

We consider a spacetime (6', g) which is stationary,
axisymmetric, and asymptotically fiat Station. arity means
that there exists a Killing vector field, c., which is timelike
at least at spatial infinity. This vector is defined up to a
scale factor, which we fix by the requirement that the sca-
lar product c c tends to —1 at spatial infinity. Axisym-
metry means there exists another Killing vector field, g,
which vanishes on a timelike two-surface (called the axis
of symmetry), is spacelike everywhere else and whose or-
bits are closed curves. g is normalized so that
(g g ).ti(g g )'~/(4g g ) tends to 1 on the axis of symme-
try (this latter normalization ensures that the coordinate
associated with g has the usual 2' periodicity).

We consider a coordinate system on
(x )=(t,x',x,y), which is adapted to the spacetime
symmetries in the sense that x = t is an ignorable coordi-
nate associated with the Killing vector E, and x =q is an
ignorable coordinate associated with the Killing vector g:

s= and g=
Bt

(2.1)

Such a coordinate system is of course not unique, since
any other set of coordinates (t', x' ',x', &p') deduced from
the above one by the transformations

t'=t+%'(x', x ),
y' =y+ &P(x ', x ),
x''=f, (x', x ),
x' =fz(x', x ),

(2.2a)

(2.2b)

(2.2c)

(2.2d)

Let us designate by X, the spacelike hypersurface of
the spacetime 6 defined by t =const. 6 can be con-

where 4, 0&, fi, and f2 are arbitrary smooth functions of
(x', x ), is still adapted to the spacetime symmetries. A
specific coordinate choice, that will appear to be global,
will be discussed in Sec. III.

A. 3+1 foliation of the whole spacetime
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sidered as being foliated by the family of X, s, t ranging
from —~ to + ~. The decomposition of every tensor
field between parts tangent to the X, 's, normal to them or
mixed, and the corresponding decomposition of the Ein-
stein field equation are the main features of the so-called
3+1 formalism or Cauchy problem of general relativity.
This well-known formulation arises mainly from the
works of Lichnerowicz [21], Choquet-Bruhat [22], and
Arnowitt, Deser, and Misner [23]. It is, for instance, ex-
tensively used in numerical studies of gravitational col-
lapse. A modern and lucid account can be found in Ref.
[24]. In the following, we recall briefiy the main points of
the 3+1 formalism in order primarily to fix the nota-
tions.

Let n be the unit timelike 4-vector orthogonal to X,
and oriented in the direction of increasing t:

g00 gOJ.

glO glJ

~ ~k ~2

I ALJ
(2.9a)

g00 Oj

gl0 glJ

+J
+2
N'XJ

+2 +2

(2.9b)

where the X"s are the contravariant components of the
shift vector: N =(O, N', N, N ).

The components g p and g p of the 4-metric g with
respect to the coordinates (x ) can be expressed in terms
of the components of the 3-metric h, those of the shift
vector and the lapse function:

n = —Xt (2.3) The acceleration 4-vector of n, a, is given by

~ap gap+ +an p (2.4)

Restricted to X„h defines the (positive definite) 3-metric
induced by g on X, . The associated covariant derivation,
7', is noted by a vertical stroke on the indices to distin-

guish from the covariant derivation V associated with
the 4-metric g, which is denoted by a semicolon. V' can
be deduced from 7' by the following formula valid for
any tensor field T of type (p, q ) on X, :

1
' '

p
P& .Pqllz

The strictly positive coefficient N is called the lapse func
tion and is determined by the requirement that n be nor-
malized: n n = —1. Let h be the projection tensor or-
thogonally onto X, :

a =n n (2.10)

a is orthogonal to n (due to the normalization relation
n n = —1), i.e., tangent to X, . It can be expressed as the
orthogonal projection onto X, of the logarithmic gradient
of the lapse:

a =h (lnN) =(lnN) (2.1 1)

where X„denotes the Lie derivative along the vector field

n. It can easily be shown from Eqs. (2.4) and (2.3) that
K

&
is symmetric (Weingarten identity) and that

The imbedding of the surface X, into 8 is character-
ized by the extrinsic curuature tensor K, defined as

g.12)

(2.5)

K~p = n~. p Q~np

Alternative formulas for K p are

(2.13)

We designate by R p the Ricci tensor of the 3-metric h.
Its relationship with the Ricci tensor of the 4-metric g,
R p, is given by the Gauss and Codazzi equations re-

called in Appendix A.
In general, the Killing vector 8/Bt is not orthogonal to

the hypersurface X, ; this leads to the definition of shift
Uector N as (minus) the orthogonal projection of B/Bt
onto X, :

a

(2.6)

Kp= —h "hpn„. = —hp n. (2.14)

In particular, the trace K of K is linked to the 4-
covariant divergence of n by

K= —n (2.15)

The tensor K has the property of being tangent to the hy-
persurface X, [cf. Eq. (2.14)]. Moreover, the Killing
equation for 8}/Bt, (8/Bt)( .&~=0, once projected onto

X„ leads to the following relation between K and the 3-

covariant derivatives of the shift vector:

=Nn (2.7)

The relationship between the vectors 8/Bt, n, and N in-

troduced above is

(2.16)

In particular, the trace of K is related to the 3-covariant
divergence of the shift vector by

It follows that the components of the vector n with
respect to the coordinates (x ) are

1K= ——N
l

B. 2+ 1 foliation of the t =const hypersurfaces

(2.17)

n =( —N, O, O, O) and n
1 X' N

X ' (2.8) Let us define X, as the two-surface of intersection be-
tween the hypersurface t =const (i.e., X, ) and the hyper-
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surface y=const. Let m be the 4-vector field defined on
6 as the orthogonal projection onto X, of the vector field
My (where M) 0) everywhere normal to the hypersur-
faces y =const and oriented in the direction of increasing

m. =Mh..+.——M+). . (2.18)

=g~p+n~np —mamp . (2.20)

Restricted to X, , k is the (positive definite) 2-metric in-
duced by g on X,„. The associated covariant derivation,
7, is denoted by a double vertical stroke "ll" on the ten-

sor indices to distinguish it from the two previously
defined covariant derivations, V' and V', associated re-
spectively, with the metrics g on 8 and h on X, . 7' can
be deduced from V by the following formula valid for
any tensor field T of type (p, q ) on X, :

a&. . .a
P, P )le

=k '. . .k ~k '. . .k 'k T '
pi ' ' ' p pi ' ' p y vi. . .v;o

(2.21)
V' can also be deduced from V by the same formula as

above, replacing the 4-covariant derivative
T ' ~ . bya3-covariantone T ' ~

)

. We1''' q' 1'''
q

denote by R p the Ricci tensor of the 2-metric k. Its re-
lationship with the Ricci tensor of the 4-metric g and
that of the 3-metric k, R p and R p, is given in Appen-
dix A.

In general, the rotational Killing vector B/By is not or-
thogonal to the two-surfaces X, , and we define the 4-
vector M as (minus) its orthogonal projection onto X, :

a

(2.22)

The orthogonal decomposition of B/By with respect to
the two-surfaces X, is then written

a
B =Mm —M

Bc@
(2.23)

m is a vector field on 6 which is spacelike, by construc-
tion tangent to the X, 's, and normal to the two-surfaces
X, . Furthermore, we require that m be normalized:

m m =1. (2.19)
This condition fixes the coefficient M of definition (2.18)
as M=(h~~)

We can now introduce the projection tensor k orthogo-
nally onto the two-surface X, as

k ~p h ~p m ~ m p

where the M"s are the two nonvanishing contravariant
components of the 4-vector M: M =(O,M', M, O).

Similar to the relations (2.9) between the components
of g and h, we have the following relations between the
components of h and k:

hb ha, b M,
h» h» (2.25a)

h ab ha3

h3b h33

k,b M'M M'
M M

Mb 1

M M

(2.25b)

Note that the sign differences between Eqs. (2.9) and
(2.25) come from the one between Eqs. (2.4) and (2.20)
and are due to the timelike character of n versus the
spacelike character of m. Combining Eqs. (2.9) and
(2.25), we can express the total 4-metric g in terms of the
2-metric k on X, , the shift N, the vector M, and the
functions X and M as

g pdx dx ~= —(N N; N' )dt— 2N, dtdx—'

+k,bdx'dx —2M, dydx'

+(M +M, M')dy (2.26)

&—g =N&h =NM&k (2.27)

Let us introduce the curvature vector b of the integral
curves of m in the (X„h) space:

b =m m )a (2.28)

b is orthogonal to m (due to the normalization relation
m m =1), i.e., tangent to the two-surfaces X, . One
may easily verify that b coincides with the orthogonal
projection onto X, of the acceleration of m in the ( 6', g)
space:

~ m~m".
p j cT (2.29)

Similar to the relation between the acceleration a of n
and the logarithmic gradient of N [Eq. (2.11)], b can be
expressed as (minus) the orthogonal projection onto X,
of the logarithmic gradient of the function M:

b. = —k. (lnM). = —(lnM)„. . (2.30)

The imbedding of the two-surface X, into the 3-
manifold X, is characterized by its extrinsic curuature
tensor L, defined as

where the functions N, X', M, M' and k,b depend only
on the coordinates (x ', x ). Note that the determinant of
g with respect to the coordinates (x ) is linked to the
determinants of h and k by the relations

It follows that the components of the vector m with
respect to the coordinates (x ) =(t,x ',x,y) are +aP 2 +mka/3 (2.31)

M M 1m =( MN+, O, O, M) and —m = 0,

(2.24)

where X stands for the Lie derivative along the vector
field m in the 3 manifold X-, . It can easily be shown that

k p coincides with the orthogonal projection onto X,
of the Lie derivative X k p in the 4-manifold D. From
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L p= —m Ip+b mp .

Alternative formulas for L & are

L p
———k &kp m„~.———kp m. ~. .

(2.32)

(2.33)

In particular, the trace L of L is linked to the 3-covariant
divergence ofI by

L ——m (2.34)

The tensor L has the property of being tangent to the
two-surface X, [cf. Eq. (2.33)]. Moreover, the Killing
equation for BIB', (B/By)i .pi=0, once projected onto
X, , leads to the following relation between L and the 2-
covariant derivatives of the vector M:

1L p= — (M iip+Mpii ) .
2M

(2.35)

In particular, the trace of L is related to the 2-covariant
divergence of the vector M by

Eqs. (2.20) and (2.18), L p is symmetric (Weingarten
identity) and

A' pr=k "kp kr .„. (2.42)

We shall not use this tensor, but simply note that it is ex-
pressible in a simple way in terms of the various
geometric objects introduced so far:

p
= K~pn +L~pm (2.43)

C. Projections of the Einstein equation

The basic idea is to project the Einstein equation,

—
q M [cf. Eq. (A27)].
The point of view taken above amounts to considering

the surfaces X, as hypersurfaces of the (sub)manifold X,
(hence the extrinsic curvature tensor L). One may in-
stead consider the X, 's as two-dimensional submanifolds
of the four-dimensional spacetime 6. The corresponding
embedding is then naturally described by a type (1,2) ten-
sor, called the second fundamental tensor of X, [the fi'rst
fundamental tensor being the projection tensor lt intro-
duced in Eq. (2.20)], and defined by (see Ref. [25])

1L= — M
I(

(2.36)
+PV 2 JRg PV 8' TPV (2.44)

N =q +corn

with

(2.37)

The shift vector N and the extrinsic curvature tensor
of X„K, are tangent to the hypersurface X„' it is thus
meaningful to consider their 2+1 decomposition with
respect to the two-surfaces X, (which are hypersurfaces
of the manifold X, ). We write

onto the surfaces X, and X, and along their respective
normal vectors n and I, in order to obtain equations that
are covariant either for the 3-metric h or the 2-metric k.
These equations will be reduced rather easily to partial
differential equations once a specific choice of the coordi-
nates (x', x ) is made.

We start by writing the 3+1 decomposition of the
stress-energy tensor T with respect to the hypersurfaces

co =N"m
IM

q =k
IM

(2.38a)

(2.38b)

Z- ~=/' ~+n J~+J n~+En n~,

with

(2.45)

and

K &=K &+m K&+K m&+Km m&,

with

(2.39)

E=T" n„n
a ga y"Vn

P

5 ~=h h~ T"
P V

(2.46a)

(2.46b)

(2.46c)

K=K m ~m

K p=k "kp K„

(2.40a)

(2.40b)

(2.40c)

The vector J and the tensor S defined by Eqs. (2.46b, c)
are tangent to the hypersurface X„' it is thus meaningful
to consider their 2+1 decomposition with respect to the
two-surfaces X, and write

The relation (2.16) between K and the 3-covariant deriva-
tives of N can be translated by relations between K, K,
K & and the derivatives of q and co as follows:

1 M
II

q II
(2.41a)

(2.4 lb)

1
ap= [qaip+qp~~a

2~Lap�]

2' (2.41c)

where [M, q] denotes the commutator of the vector fields
M aild q: [Mq]=Mq(~ —qMi =Mq

J =j +jm

with

and

j=J"m„,
jQ —I c JP

with

s=S" m„m =T" m„m

s~=g~ g" m =k~ TI mP V P

~~=s~P+m ~s~+s~m~+ sm ~m

(2.47)

(2.48a)

(2.48b)

(2.49)

(2.50a)

(2.50b)
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s ~=k k~~~ =k
P V p (2.50c)

—'('R +K' K„K—" ) = S~F- (2.51)

Next, by projecting the Einstein equation onto the hyper-
surface X, [i.e., by contracting Eq. (2.44) with h "h& ],
using the Gauss equation under the form (AS), taking the
trace and substituting Eq. (2.51) for R, we obtain the
lapse equation (see, e.g., Ref. [24]):

N~', , =N[4~(E+~,')+K,,K' ] N'K, .— (2.52)

The various projections of the Einstein equation are
made using the relations between the Ricci tensors R &,
3 2R &, R & of, respectively, g, h, and k, the extrinsic cur-
vature tensors K and L of, respectively, Xt and X, andty
the acceleration vectors a and b of, respectively, n and m.
All the relevant relations are derived in Appendix A from
the Gauss and Codazzi equations.

First, by projecting the Einstein equation along n (i.e.,
by contracting Eq. (2.44) with n "n ) and using the con-
tracted Gauss equation (A3) to substitute R and K for
4

PV

R„,we obtain the Hamiltonian constraint equation (see,
e.g. , Ref. [24]):

By contracting the Einstein equation (2.44) with h '"n '
and using the Codazzi equation (A2), we arrive at the
momentum constraint equation (see, e g. , .Ref. [24]):

K ~l
—K~ —SmJ (2.53)

Let us now write the 2+1 form of the Einstein equa-
tion in the hypersurfaces Xt. Projecting the Einstein
equation onto X,&

[i.e., contracting Eq. (2.44) with
k ~k& ] and taking the trace yields

k~"R —'R =8~s
fLV A' (2.55)

%'e can reexpress the left-hand side of this equation by
means of the relations (A21), (A18), and (A29) between
R„and R„,L and K. In this manner, we obtain an

equation for the function MN:

Substituting for K" and K from Eqs. (2.16) and (2.17)
yields

N'~i N
I

I + R' N~= —16mNJ' —2E''N +2KN '

(2.54)

M(MN)»' +2M' N
IIQ M . IIQ

Q

M'(LN), —=S~MN~, ' 2~, [M, q—]'—M q'+to (2~+~b )~~,

+MN(~, be' +2a+va, ' L.,bL' .
) .— (2.56)

k ~m 4R =s~s
PV

The relations (A22) and (A30) then yield
IIQ

-L +LII —— 'N
M lib

L' =S—rrs'+ —[q,~]'+ [M,~]'lib Q 1

N N ' MN

Contracting the Einstein equation (2.44) with k "m gives

(2.57)

k ab ab)
N M

lib

—2KbK Kb K (2.58)

By substituting for L its value in terms of the derivatives of M as given by the Killing equation (2.35) for B/B@, we ob-
tain an equation for the vector M:

MQllb Mb IIQ+2R Q Mb N
lib lib N M lib

Qb M
M

N 2LM IIQ

Ilb

= 16~Ms'+ [q, a]'+ [M,s]'+2(irk' —~'")
N N M

—2M(2~'ba. "+~b s') . (2.59)

Finally, the Finstein equation projected along the vector m [i.e., Eq. (2.44) contracted with m m ] gives

R m "m —
—,
' R =Sos . (2.60)

Maging use of the relations (A19), (A18), and (A29) results in an equation involving the Laplacian of N with respect of
the 2-metric k as well as the curvature scalar of k:

——R LN =Sos ———q'+to v + v [M, q]'+3K a + —[v x' +(s ) +L L' L] . —Q 2 ~ 1 Q M b 2 Q Q 1 Qb b 2 Qb

IIQ

(2.61)

.et us recall that, in the above equations, we use the convention on the index ranges stated at the beginning of the arti-
cle.
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D. Comparison with a previous (2+1)+1formalism

Notice that the above treatment is diferent from the
so-called "(2+1)+1 formalism" introduced by Maeda,
Sasaki, Nakamura, and Miyama [26] and Sasaki [27] for
spacetimes having a rotational Killing vector g. These
authors are not interested by stationary axisymmetric
configurations but rather by axisymmetric gravitational
collapse. Their formalism is based on a work of Geroch
[28], who introduced as three-dimensional space, the quo-
tient space 8/4, where 8 is the total spacetime and 4 is
the collection of all orbits along the Killing vector field g.
The 6/4 space is sliced into spacelike hypersurfaces 0.,
according to the usual 3+ 1 (in this case 2+ 1) formalism.
This approach di6'ers from ours in the following aspects:
(i) we start by the time slicing and perform afterwards the
azimuthal slicing, whereas Maeda et al. first make the az-
imuthal decomposition (by the quotient 6/4) and then
perform in a second step the time slicing; (ii) the metric
on 8/S in H &=g &

—(g g ) g gati', g being not hyper-
surface orthogonal, the resulting equations involve the
twist of g and skew-symmetric tensors. As our privileged
vectors are n and m, instead of s and g, and are hypersur-
face orthogonal, our equations do not contain such terms
and are very di6'erent from those of Maeda et al. In oth-
er words, our (2+ 1)+1 formalism is closer to the classi-
cal 3+ 1 formalism spirit in the sense that each of the two
decomposition steps introduces some hypersurfaces and
their normal vector field, which is not the case of the first
step of the (2+ 1)+ 1 formalism of Maeda et al.

III. CHOICE OF COORDINATES

A. Required coordinates properties

The above equations are fully covariant with respect to
coordinates (x', x ) (which span the subspace X, ) and
have been derived under the assumption that the coordi-
nates x = t and x =cp are adapted to the stationarity and
axisymmetry of spacetime, i.e., are ignorable. As stated
in the introduction of Sec. II, there is some freedom in
the choice of such coordinates, which is expressed by the
arbitrary nature of the functions I', @,f„and f2 in the
transformation (2.2). We are going to take advantage of
this freedom by choosing coordinates that fulfill the fol-
lowing requirements.

(i) The coordinate choice should lead to well-behaved
elliptic operators in the above equations, so that their
resolution can be reduced to an iterative procedure of
solving Poisson-like equations at each step. In this
manner, a solution that satisfies the boundary condition
of asymptotic fiatness is ensured to exist and to be unique
at each step of the procedure and, if this latter converges,
the final numerical solution will be an asymptotically fiat
solution of the Einstein equations. The introduced coor-
dinates will then be global ones, i.e., they will constitute a
chart which covers the whole spacetime (in the case of a
starlike object) or at least the part from some horizon to
infinity (in the case of a black hole).

(ii) In the circular limit, the coordinates should be the
same as the usual ones (cf. Sec. I).

(iii) In order to consider noncircular axisymmetric sta-
tionary models as (unstable) initial conditions in a time
evolution code for gravitational collapse, the coordinates
should belong to one of the kind proposed for dynamical
evolution (see, e.g. , Ref. [29] for a review). This will
avoid a cumbersome and numerically noisy change of
coordinates at the beginning of the computation.

(iv) The coordinates should simplify as much as possi-
ble the field equations; in particular, they should mini-
mize the number of second-order derivatives in the non-
linear terms (which will act as source terms in the
Poisson-like equations that are to be solved numerically),
since second-order derivatives are in general less precisely
evaluated numerically than first order ones.

The requirement (i) is, from our point of view, the most
crucial one. Indeed, global coordinates enable one to car-
ry out the integration up to infinity, which is the only
place where exact boundary conditions can be given,
since it is the only place where the solution of the Ein-
stein equation is known in advance (fiat spacetime). In
that spirit, we have recently devised a numerical scheme
to integrate Poisson-like equations with a noncompactly
supported (but asymptotically vanishing) source from the
origin up to spatial infinity [20]. We want to point out
that algebraic coordinates choices, made in order to sim-
plify the components of the metric tensor by setting some
of them to zero, do not generally fulfill the requirement
(i). For example, the so-called radial gauge and iso
thermal gauge, (t, r, 8, @),proposed by Bardeen and Piran
[30] for axisymmetric spacetimes both demand that
M"=0 and k„&=0 (within our notations). But, as recog-
nized by these authors and others [31], this choice in-
duces some irregularity in the equations for X~ and M,
so that if one imposes that the solution be regular at the
origin, it is no longer asymptotically fiat. In other words,
these coordinates are not global for asymptotically fiat
axisymmetric spacetimes (except in the nonrotating static
case). The reason for this may be seen rather easily by
considering Eq. (2.59) which determines the vector M'.
The principal linear terms on the left-hand side are the
vector Laplacian minus the gradient of the divergence of

If the simplifying algebraic choice
M"=0 is made, the two-component equation (2.59) de-
generates into one equation, involving the operator

Now, this operator is no longer elliptic,
since the term 0 M /BO arising from the gradient of the
divergence cancels the corresponding one arising from
the Laplacian. The operator is then merely parabolic and
the resulting solution can fulfill only one of the conditions
M'(r =0,8) =0 (regularity at the origin) or
M'(r=+ ~,8)=0 (asymptotic fiatness), since the in-
tegration has to proceed either inwards or outwards.
Hence the radial and isothermal gauge lead to nonglobal
coordinates. A convenient remedy is to require, as a
coordinate choice, a divergence-free vector M'.
M

~~b
=0. In this manner, the above operator becomes an

elliptic vector Laplacian. As shown in Sec. IIIB, the
solution will then be uniquely determined by the bound-
ary condition M'(r =+ ~,8)=0 and will automatically
satisfy the regularity condition M'(r =0,8)=0, provided
that the source is well behaved (i.e., does not contain any
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B. Maximal time slicing —conformally minimal
azimuthal slicing

Following the above discussion, we consider the class
of coordinates (t,x ',x,y) defined so that the associated
foliations X, and X, satisfy

n . =0, (3.1)

(Nm ). =0 . (3.2)

The condition (3.1) means that the 2, 's are maxima/ hy-
persurfaces of (6', g). According to Eq. (2.15), it is
equivalent to

monopolar term), which is the case of Eq. (2.59).
The requirement (ii) means that our choice of coordi-

nates should allow that 1V'=X =0 and M"=M =0 in
the circular limit.

Regarding the requirement (iii), we note that most
gravitational collapse calculations make use of maximal
time slicing coordinates for which the trace K of the ex-
trinsic curvature tensor of the hypersurfaces X, is identi-
cally zero [30,32,33]. The main reason for such a choice
is that it gives asymptotically Aat slices and has a very
good singularity avoidance feature. Note that such a
choice is compatible with the demand (ii) [20]. Note also
that K=0 is equivalent to a divergence-free shift vector
[cf. Eq. (2.17)], so that the operator in Eq. (2.54) for N'
becomes a well-behaved vector Laplacian, in full agree-
ment with the demand (i), as we will see in Sec. III B.

The last requirement (iv) (simplification of the equa-
tions) has not to go against the requirement (i); for in-
stance, we have seen that the simplifying choice M'=0 is
to be prohibited, whereas the choice k, 2 =0 seems to be
allowed.

provided that X, is not supplied with the metric h in-

duced by g but instead with the conformally related
metric h defined by

fti=N h t3. (3.5)

Indeed, using (3.4), it can be easily shown that the condi-
tion (3.2) is equivalent to

(3.6)

where m =(I/N)m is the normal vector of the sur-
faces X,+ that has a unit norID for the conformal 3-metric
h and the symbol "1"denotes the covariant derivative
with respect to h. Note that the condition (3.6) does
mean the two-surfaces X,+ are minima/ hypersurfaces of
the space ( X„h). Hence we propose to call the coordi-
nates (t,x',x,p) which satisfy (3.1) and (3.2), maximal
time slicing conform—ally minimal azimuthal slicing
(MTCMA) coordinates.

It can be seen that any coordinate set adapted to ax-
isymmetry and stationarity may be transformed, at least
locally, to MTCMA coordinates by a suitable choice of
the functions 0'(x', x ) and 4(x', x ) in the transforma-
tion rules (2.2a) and (2.2b). Note that MTCMA coordi-
nates de6ne not a unique set but rather a class of coordi-
nates since one has still the two degrees of freedom con-
tained in the functions f, (x', x ) and f2(x', x ) that ap-
pear in Eqs. (2 2c) and (2 2d). In other words, the
MTCMA choice fully deterInines the hypersurfaces X, of
8 and the two-surfaces X, in X, but let the coordinates
(x', x ) which spans X, unspecified. In Appendix B, we
make the choice of isotropic coordinates (x', x )=(r, 8)
such that the 2-metric k of X, satisfies k„&=0 and
kqq=r k,„, i.e.,

%=a, '+v=0 . (3.3) k,&dx'dx"= A (r, 0)[dr +r d8 ] . (3.7)

As concerns the condition (3.2), it can be restated in
terms of a covariant divergence in the (X„h) space as

(N )I
——0. (3.4)

The exact analog for the two-surfaces X, of the maximal
slicing choice (3.1) for X, would have been instead
m

~

=0: the X, 's would then have been minimal hy-
persurfaces of (X„h). We prefer the slightly difFerent
choice (3.2) because it leads to greater simplifications in
the gravitational field equations [requirement (iv) of Sec.
IIIA]; in particular, it suppresses all the second-order
derivatives of the lapse function N in Eqs. (2.56) for MN
and (2.59) for M'. In fact, the condition (3.2) can also be
interpreted in terms of minimal slicing in the X, space,

X —0[i (3.8)

(N M') =0 . (3.9)

By developing Eq. (3.9) and making use of Eq. (2.36), we
obtain an equivalent condition on the trace L, of the ex-
trinsic curvature tensor of the two-surfaces X, in thety
Riemannian space (X„h):

Such a choice is always possible, at least locally, thanks
to a suitable choice of the functions f, (x ', x ) and
f2(x ', x ) in the transformation (2.2c) and (2.2d). But in
the following, we keep the full covariance with respect to
coordinates (x', x ).

By means of Eqs. (2.8) and (2.24), the conditions (3.1)
and (3.2) can be written as assumptions on the vectors N
and M, respectively:

Minimal' instead of maximal due to the signature (+,+,+) of
b instead of the signature ( —,+, +, + ) of g.

2M'
lla (3.10)
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C. Gravitational field equations in MTCMA coordinates

Let us now write the gravitational field equations derived in Sec. II in MTCMA coordinates: Eqs. (2.52), (2.54),
(2.56), (2.59), and (2.61) become, respectively,

N~'. =N[4vr(E+S )+K; K'j),
N~jI+3R ' NJ= —16mNJ' —2K''JN . ,lj

(3.11)

(3.12)

a

(MN)ii I~ 8rrMNs, ' 2~—.[M, q]' —M q +~ ~ii~+MN ~ab~'"+~' L,„L—"),
M

(3.13)

M'" + R M =167rMs 2L —"N +—(MN)" + [,v]b b q,

M+ [M, ~]'+2(iik' —~' )
N N M

IIb

—2M(2~'b a —~~'), (3.14)

—N~' ——R =8ms+ —q'+co ~ + ~ [M, q]'+3K K + (K i, K +Ic +L,bL' ) .12 1, M'
N I' 2 N M ' MN ' ' ' 2

(3.15)

Making the balance sheet for the number of equations
and unknowns, one notes that the components of the sys-
tem (3.11)—(3.15) involves eight equations. If the coordi-
nate system is fully specified by, for example, a choice of
the type (3.7) for (x', x ), then one has also eight un-
known functions: N, the three N"s, M, the two M"s and
A (cf. Appendix B). Note that the Einstein equation has
only 10—4=6 independent components, thanks to the
four Bianchi identities. We recover this fact by noticing
that only six of our eight components are indeed indepen-
dent, due to the coordinate choice which fixes the values
of the divergence of N' and M'.

In order to discuss the existence and uniqueness of a
solution of the system (3.11)—(3.15), let us investigate the
properties of the various operators which appear on the
equations' left-hand sides.

As concerns the scalar operators, they are merely sca-
lar covariant Laplacians with respect to the 3-metric h
for Eq. (3.11) or to the 2-metric k for Eq. (3.13) [and Eq.
(3.15) if isotropic meridional coordinates are chosen, cf.
Appendix B]. In general, the invertibility of the Lapla-
cian in a noncompact Riemannian space is a delicate
problem. However, in the case of asymptotically Hat
Riemannian spaces with the topology of IR (which are
relevant for "normal" stars without any horizon), a useful
isomorphism theorem has been proved by Cantor [34,35]
and can be applied to demonstrate the existence and
uniqueness of a solution of the covariant Poisson equa-
tion (see Appendix B of Ref. [36]). Concerning Eq. (3.15),
let us remark that if isotropic meridional coordinates
(r, 8) are used, as suggested in Appendix B, this equation
gives rise to an integral identity, which is a generalization
of the virial theorem [37] and is very useful as a check of
the accuracy of any numerical solution [20]. We will dis-
cuss this point in more detail in a forthcoming paper.

Let us now discuss the vector operators, which appear
in Eqs. (3.12) and (3.14). They have the same form, ex-
cept that one acts in the (X„h) space and the other in the
(X«,k) space. Since h and k are both positive definite,

we shall discuss Eq. (3.12) only; the conclusions will thus
be valid for Eq. (3.14). The operator on the left-hand side
of Eq. (3.12) is

(SN)'=N"~ +'R' Nj (3.16)

This operator is linear and very similar to those studied
by York [38,39]:

+N j I ~+ 3R ~'

N j

(a N)'=N' j + 'Nj ~'+'R' Nj-
IJ 3 J J

(3.17a)

(3.17b)

In the flat space case, this latter property corresponds to the
mell-knomn fact that the solution of a vector Poisson equation is
divergence-free if, and only if, the source is divergence-free.

Moreover, since N' is divergence-free, due to the maxi-
mal slicing condition (3.8), (AN)', (DION)', and (bl N)'
are in fact identical. Let us consider the operator Az,
York [39] has shown that it is strongly elliptic and self-
adjoint, and that in the case of an asymptotically Aat
space with the topology of R, a solution N' of
(b,xN )'=o' exists and is unique, provided that the source
o' (here o'= —16rrNJ' 2K'jN ) van—ishes sufficiently
fast at infinity (which is verified in physically relevant
cases, see Appendix B of Ref. [36]). To apply this result
to our operator 6, the crucial point is to notice that if
one takes the divergence of (b, zN)'= —16mNJ' 2K'jN,j-
and makes use of the contracted Bianchi identities for
R;., as well as the energy-momentum conservation equa-

tions written (with K =0) in Sec. IV, one is led to
N'~; j =0, which implies (in accordance to the above
mentioned Cantor theorem) N'~, =0. Hence, the unique
solution of (b,zN)'=o' automatically satisfies the
divergence-free condition N'I; =0. We therefore con-
clude that it is also the unique solution of (AN )'= o', i.e.,
Eq. (3.12). In other words, provided that the matter
source terms satisfy the energy-momentum conservation
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equations written under the hypothesis %=0 (cf. Sec.
IV), there exists a unique solution N' to Eq. (3.12), and
this solution is automatically divergence-free, thanks to
the Bianchi identities.

In summary, if the right-hand sides of the system of
Eqs. (3.11)—(3.15) are held fixed, all the elliptic operators
on the left-hand sides can be inverted to yield a unique
asymptotically fIat solution of the corresponding linear
equations, at least in the case where X, has the topology
of IR . This strongly suggests that a complete solution of
the system (3.11)—(3.15) may be found by an iterative
method, which consists in inverting at each step the
above linear elliptic operators. Of course, we have not
demonstrated that such an iterative method will con-
verge. All that we can assert is that, in the circular case,
a similar method is seen to be numerically convergent
[11,13,15,20].

From the numerical point of view, note that the itera-
tive scheme may be slightly different as it is easier to in-
vert at each iteration step the "Aat space part" of the
operators only, putting the "curvature part" with the
source terms on the right-hand side. One is then led to
invert Aat space 3D and 2D scalar and vector Laplacians.
In this respect, some techniques have been recently de-
vised to solve Poisson equations with noncompactly sup-
ported source terms (which is the case here due to the
contribution in the whole space of the quadratic terms)
[18,20]. Basically, these methods use a change of vari-
ables of the type u =1/r to map the infinite space exter-
nal to the central object on a compact numerical grid.
These methods also have the advantage of enabling one
to impose exactly the boundary conditions of asymptotic
fiatness [cf. the discussion about the requirement (i) of
Sec. III A].

E T~(%i'g~) = NM—(Nj (~n rm s)+cps(~n rm s) ), (3.20a)

g.T (%&g') =NM's(~num') . (3.20b)

By inserting Eqs. (3.20a) and (3.20b) into the circularity
conditions (l. la) and (l. lb), and contracting the result
with n &m&, we obtain the following constraints on the to-
tal stress-energy tensor:

j =0,
s =0,

(3.21a)

(3.21b)

which express the absence of meridional momentum, as
well as anisotropic stress on any surface element in a
meridional plane.

The metric equations of Sec. III B are reduced as fol-
lows. Equation (3.11) for N is left unchanged (in its 3-
covariant form); the two first components of Eq. (3.12)
are identically zero, due to Eqs. (3.18) and (3.21a); Eq.
(3.13) for MN reduces to

(MN ) il' = 8vrMNs, ', (3.22)

the two components of Eq. (3.14) for M' are identically
zero, due to Eqs. (3.18) and (3.21b), and Eq. (3.15) is re-
duced to

with the requirement (ii) of Sec. III A.
As regards the stress-energy distribution in the circular

case, Eqs. (3.18), (2.7), and (2.23) lead to E =Nn — m
and P=Mm so that one has, using Eqs. (2.45), (2.47),
and (2.49),

D. Circular limit R =8ms+3K K
1

a (3.23)

In the circular limit, the 2-planes orthogonal to both
the Killing vectors r)/r)t and 8/By are integrable in glo-
bal two-surfaces [5]. We may choose naturally these
two-surfaces as being X, . The orthogonality of both
r)/dt and a/ap with respect to X,„ is then expressed by
[cf. Eqs. (2.6), (2.37), and (2.22)]

q =OandM =0. (3.18)

The immediate consequences of Eq. (3.18) are [cf. Eqs.
(2.35) and (2.41a)]

I. p=0, (3.19a)

(3.19b)

(3.19c)

r

M co

2N M (3.19d)

In particular, the relations K =0 [cf. Eq. (3.3)] and
(N M')~~~, =0 are satisfied, so that the above choice for
X, corresponds to MTCMA coordinates, in agreement

E. Relations with other coordinate systems

We have seen in the above section that, in the circular
limit, MTCMA coordinates coincide with the usual coor-
dinates adapted to orthogonal transitivity, and which
have been used by all the authors mentioned in the intro-
duction. Thus the requirement (ii) of Sec. III A is
fulfilled.

As regards the requirement (iii) (compatibility with
coordinate systems used in dynamical studies), we have
already noticed (cf. Sec. III A) that the radial gauge and
isothermal gauge used in axisymmetric gravitational col-
lapse calculations [30,40,33] do not allow a global cover-
age of spacetime. MTCMA coordinates do not belong to
this class of algebraic simplifying coordinates, having
been introduced to remedy the difFiculty of not being glo-
bal. In fact, it can easily be shown that MTCMA coordi-
nates belong to the class of maximal time slicing-minimal
distortion gauge coordinates proposed by Smarr and York
[36,24] for dynamical spacetimes and the generation of
gravitational waves. Indeed, the minimal distortion
gauge condition is equivalent to an elliptic equation for
the shift vector N [Eq. (3.27) of Ref. [36]] which coin-
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cides with our Eq. (3.12) in the stationary case. Since the
maximal time slicing-minimal distortion gauge seems to
be well adapted to separate the "coordinate waves" from
"pure gravitational waves, " this property of MTCMA
coordinates seems very attractive; it will enable us to use
stationary unstable configurations constructed within
MTCMA coordinates as initial conditions for gravita-
tional collapse studies.

IV. ENERGY-MOMENTUM CONSERVATION

We give in this section the expression of the energy-
momentum conservation equation,

(4.1)

in the stationary and axisymmetric case, in terms of the
quantities E, j,j, s, s, and s ~ introduced in Sec. II C.

Projecting Eq. (4.1) onto n leads to the energy conservation equation

q +co E~~ +j
~~

+
j~~

= L —2 X~~ j— (X M)) j +~ ~" +2~ s +as+(~+~ )E .

In MTCMA coordinates, this equation is simplified to

(4.2)

1 M . M 1 (X M)~~~ j + „~"+2 + (4.3)

Note that in the circular limit (cf. Sec. III D), each side of Eq. (4.3) vanishes.
Projecting Eq. (4.1) onto m leads to the azimuthal momentum conservation equation

M Mq +co j(( +s
((

+ s((
= —

2 (XM )(( s

[M, q] —(E+s ) N~~ +Ls L„s"+(—2m+k )Z . (4.4)

In MTCMA coordinates, this equation becomes

1 M . M 1 2 j M
(4.5)

Note that in the circular limit (cf. Sec. III D), each side of Eq. (4.5) vanishes.
Finally, projecting Eq. (4.1) onto X, leads to the meridional momentum conservation equation

s
((

(M s
((

+s M
))

)+—(q j
)(

+j q
)(

)+ (M j
((

+j M
((

)M X MX

= —(Ek +s )—X~~ +(sk —s ) M~~
—j1 1 . M co

iia

+ L &)( s (&+& )J (4.6)

In MTCMA coordinates, this equation becomes

+ M
[[

+ M
II

+ qj-»~-+J'q ii—- + M J l-+~'M
IIM X MX

= —(Ek +s )—X~~ +(sk —s ) Mt~
—j + N) s . (4.7)

1 1 .M co M

. Ila

In the circular limit (cf. Sec. III D), Eq. (4.7) reduces to

1 1 .M co

M ~~ X M
(4.8)

One may verify easily that it is the standard equation of stationary axisymmetric circular motion (compare with, e.g. ,
Eq. (3.25) of Ref. [20]).
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V. CONCLUSION ACKNOWLEDGMENTS

We have presented a formalism to treat axisymmetric
stationary spacetimes in the most general case, when the
stress-energy tensor is not assumed to be circular. Non-
circularity in astrophysical objects applies to rotating
neutron stars with a toroidal magnetic field or Quid con-
vective motions. Our formulation is based on a (2+ 1)+ 1

slicing of spacetime and the corresponding projections of
the Einstein equation. The foliation is associated with a
coordinate choice of the type (t,x',x,y), where t and q&

are coordinates adapted, respectively, to stationarity and
axisymmetry. The two other coordinates, (x ', x ),
remains unspecified so that the formulation is fully co-
variant with respect to them. .

The choice of the ignorable coordinates t and cp is not
unique and the formalism presented here offers a suitable
frame for discussing this choice. In particular, we have
shown that algebraic coordinate choices, which consist of
setting some of the components of the metric tensor (like

g„~ or ge~) to zero in order to simplify the equations, do
not yield global coordinate systems. We propose instead
conditions of "fixed divergence" type, which are inter-
pretable in terms of extremal slicing in the introduced
(2+1)+1 foliations. This choice, namely maximal time
slicing conforma-lly minimal azimuthal slicing (MTCMA),
leads to well-behaved elliptic operators in the gravitation-
al fields equations. These operators may be inverted at
each step of an iterative procedure because of existence
and uniqueness theorems, in the case of asymptotically
fiat and topologically euclidean spaces (as is the case for
the spacetime generated by a rotating magnetized star).
Consequently MTCMA coordinates are likely to be glo-
bal if no horizon is present, i.e., to allow a complete cov-
erage of the whole asymptotically Aat spacetime. Let us
stress that this global coverage is a desirable property
when one wants to carry out an "exact" integration of
the equations, since infinity is the only place where exact
boundary conditions can be given, because it is the only
place where the solution of the Einstein equation is
known in advance (fat spacetime). Note as well that nu-
merical methods exist that can carry out the integration
from the interior of the central object to infinity [18,20],
thanks to some compactification of the space external to
the central object. Another interesting feature of
MTCMA coordinates is that they belong to the maximal
slicing minimal di-stortion gauge class proposed for
dynamical spacetimes and the generation of gravitational
waves [36,24] so that one may use them to compute the
(unstable) stationary initial conditions for a gravitational
collapse calculation.

We have picked out a subclass of MTCMA coordi-
nates, namely meridional isotropic MTCMA coordinates
(t, r, 8,y), in order to write explicitly the system of par-
tial differential equations to be integrated numerically.
The obtained system, though much longer than the circu-
lar one, still seems tractable given present day computers
and will be implemented in the future to compute
steady-state configurations of rotating neutrons stars with
strong magnetic fields.

We wish to thank Brandon Carter for very fruitful dis-
cussions and Greg Comer for reading the manuscript.

APPENDIX A: RELATIONS BETWEEN THE VARIOUS
RICCI AND EXTRINSIC CURVATURE TENSORS

1. R in terms of ( R,K,a )

The key equations are Gauss' equation

R p ~=h „h ph~ h ~
R" —E Kp~+K ~Kp

(Al)

and Codazzi's equation

K lp
—Kl = —h" R„n (A2)

These relations result directly from the definition, via the
Ricci identity, of the Riemann tensor R pz& of the 3-
metric h and are established, for example, in Hawking
and Ellis [41] [Eqs. (2.34) and (2.35); note that Hawking
and Ellis' vector n and extrinsic curvature tensor K are
both defined with a sign opposite from ours].

Contracting Eq. (Al) on the indices a and y, and mul-
tiplying by h p~, yields a relation between the curvature
scalars:

R=R+2R n nP —K+E E P
ap o,p (A3)

We can also deduce from Eq. (Al) a relation between the
Ricci tensors. First, by contracting Eq. (Al) on the in-
dices a and y, we obtain

R p=h "hp R —KE p+K K p

(A4)

Evaluating the last term of the right-hand side by means
of the Ricci identity R„n~=n .„—n . „and using
Eq. (2.13) to express n„. in terms of E„and a„yields,
after some rearrangement,

R p=h "hp R„+apl +a ap+n K p.

—n.a K.p —npa K..—KK.p (A5)

We can replace the acceleration a by its expression (2.11)
in terms of the lapse N and write Eq. (A5) as

1
R p=h "hp R„+—Xl p+n K p.

—na Kp —npa K —EKp. (A6)

By comparison with Eq. (A3), we obtain

p ~—~ l~ (A8)

which is nothing more than the Raychaudhuri equa-

The trace of the above equation gives another relation be-
tween the curvature scalars:

R = R+ R „n"n + N~ +n K. IC (A—7)—1
7
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R= R ——NI —2n L. +K +K Ep2
lo ,o PV (A9)

tion applied to the vector field n [recall
that K= n— , (. 1/N)N~

~

=a
~

+a a =a . and

P, V

Substituting for R,n "n from Eq. (AS) into Eq. (A7),
we obtain a relation between the curvature scalar that
does not contain the Ricci tensor R„:

obtain, respectively,

2R =3R —23R mamP+L2 —L L P
ap ap

bpii~
+b b

—m b L p
—mpb L +LLp.

(A12)

(A13)

2. R in terms of ( R,L, b )

The relations are similar to the above ones, except that
the Riemannian space under consideration is (X„h), with
the hypersurfaces (X, , k)—instead of ( @,g) with the hy-
persurfaces (X„h)—and that the vector m normal to the
hypersurfaces X, has a scalar square equal to + 1,
whereas the vector n normal to the hypersurfaces X, has
a scalar square equal to —1. This latter difference results
in some sign changes between the two families of formu-
las.

Gauss' equation now reads

—mbLp —mpbL+LLp,
the trace of which is

(A14)

R = R —R„m "m + Mll —m LI +L (A15)
1

By comparison with Eq. (A12), we obtain the Ray-
chaudhuri equation for the vector field I:

We can replace b by its expression (2.30) involving the
function M and write Eq. (A13) as

1
R p=k "kp R„+ Mii p

—m L pIM

R =k k k~k R" +L L ~
—L L R mPm = — Mll +m L —L1

PV M Io. pv (A16)

and Codazzi's equation

aiip iia a pv
p p 3

(A10)

(A 1 1)

By the same procedure as for Eqs. (A3) and (A5), we +2m L2
Io pv (A17)

Substituting for R„m "m from Eq. (A16) into Eq.
(A15), we obtain a relation between the curvature scalars
that does not contain the Ricci tensor R„:

3. R in terms of ( R, EC, L,a, b)

Substituting for R from Eq. (A17) into Eq. (A9) yields

2 2 m4R =~R — Nll~~ —Mll~~ (ml"N ) — MII~N +2L NM llo Ip Iv M~ Iio

2n E. +2m LI +K +E EP —L —L L
7

Multiplying Eq. (A6) by m m~ and using Eq. (A16) gives

(A18)

R„,m"m = — M" — (m N~„)~
— M N +m L~ m"m (n —K KK ) LL—~—(A19)

Substituting for R„ from Eq. (A6) into Eq. (A14) yields

k "k& R„—R & N~~ & M~—
~

p—+L &
—

N~ +m L @ LL p k "k& (—n K„, —KK„,).

—

+m b L p+mpb L

Taking the trace (with respect of the 2-metric k) of the above equation gives

(A20)

k~ R = R Nll Mll +L N +~OL ~ K +my~ (n K KK )+K2 L24 2 1 1 m
ilo M Ilo ~ I o Io. ;c pv; o' pv

By multiplying Eq. (A6) by br m and inserting the result into Codazzi's equation (Al 1), one obtains

1 1
pv, o'

(A21)

(A22)
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4. Simylifications in the stationary axisymmetric case

1 M
n A. — g +@7

M
(A24)

(ii) For any vector field v that is tangent to g and
respects the stationarity, we have

The above equations are general and do not use the
fact that the spacetime under consideration is stationary
and axisymmetric. In this latter case, derivatives along
the vectors n and m can be simplified as follows:

(i) For any scalar field 2 which respects the stationari-
ty and the axisymmetry, we have (the notations are those
of Sec. II)

Note that in the circular limit (cf. Sec. III D), the expres-
sions (A29) and (A30) reduce, respectively, to 2v v and
0.

APPENDIX 8: THE EQUATIONS IN
MTCMA ISOTROPIC COORDINATES

In this appendix, we specify fully the coordinate system
by choosing the MTCMA slicing introduced in Sec. III B
as well as taking isotropic polar coordinates
(x', x )=(r, g) on the two-surfaces X, . These coordi-
nates take their values in [0, + oo [ X [0,vr], the axis of
symmetry containing the point r =0 and being character-
ized by 0=0 and 0=~, and are such that the 2-metric k
of X, reads

=1nv. =—[Nv] —Ev+uan (A25)
k,~dx'dx"= A (r, g)[dr +r dg ] .

1mw~=[Mw] —Lw —wbm (A26)

In these equations appear the commutators

[N, v] =N v
i

—u N
i

[M, w] =M w ii~
—w M

ii

(A27a)

(A27b)

(iii) For any vector field w that is tangent to X, and
respects the axisymmetry, we have

Thanks to the allowed coordinate transform (2.2c) and
(2.2d), it is always possible to find, at least locally, such a
coordinate system.

This choice being made, the gravitational field equa-
tions (3.11)—(3.15) can be written as a system of eight
coupled partial difFerential equations for the eight func-
tions N(r, g), N"(r, g), N (r, g), N~(r, g), M(r, g),
M"(r, g), M (r, g), and A(r, g). For computational con-
venience, the following quantities are introduced:

They take an alternative form in which the covariant
derivatives can be replaced by partial derivatives of the
components, which is useful from a computational point
of view.

Using these relations, we obtain

v(r, g) =lnN(r, g),

a(r, 8) =ln A (r, 8),

B(r,g)=M(r, g)/(r sinO),

(82a)

(82b)

(82c)

1
n m. = — [Mq] —~+m a nXM (A28) P(r, 8)=lnB (r, 8), (82d)

m "m (n IC„EK„)—.

NM
~a™q]~

+2K K K KK (A29)

k "m (n K„,. EIC„)—
CO=—[q, &] + [M,~] +(xk —x )

M co

MX ' X M

2K ~K K~ K (A30)

By introducing the 2+ 1 decomposition of K (cf. Sec. II),
we can express the contractions of n K„. with m"m
and k "m, which appear in the relations between R

&2 O,Pand R & above, as

p(r, g) =lnM(r, g) =ln(r sing)+P(r, 8) (82e)

The function B is introduced in order to single out the
vanishing behavior (in r sing) of M on the axis of symme-
try; in the Aat space limit, B=1. Note that the function
p is not defined on the axis of symmetry.

With the above coordinates, the 2-metric k has the
conformally fiat expression (81). Consequently, the 2-
covariant operators which appear in Eqs. (3.13) and (3.14)
take a simple form [in accordance with the requirement
(iv) of Sec. III A]. For example, the scalar Laplacian with
respect to k reduces to the Aat space Laplacian expressed
in polar coordinates, up to a scale factor I/A (see, e.g. ,
Appendix D of Ref. [42]). Then, the only complex ex-
pressions to evaluate are the vector Laplacian with
respect to the 3-metric h and the Ricci tensor of h which
both appear in the shift equation (3.12). We performed
this tedious calculus with help of a Mathematica [43]
algebraic computing code, which is presented, as well as
the various tests it has passed, in Ref. [20].

The equation (3.11) for the lapse function N=exp(v)
becomes
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A Iv „„+(1/r+p „)v,+v eglr +p ev elr j+[A +(m") ](v„) +[(rA ) +(m ) ](v g) +(m") v „„+2m "m v„g

+(m ) vgg+(m "m"„+m m "g)v„+(m "m „+m m g)v g=4w(E+S )+K, KJ"+L /2 . (B3)

In the above equation, partial derivatives are noted in subscripts as commas. Use has been made of Eqs. (2.36) and
(3.10) to let the term L appear. Note that, if p is replaced by its expression (82e), one recognizes inside the curly
brackets the 3D fiat space Laplacian of v [expressed in spherical coordinates (r, 8,y)] plus the corrective quadratic term
P„v„+Pgve/r . Besides, recall that m" and m are linked to M", M, and M by Eq. (2.24): m"=M"/M and
m'=Me/M.

The three components of Eq. (3.12) for the shift (N",N, N") turn out to be

r component:

[ A
—2+( r)2](Nr +( —1+ )Nr [

—2+( )2]Nr)+ [( A )
—2+( g)2]Nr + [( A )

—2
( g)2] ~r

—(2/&)[A +(m") ]N g
—I[A —(m") ]M /M+[A +(m") ]p p jN +2m "m N"

+N"„I2[A +(m") ]a „+m "m [2a g
—p g)+m "M g/M+m M"g/Mj

+N"gI2[(rA ) +2(m ) ]a e+m "m [p „+4a,+1/r] —(m "Ir )M"e/M+(m IM)[M"„+2M e]j

'a g+ 2(m ")'p g
—2(m "/M )M",e j

+Nee I
—2[ A 2+ (m ")2]a „+2m "m [p, e ae] 2m —"M—g/M+(m '/M ) [r'M', ,™,e] j

+NI' [g2M" (/Ar) [2p g
—a g]+2(Me/A )[a „—p, „+1/r+(Am") Ir]+2m "m [M g

—M"„]

—[(rA )
' —(m "/r)'+(me)']M"g+[ A '+(m')' —(~m )']M „j

+N "I2[ A 2+2(m ")2]a „[p „—1/r ]—[ A —(m ") ]M „„/M

+m "m [ —p „p e+4a au „—2a g/r —2a „a e+M „e/M —2A „e/A ]+(m") [2p „/r —2(a „) —2A „„/A ]

+ (m "/M ) [M"„(2p „&a„2/r ) M—
,'„(p,g—+2a, g—) +M, e(2P, .

e/M)[M (+ —4a ) —M" ]—(1/M )[2(M"„) +M „M g+P (M „) ] j

+Ngj(2/A 2)a ~ „+m "m [4a ~ g 2(a g) (p g) +—M gg/M—2A gg/A ]—

+2(m ") [p g/r aelr —a „a g+ 2—p ea „—A „g/A ]

+.(m "/M)[2M" (p e
—a e) —2M"e(3a „+1/r )+M g(p e

—4a e)™ee
—2M"„g]

+(me/M)[M" (p, 4a ) M"gg/M] —(1/M2—)[M "gM g+2M"„M"e+r M „M g] j

(84a)
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0 component:

+N [2[(Ar) +2(m ) ]a sp z+m "m [2p &jr Za &jr p„—p z+—4a „p, z 2a „a z+—M „8/M ZA, &/A—]

2(rn ) —[(a g) + A «/A ]+(m "IM)[M g(p „—4a „—3lr) —M „g]

+(m IM)[2M'„(p g
—a g)

—M "g(p „+Za „+1/r )+2M 0(p g
—4a 8) —M"„e/M —2M «/M —2A «/A ]

—(1/M )[(M" Ir) +2(M ) +M" M ]j= —16~NJ 2K "N ——2K N (B4b)

[A '+(m")']N'„, + [(3«+p „)/A'+(m")'(3 jr —p, „)]N'„+[(rA )-'+(m')'][N~«+p p ~, ]
—N'([(rA ) '+(m')'](P, &)'+[(rA )

' —(m')']M «/M)+2 I"A -'N", +2m "m'N'„,

+¹„[—2[(rA) +(m ) ]a g+Zm "m [p „—a „]+(1/M)[m "(M" jr M„—) —Zm M"„]j

+¹q[ZI(rA ) a „+2(m ) p „—2m M „/Mj

+N „[2[A +2(m") ]a „+m "m [p q+4a g]+(1/M)[m "(2M"„+M g) —m r M „]j
+N &[2[(rA ) +(m ) ]a z+m "m (2a „—p „+1/r)+(1/M)[m "M „+m M"„]j
+N'r [ZM"(rA ) [a z

—p z]+2(M /A )[p, „—a, —1/r —
( Am") /r ]+2m "m [M"„—M z]

+(1/y )[A —(m") +(rm~) ]M"&—[A +(m") —(rm ) ]M „j
+¹[((2/r )A —[(rA ) +(m ) ]p „)p z

—[(rA) —(m ) ]M „&/M+2/r[(Ar) —(m ) ]a z

+(2/(rA ) )a „p &+m "m [2p, „Ir—4a „Ir—1lr +4a „p „—2(a „) —(p „) +M „„/M—2A „„/A ]

+(m ) [(4p „—2a „)a z
—2A „z/A ]+m "IM[(p „—4a „3/r )M „——M „„]

+(m /M)[M"„(p „—4a „—1/r) —6M „a g
—ZM g( —p „+a„+1/r)—M"„„—2M „g]

—(1/M )[M" M" jr +M" M +2M M

y component:

[A +(m") ]N~„+((1/r)[A +(m") ]+[3A —(m") ]p „)N&+[(rA ) +(m ) ]Nag

+[3(rA ) —(m ) ]p ~~&+2m "m N~z+2(N"„/M)[m "[p „—a „)—m~a z M"„/Mj-
+(N "q/M ) [2m p „—(1/M)[M9„+M "z/r~] j

+(N „IM ) [Zm "p, , (1/M) [r M „+—M", ) j+2(N', /M ) [m '[p, —a, ]
—m "[a „+1/r ]—M ~ /M j

+N~ [
—m "m p ~+4m "[m "a „+m a ~]+(m" /M)[ 4M"„+M~~] +( ms/M)[ ZM~ +r' M~„] j

+N ~[ —m "m p „+4m [m "a „+m a g]+3m "m /r+(m "/M)[M &Ir +ZM „]+(m /M)[M' +4M'&]j

+(N'/M)jm "[2p „Ir—4a „Ir—1/r (p „)~—2(a „) +4a —„p „+M „„/M —ZA „„IA]
+m [ —p „p g+4a ys „2agjr —2a „a g+M—„g/M —2A „g/A ]

+(1/M)[M"„(p „—4a „—1/r ) —M „(p &+Za &)+ZM &(p „—a „—1/r ) —M"„„—M „& ] j

+(N /M) [m "[—p „p z+(4a „+2/r )p z
—2a gjr —2a „a &+M „z/M —2A „&/A ]

+m [ —(p q)
—2(a g) +4a gp g+M «/M —2A «/A ]

+(1/M)[ZM'„(p g ag) M "g(p —„+Za—„+1/r )+M g(p g
—4a ~) —M"„9—M «] j

= —16aXJ~—2K+"X,—2X+ N g .

Equation (3.13) for the product MN becomes

'[(MN) „„+(MN) „Ir+(MN) „Ir'j =8~MNs. ' 2~„[M,q]" Z~g[M—, q]' M(q "+—~M"/M)~ —„
M(q +coM /M)v —&+MN(v, bw' +v L,bL' ) . —

(B4c)

(B5)
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In the above equation, the commutator [M, q] has not been written explicitly: one should replace it by its expression
(A27b), with partial derivatives. Note that the term inside the curly brackets is nothing else but the 2D tlat space La-
placian of MN [expressed in polar coordinates (r, o)].

r component:

A [M"„„+(1/r+2a „)M"„+M"gg/r +(2/r )a gM"g —(1/r +2a „/r)M"+2a gM „—2(1/r+a „)M g}
= 16~Ms" 2L""—N(M /N ) „2L"N—(M /N) g+ (L /NA )(MN ) „+2(M/N )[q, tc]"+2(to/N )[M, tc]"

+2(tcA tr""—)(M /N)(co/M) „—2tc" (M /N)(co/M) g 2M—(2tc"„tc"+2tr'gtr trtr")—.

L9 component:

IM „„+(3/r+2a „)M „+M gg/r +(2/r )a gM g
—(2/r )a gM"„+(2/r +2/r a „)M"g+(2/r )a gM"}

=16mMs 2L "N(—M/N) „2L N—(M/N) g+(L/r NA )(MN) g+2(M/N)[q, tc] +2(co/N)[M, tr]

2tr "(M —/N)(co/M) „+[tc(rA) tr ](M—/N)(to/M) g 2M(2—tr „tr"+2tc gtr tetr ) .— (B6b)

Finally, Eq. (3.15) gives an equation for the sum a+ v=ln( AN), and thus determines the conformal factor A [v being
determined by Eq. (B3)]:

't(a+v) „„+(a+v)„/r+(a+v) gg/r'}

=8ns —A [(v „) +(v g) /r ]+(1/N)(q "+coM"/M)tr „+(1/N)(q +coM /M)tr g+(2/MN)tr„[M, q]"

+(2/MN)tcg[M, q] +3K K +1/2(KggK +K +L,bL'") . (B7)
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