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Local and global gravitational aspects of domain
wall space-times
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Local and global gravitational efFects induced by eternal vacuum domain walls are studied. We
concentrate on thin walls between nonequal and nonpositive cosmological constants on each side
of the wall. The assumption of homogeneity, isotropy, and geodesic completeness of the space-
time intrinsic to the wall as described in the comoving coordinate system and the constraint that
the same symmetries hold in hypersurfaces parallel to the wall yield a general Ansatz for the line
element of space-time. We restrict the problem further by demanding that the wall's surface energy
density, cr, is positive and by requiring that the infinitely thin waH represents a thin-wall limit of
a kinklike scalar field configuration. These vacuum domain walls fall in three classes depending
on the value of their o". (1) extreme walls with cr = o,„i are planar, static walls corresponding to
supersymmetric configurations, (2) nonextreme walls with o. = o„„)o,„t correspond to expanding
bubbles with observers on either side of the wall being inside the bubble, and (3) ultraextreme
walls with o. = O.„lt, ( o.,„t represent the bubbles of false vacuum decay. On the sides with
less negative cosmological constant, the extreme, nonextreme, and ultraextreme walls exhibit no,
repulsive, and attractive effective "gravitational forces, " respectively. These "gravitational forces"
are global efFects not caused by local curvature. Since the nonextreme wall encloses observers on both
sides, the supersymmetric system has the lowest gravitational mass accessible to outside observers.
It is conjectured that similar positive mass protection occurs in all physical systems and that no
finite negative mass object can exist inside the universe. We also discuss the global space-time
structure of these singularity-free space-times and point out intriguing analogies with the causal
structure of black holes.

PACS number(s): 04.20.Jb, 98.80.Cq

I. INTRODUCTION

Domain walls are surfaces interpolating between sep-
arate vacua with different vacuum expectation values of
some scalar field(s). Such a domain structure can form
by the Kibble [1,2] mechanism whereby difFerent regions
of a hot universe cool into different isolated minima of
the matter potential. Domain walls [2] can also form
as the boundary of a (true) vacuum bubble created by
the quantum tunneling process of false vacuum decay [3].
Additionally, the universe could be born through a quan-
tum tunneling process from nothing [4—6] into different
domains with walls in between.

The equivalence between mass and energy in relativis-
tic physics implies that kinetic energy in the form of pres-
sure also contributes to the gravitational mass density.
Accordingly, a negative pressure, that is, a positive ten-
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sion, reduces the efFective Tolman mass [7] (i.e. , the grav-
itational mass) of a system. Domain walls are vacuumlike
hypersurfaces where the positive tension equals the mass
density [2], thus ensuring that their energy-momentum
tensor is boost invariant in the directions parallel to the
wall. Taking into account the repulsive gravitational ef-
fect of positive tension [8], a domain wall is by itself a
source of repulsive gravity [2,9], i.e. , a system with neg-
ative effective gravitational mass. However, a bubble of
anti-de Sitter vacuum (AdS4) which has negative energy
density and positive pressure, is a source of attractive
gravity; it has a positive effective gravitational mass. If
such a bubble is embedded in a Minkowski (M4) space-
time, the attractive effect of AdS4, caused by its positive
effective gravitational mass, could be undercompensated
by the domain wall, which has negative effective gravi-
tational mass. Inertial observers exterior to this object
would find that the wall separating the two vacua ac-
celerates toward them. Alternatively, it would a priori
be possible that the effective gravitational mass of the
domain wall could be negative enough to render the to-
tal gravitational mass of the system negative. Then the
result would be a system of total negative gravitational
mass [10—12], and observers on the side with a less neg-
ative cosmological constant would also be repelled from
the wall.

It has been shown that "under very general 088ump-
tions, no static nonsingular solution . . . exists for the
gravitational field of an uniformly planar matter distri
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bution" [13]. However, if the energy density of the adja-
cent vacuum is allowed to be negative, this result can be
avoided. Namely, in this case the positive effective grav-
itational mass density of AdS4 can precisely cancel the
negative effective gravitational mass density of a domain
wall. Hence, there do exist nonsingular solutions of Ein-
stein's field equations for static, planar walls adjacent to
AdS4 [14—16]. Moreover, these solutions are realized as
supersymmetric bosonic field configurations [15]. In Ref.
[17] a classification of the possible supersymmetric walls
has been given, and the global structure of the space-
times induced. by these walls has been explored in Refs.
[18—20]. Supersymmetric walls adjacent to Minkowski
space are of particular interest. The two vacua separated
by these walls are degenerate in the sense that semiclassi-
cal tunneling between them is absolutely suppressed [21].
The exact cancellation [18] of the gravitational field of
the supersymmetric hereafter called extreme domain
wall and the negative vacuum energy of AdS4 makes it
possible for an observer to be arbitrarily close to such an
infinite planar domain wall without feeling any gravita-
tional effects. For this reason the wall can be viewed as a
perfect shield for the gravitational field produced by the
AdS4 vacuum.

As the previous discussion indicates, the effects of an
AdS4 region on the local and global space-time properties
of domain wall systems are significant. It is of interest
to systematically investigate the space-times of domain
walls separating regions of nonpositive cosmological con-
stant in Einstein's theory of gravitation. This study is
motivated in part also from the desire to make a con-
nection of the extreme walls studied in Refs. [15—19] in
the context of N = 1 supergravity to more general non-
supersymmetric configurations. We also bear in mind
that there are many reasons for believing the effective
theory describing low energy modes of the superstring is
four dimensional N = 1 supergravity (see, for example,
Ref. [22] for further discussion). The energy densities of
supersymmetric vacua are strictly nonpositive, and thus
they induce AdS4 or M4 space-times. Upon breaking
supersymmetry, the vacua can have a negative, zero, or
positive cosmological constant.

We present a study of the local and global proper-
ties of the space-times induced by vacuum domain walls
between vacua of arbitrary cosmological constant. We
are primarily concerned with the domain walls between
vacua of nonpositive cosmological constants. These walls
may be classified according to their energy-density [23].
The nonextrerne domain wall configurations are defined
as those with energy density greater than the corre-
sponding extreme wall (cr„„)o,„&), and the ultraex-
treme domain walls have a smaller surface energy den-
sity (ir„ii, ( cr,„i,) [23]. We start with the Ansatz that
the gravitational field inherits the boost symmetry of
the source, and we demand. geodesic completeness of the
space-time intrinsic to the wall as described in the co-
moving coordinate system, but we assume nothing about
the topology of the (2+1)-dimensional space-times par-
allel to the surface of the domain wall. It turns out that
non- and ultraextreme walls are nonstatic spherical bub-
bles. Ultraextreme solutions result in an expanding ul-

traextreme bubble which accelerates toward all timelike
outside observers. This is the tunneling bubble [24] of
false vacuum decay [3,25]. Solutions with energy density
0 = 0„„)o,„q overcompensate the attractive gravity
of the inside by having the energy density larger than
the one of the extreme wall; those are objects with nega-
tive efFective Tolman mass. This does, however, not yield
a negative mass object inside our universe. Instead, in
the case of vacuum domain wall bubbles, gravity warps
space-time so that both sides are on the inside of the
nonextreme bubble. Hence, nature protects itself against
the possibility of objects with negative total gravitational
mass by using topology to put all observers on the inside.
This example leads to the conjecture that in analogy with
cosmic censorship preventing naked singularities, there is
also a cosmic positive mass protection. Note that these
nonextreme walls, which are characterized by energy den-
sities higher than that of the tunneling bubble, are exam-
ples of configurations for which supersymmetry provides
a lower bound for the energy density. Bounds of this type
have also been found in the black hole context [26,27]. On
the other hand, the ultraextreme solutions with energy
density 0 = o„~&, ( o, & correspond to objects of posi-
tive effective mass. Timelike observers on the side with
the largest cosmological constant observers in the false
vacuum will inevitably be hit by the inflating bubble.
As seen by inertial observers in the Minkowski space, the
fact that they are hit by the ultraextreme tunneling bub-
ble can be understood as a purely kinematic effect with
no connection to gravity whatsoever. However, accord-
ing to a Machian school of thought [28] and the general
princip/e of relativity [29], all inertial effects observed in
noninertial frames may be explained as due to the gravi-
tational field of the "rest of the universe. " In the present
model, using the rest frame of the wall, one sees freely
falling particles outside the bubble being accelerated in-
ward, and indeed, from this point of view, the notion of
positive gravitational mass makes sense globally.

The global space-time structure of the walls consid-
ered here exhibit nontrivial causal structures due to the
presence of AdS4 regions and their associated Cauchy
horizons. Cauchy horizons imply that the coordinate
extensions necessary for providing geodesically complete
space-time manifolds are nonunique. Such ambiguities
in the geodesic extensions are reminiscent of those in
the Reissner-Nordstrom and Kerr black hole space-times
[30,31]. These space-times form an infinite lattice [32,33].
The same lattice structure is possible in certain domain
wall systems considered here, and it is even possible to
formally associate the local parameters of the space-times
in the following manner: the mass M and the charge Q
(for the Reissner-Nordstrom black hole) or the angular
momentum a (for the Kerr black hole) are associated
with the energy density, 0, of the wall and the cosmo-
logical constant, A & 0, of the adjacent vacuum, respec-
tively. The nontrivial causal structure in the domain wall
system is obtained without the space-time singularities
of the black holes. The absence of singularities opens
the possibility of studying physics on causally nontriv-
ial space-times, with asymptotically Minkowski regions
in certain cases, without the problems presented by the
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black hole curvature singularities.
The paper is organized as follows. In Sec. II, by work-

ing in the comoving frame of the wall, we deduce the local
properties of space-time close to the wall and the topol-
ogy of the wall itself. Then in Sec. III we And geodesic
extensions of the comoving coordinate patch and discuss
the global properties of the wall space-times. It is here
that the similarities in the global structure of the nonex-
treme domain wall space-times to the global structure of
black hole geometries are pointed out. Section IV con-
tains a discussion of the results. Appendix A presents
the local coordinate transformations between the comov-
ing coordinates derived in the text and the conventional
coordinates of the vacuum AdS4, M4, and de Sitter (dS4)
space-times. In Appendix 8 we review the salient aspects
of AdS4 useful for understanding the local and global
properties of the walls discussed in this paper.

II. LOCAL PROPERTIES OF DOMAIN WALL
SPACE- TIMES

In this section we present the local properties of the
space-time induced by a class of vacuum domain walls in
Einstein gravity. These walls are created from a scalar
field source and separate vacuum space-times of zero,
positive, and negative cosmological constants. We shall
study explicitly only infinitely thin domain walls, and
thus employ Israel's formalism [34,35] of singular hyper-
surfaces. This method is a familiar and well-de6ned ap-
proach to solving Einstein's equations in the limit where
the matter source is approximated as an infinitely thin
surface.

To begin with, we give general arguments in regard
to the form of the space-time metric consistent with the
symmetries of the domain wall background. Then we
present Israel's formalism to determine the matching con-
ditions of the space-time at the wall's world tube. We
classify the solutions and discuss their effective gravita-
tional fields using Tolman's [7] concept of gravitational
mass.

A. Metric ansatz

We solve Einstein's gravitational field equations using
certain symmetry constraints consistent with properties
of a space-time induced by a domain wall source. In gen-
eral, the solutions are time dependent. It is most conve-
nient to describe the metric in the comoving coordinates
of the wall system, i.e. , in the rest frame of the wall. In
this case, the stress energy associated with the wall is
static and depends only on the coordinate z perpendicu-
lar to the wall.

First, we assume that the spatial part of the metric in-
trinsic to the wall and of the two-dimensional spatial sec-
tions "parallel" to the wall are homogeneous and isotropi c
in the comoving frame of the wall. Homogeneity and
isotropy reduce the "parallel" metric to the spatial part
of a (2+1)-dimensional Friedmann-Lemaitre-Robertson-

Walker (FLRW) metric [36]. In the conventional coordi-
nates this metric has the form

(2.1)

where R is independent of the coordinates r and P. The
scalar curvature of this surface is equal to 2k/R2.

There are three possible wall geometries. The erst one
is a planar wall with k = 0. In this case the metric (2.1)
can be transformed to Cartesian coordinates (ds~~)
R (dT + dy ). The second possibility is a spherical wall
with k ) 0. Then the wall is a closed bubble, in which
case both r and P are compact coordinates; i.e. , one may
introduce r = k ~ sin0 which after a rescaling of R
gives the line element (ds~~) = R (de + sin ed/ ). Fi-
nally, the wall could be a Gauss-Bolyai-Lobachevski sur-
face with k ( 0. This negatively curved noncompact sur-
face cannot be embedded in ordinary three-dimensional
Euclidean space, that is, it cannot be pictured as an or-
dinary curved surface [37]. Writing r = (—k) ~ sinhg,
with Io ) 0, and rescaling R brings the k ( 0 line element
to (ds~~) = R2(dg2+ sinh gd$2).

For our next assumption we demand that the two-
dimensional space-time sections orthogonal to the wall
are static as observed in the rest frame of the wall. Hence,
if z denotes a coordinate describing the direction trans-
verse to the wall and if t represents the proper time as
measured by observers sitting on the wall, then gt ——0,
and both gtt and g, depend only on z. By an appropri-
ate choice of z coordinate we can write the orthogonal
part of the metric as~

(dsi) = A(z) (dt —dz ), (2.2)

where A = A(z) and R = R(t, z). The range of z is
z C (—oo, oo), and the range of the other coordinates is
as in a FLRW cosmological model [36].

We shall now employ Einstein's equations to reduce the
form of R(t, z). With the metric (2.3) and the definition

H=— (2.4)

where A' = B,A(z), the nontrivial components of the
Einstein tensor G" = 'R" —2'R g"„are

2R" R" H R' R'+t R& AR AR& + AR + AR»

~z 2R' HR
t AR AR&

~s k R' HR' 2R R~z R2 AR& AR + AR+ AR»

(2.5)

AR AR 2A ~

Throughout the paper we use geometric units of time, i.e.,c=1.

where A(z) ) 0. With ds —= (ds~) —(ds~~) we get

ds' = A (dt' —dz') —R' (1 —kr') 'dr' + r'dP'

(2.3)
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where R = OtR(t).
Since we are considering matter configurations which

are static in the (t, z) plane, there is no energy fiow in
the z direction in the comoving frame of this coordinate
system. Therefore, the T ~ component of the energy-
momentum tensor vanishes. Then the (z, t) component
of Einstein's field equations

(2.6)

imply G, = 0 or

2B' = JIB. (2 7)

There are two possible solutions to Eq. (2.7). In the first
case, when the metric is static, R = 0, and Eq. (2.7) is
trivially satisfied. Let us first focus on the other case
when the metric is nonstatic. If B is time dependent,
integration with respect to time yields

only first-order derivatives of the metric coefficients (see
Sec. IIB 1 below), whereas Ttt = T" involves a second-
order difI'erential equation. Also in the thin wall case, the
gravitational field on either side could have a Kasner-type
behavior compensating each other in such a way that the
interpolating singular surface still is boost invariant [38].
We shall, however, assume that the gravitational field
inherits the symmetry of the source, and that the direc-
tions parallel to the wall are boost invariant in the strong
sense. The line element we shall examine is thus given
by

ds = A(z)ddt —dz —S (t)[(1 —kr ) 'dr

+r dq ]). (2.13)
In summary, the assumptions which imply the form of
the metric (2.13) are the following:

1. The spatial part of the metric intrinsic to the wall
is homogeneous and isotropi c.

2R' = HR+ M(z), (2.8)
2. The space-time section orthogonal to the wall is

static.

where M(z) is an arbitrary function of z. A static mat-
ter source is defined by a static stress-energy tensor T",
which, through Einstein s equations, implies a static Ein-
stein tensor. A static G"„ implies

B
B

Bfl
+ g(z), (2.9)

where g(z) is an arbitrary function of z. From the re-
quirement of time independence of G ~

—G one finds
that

3. The directions parallel to the wall are boost invari-
ant in the strong sense.

To solve the Einstein equations for the two metric func-
tions A(z) and S(t), we follow the approach of Israel [34]
which approximates the wall as infinitely thin in the z di-
rection. Thick walls will have the same S(t) as found in
the thin wall approximation and will asymptotically ap-
proach the thin wall result for A(z). For detailed discus-
sions of this formalism, with emphasis on domain walls,
see Refs. [9,39—41) and Ref. [42] for an application to a
static plane-symmetric geometry.

B" HB'
A B B B A

+ —— = —[f(z) —g(z)] (2.10)
B. Thin wall approximation

where f (z) is another arbitrary function of z. Using Eq.
(2.9) and multiplying Eq. (2.10) by 2RA we get

—2R" + H R' = f (z) R (2.11)

Adding the z derivative of Eq. (2.8) one finds

M'(z) = [H'+ f(z)]R. (2.12)

The Einstein constant m is defined by K, = 8vrG, where G is
Newton's constant.

This equation holds for any t only if M'(z) = 0 and
f(z) = H'. Hence, 2R—' = HR + Mo where Mo is a
constant.

A thick wall solution can be pictured as a stack of in-
finitely thin walls. If we require that each of the thin
walls are boost invariant along surfaces of constant z,
i.e. , each surface of constant z has an exterior curvature
which is boost invariant, it follows that Mo ——0. In the
static case (R = 0), the same symmetry constraint im-
plies B oc A. In general, this symmetry is stronger than
just requiring a boost-invariant T" because it involves

We assume that the properties of the gravitational field
outside a domain wall can be deduced without knowledge
of the internal structure of the wall. For this reason we
employ the thin wall approximation. In this approxi-
mation, the wall is treated as infinitely thin, and con-
sequently its energy-momentum tensor has a b-function
singularity at the wall. Einstein's field equations imply
that the Einstein tensor also must have a b-function sin-
gularity here. Because Einstein's tensor is of second order
in derivatives of the metric, such a singular hypersurface
may be modeled by a metric tensor which has a disconti-
nuity in its first-order derivatives in the direction trans-
verse to the singular surface. This idea is the basis of
Israel's formalism [34] for singular layers in general rel-
ativity. Furthermore, we shall assume that the wall is a
domain mal'l, that is, the wall itself has a vacuumlike sur-
face energy-momentum tensor. By this we mean a sur-

As shown in Sec. IIB2, boost invariance also puts restric-
tions on the functional form of the time dependence, S(t)

For the familiar kink matter sources, which we are consid-
ering, the solutions typically approach the thin wall results
exponentially fast over its characteristic length scale.
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face energy-momentum tensor which is proportional to
the metric intrinsic to the world tube of the wall. Physi-
cally, one notes that there is no way to measure velocity
relative to a vacuum and thus a vacuum must have a
boost invariant energy-momentum tensor. This leads to
the specific form of the surface energy-momentum tensor.

Israel's matching conditions

Consider a thin wall placed at a constant z-coordinate
position in a space-time described by the metric (2.13).
According to Israel's formalism [34], the surface energy-
momentum tensor of the wall is described by the Lanczos
tensor, 8'-, which is given by

(2.i4)

where K'. is the extrinsic curvature. The square brack-
ets [ ] signify the discontinuity at the wall placed at
z = zp, i.e. , [0] = 02 —Ai, where 02 and Oi are the
E M 0 limit of O(zp + e) and Q(zp —E), respectively. The
coordinates x* 6 (t, r, P) describes the space-time paral-
lel to the wall. The extrinsic curvature is given by the
covariant derivative of the spacelike unit normal n" of
the wall's hyper-space-time:

(2.i5)

2. Vacuum solutions

1 k HI 1H2+ S

z A S2 4 (2.20)

G" G~e A 4H H +s

To describe the gravitational field exterior to the mall,
we need the solution to Einstein's field equations. Here
me consider thin domain walls interpolating between tmo
maximally symmetric vacua of zero, positive, or nega-
tive cosmological constant. Maximally symmetric vac-
uum solutions to Einstein's theory are well known [36];
nevertheless, we rederive them below using the comoving
coordinate system of the wall configurations. The reason
to employ the comoving frame is twofold: the first one is
technical; Israel's matching conditions across the wall re-
gion are easily satisfied in this frame. The second reason
is that in this frame the space-time exhibits cosmological
horizons with properties closely related to the ones of the
corresponding black holes. In Appendix A we present the
local coordinate relations between the metric in the rest
frame of the mall and the more conventional coordinates
of maximally symmetric space-times.

Using the metric (2.13) and the definition (2.4), the
Einstein tensor takes the form

where n~ is specified by the defining relations

n~n = —1 and n~u = 0.P P (2.i6)

Here u" is the four velocity of an observer following the
wall. In the present case, u" = b ~ when represented
in the coordinate system of the metric (2.13). Since the
wall is at a constant z coordinate, the extrinsic curva-
ture takes a simple form if we use a coordinate system in
which the spatial coordinate transverse to the wall, z, is
normalized so that g;- = —1, i.e. , dz = A ~ dz. In these
coordinates

(2.17)

v8', . = h*,[(II];p— (2.18)

corresponding to a vacuumlike equation of state. In other
words, the surface energy density o given by

where ( = +1 is a sign factor coming from the inherent
sign ambiguity of the unit normal nl". ( will be deter-
mined by insisting that the wall corresponds to the thin
limit of a kinklike source.

We choose to scale the coordinates such that A(zp) = 1
where zp is the position of the wall. Then, without loss
of generality we may perform a global translation of the
z coordinate so as to bring the origin of the z axis to the
position of the wall. In this may we find

With a static T", and hence static G", one finds
~ ~

S/S = qp where qp is a real constant. Then because
of boost invariance in the r and P directions, G ~

= G"„,
and consequently

S S A:

g2 g2 (2.21)

With this result, G, = A implies

2 A—H =qp ——A,
4 3

(2.22)

S = sinPt, (2.23)

where consistency demands AA(z) ( 3qp. Note that we
shall sometimes parametrize the cosmological constant
by A = +3a . Equations (2.21) and (2.22) are the fun-
damental equations yielding the line elements which we
study. Note that the A = 1 solution of Eq. (2.22) is a
valid solution of the other components of the Einstein
equations only for the case qp = A = 0.

The geometry of hypersurfaces of constant z is de-
termined by solutions to Eq. (2.21). Without loss of
generality we normalize the curvature constant to k E
(—P, O, P ). The solutions of Eq. (2.21) are classified
according to the sign of qp. Thus up to a global transla-
tion of the time coordinate,

va = ~S', = —[(H],:p,
is equal to the wall's tension, w = 8"„=8&.

(2.ig)
k = —p2,
k=0,

' (2.24)



2618 MIRJAM CVETIC, STEPHEN GRIFFIES, AND HARALD H. SOLENG

'
sinhPt,

S+= ( e~',
cosh Pt,

k = —p2,
k=0,
Ic=p2,

(2.25)

where the subscripts on S refer to the sign of qp. With
these solutions for S(t), the sections of constant z are
(2+1)-dimensional spaces of maximal symmetry, i.e. ,

these hyperspaces are AdS3, M3, and dS3 space-times, re-
spectively. Note that the line element (2.13) is quadratic
in S(t). Hence, the overall sign of S is arbitrary. In ad-
dition, since a change in the sign of P is equivalent to
time reversal in all the solutions for S(t), choosing P ) 0
implies no loss of generality.

The solutions for A(z) from Eqs. (2.4) and (2.22) are
the following:

P [ncos(Pz + tl)]

(nz —1)

'
P2[o. sinh(Pz —Pz')]
e+2Pz

)

P [o.cosh(Pz —Pz")]

A = —3a & —3P,
—30.' 2

0,

A = —3o.2,

A=0,
A = 3o2 & 3P',

(2.26)

(2.27)

(2.28)

8~ = +arccos(p/n),

Pz~ ———ln 1+. 6 —(o +P )2 O.' 0!

Pz~ ———ln —1+ ~ —(P —n )
1 2P 2P
2

(2.29)

(2.30)

(2.31)

where the subscripts on A refer to the sign of qp. With-
out loss of generality we have moved the origin of the z
axis to the position of the wall (zo ——0). The three in-
tegration constants 6, z', and z" are determined by the
requirement that A(0) = 1. This normalization yields

must be extended. Likewise, choosing Pz' for z & 0 (the
AdS4 side) will result in a timelike coordinate singularity
at z = z*, where z* = z' . This coordinate singularity
is again the boundary of the space-time, only now it is
timelike rather than null as in the M4 case. The de Sit-
ter solution is always without coordinate singularities.
Geodesic extensions of the domain wall space-times will
be further discussed in Sec. III.

8. Topology of the walls

The constants pz' and pz" satisfy e ~~'++' —l

e2p(z++z ) ] and e2pz ) ] ) e2pz+ and e2pz'
t

& 1 & e ~'+ where in the last case, equality is obtained
when P = 0. As one can see from Eq. (2.31), there is no
extreme limit (P ~ 0) in the de Sitter case.

Recall that the solutions (2.26)—(2.28) are the form
for the metric function A(z) some distance away from
a wall centered at z = 0. In the A solution (2.26),
z is an angular coordinate, but as seen from Eq. (2.23),
the metric has singularities for certain values of comoving
time t and because of this, this solution will not be further
discussed here.

Points where A(z) is singular represent affine bound-
aries of the space-time. They are an infinite proper dis-
tance away from every other point within the particular
interval of z considered. The first of the Ap solutions
(2.27) is the line element for AdS4 written in the so-
called horospherical coordinate system. Discussions of
these coordinates can be found in Refs. [17,19,20]. For
the first two qo ——P solutions, one is able to consider
both singular or nonsingular functions A. (z) depending
on the choice of +P or Pz+ for the respective solutions
A = 0 or A = —3o. . For example, if we choose A = e+ ~'
for z ) 0 (the M4 side of a wall), there will be a coor-
dinate singularity at z = oo corresponding to the null
boundary of the space-time. Choosing the decaying ex-
ponential will cause z = oo to be a finite proper distance
away from any other point; thus the coordinate patch

On account of boost invariance in the directions par-
allel to the wall, the spatial curvature of constant-z sec-
tions is not unambiguously defined. Since the wall is
homogeneous and boost invariant, there is no preferred
frame in the (2+1)-dimensional space-time of the wall.
Observers can measure the curvature of space by send-
ing light signals to each other and measuring angles of
triangles, but the results will depend on the relative mo-
tion of these observers. For instance, the two Sp solu-
tions (2.24) the Milne-type solution with S = Pt and
k = —P2 and the inertial Minkowski solution with S = 1
and k = 0 are related by a coordinate transformation
[43] not involving the transverse coordinate z and there-
fore describe locally equivalent space-times. Similarly,
the constant-z sections of the three S+ solutions (2.25) all
represent (2+1)-dimensional de Sitter space-time (dSs).
The topology of dSs is K(time) x S (space). Embed-
ded. in a Hat higher-dimensional Minkowski space-time,
dSs represents a hyperboloid [19],and the three possible
spatial curvatures correspond to three different choices
of constant time slices of this hyperboloid [30,43]. Just
as in the four-dimensional case [30,43], only the positive
curvature solution gives a complete covering of dS3.

The same holds in (3+1) dimensions where a special set
of observers see Qat Minkowski space-time as the expanding
Milne universe [43] with hyperbolic spatial sections.
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Therefore, of the three S+ solutions in Eq. (2.25), only
the one corresponding to a compact spherical mall with
radius P A(z) ~ S(t) completely covers the constant-z
space-time. The So solution is the only wall which rep-
resents a noncompact p/anar (k = 0) wall. In summary,
homogeneity, isotropy, and geodesic completeness of the
space-time intrinsic to the wall as described in comoving
coordinates impose constraints on the topology of the do-
main wall; it either corresponds to a static, planar wall
or to a time dependent bubble:

Sp —1 and A,
' = 0 or S+ ——coshPt and k ) 0.

(2.32)

Note again that the solutions S(t) are valid in the thick
wall case because its functional form is determined by the
requirement of boost invariance alone and thus indepen-
dent of A(z). The solutions for A(z) in Eqs. (2.27) and
(2.28) approxiinate the local form of the metric some dis-
tance away from the wall. To describe the space-time on
both sides of the wall centered at z = 0, we fix the same
value for the parameter qo and the curvature k on both
sides and choose any of the corresponding solutions for
A(z). Consequently, there are two distinct wall configu-
rations described by the line element (2.13): one whose
spatial topology parallel to the wall surface is R. and
another whose topology is S .

We would like to elaborate on the closed bubble so-
lution [k = P, S(t) = cosh Pt]. First, we trans-
form to canonical S coordinates in Eq. (2.13). Writing
Pr = sin&, brings the metric to

ds2 = A(z) dt —dz —P cosh Pt (d8 + sin Odg )

(2.33)

For these solutions, both sides of the wall have a compact
spherical line element in the spatial directions parallel to
the wall. Thus, observers on each side of the wall observe
the bubble wall collapsing from an infinite radius at t =
—oo to a finite radius at t = 0 and then reexpanding to
an infinite radius at t = oo.

This may sound strange since the wall is located at a
fixed z coordinate. However, the proper surface area of
the bubble is given by 4rrB& —4rrP A(z)S (t), which
means that the radius as measured by this formula is time
dependent. Geometrically, I4 is the radius of curvature
of the wall; physically, it is a measure of the proper size
of the bubble. Hence, the bounce description is not a co-
ordinate artifact. Indeed, observers sitting on the bubble
and measuring its surface area with standard measur-
ing rods extending around the bubble, versus time as
measured by standard clocks, will observe the bounce di-
rectly.

Notice also that for the bubble solution, the direction
orthogonal to the wall is described by the z coordinate,
which has the range (—oo, oo). This is twice the range of
a radial coordinate in Euclidean space. However, it is Rb
rather than z which plays the role of the radius. More-
over, when looking at the z dependence of Rb at constant
t, Rb can either decrease on both sides of the bubble or
increase on one side and decrease on the other. In the

former case, using measurements of angular distance, ob-
servers on both sides of the wall can rightfully say that
they are on the inside of the bubble. In this picture
z 6 (—oo, 0] and z E [0, oo) map onto twice Bb E [0, Rp],
where Ap ——P S(t)A ~ (0), i.e. , the infinite range of
z maps onto two ranges for the angular distance corre-
sponding to two spheres (the two insides of the bubble).
In. the latter case, z C (—oo, 0] and z C [0, oo) map onto
Rg 6 [0, Bp] and B~ E [Bp, oo), corresponding to the in
side and the outside of a single bubble. As we shall see
later on, there is no physical bubble solution (no solu-
tion with surface energy o ) 0) corresponding to a space
where both observers are on the outside of the bubble.
We conclude that a spherical vacuum domain wall has at
least one inside.

For the qp
——0 and qp

——P wall solutions, the constant
z sections correspond to M3 and dS3, respectively. The
novel causal structure for the walls, which we shall discuss
in Sec. III, involves only the (1+1)-dimensional sections
orthogonal to the walls. This structure is deduced from
an analysis of the (t, z) components of the line elements.

Surface energy density of the domain rpalls

By matching vacuum solutions with the same k and qo
and using Eqs. (2.19) and (2.22), we find that the inter-
polating domain walls have the following surface energy
density, o, and tension, w = o:

( Al'' ( Al''
2(lhi

I vp —
I

—2(2h2
I

gp—3) 4 3J
(2.34)

where the indices 1 and 2 stand for values at z ( 0 and
z ) 0, respectively.

In the thin wall formalism, there is an ambiguity in the
sign of the unit normal n" defined in Eq. (2.16). Also
in going from Eq. (2.22) to Eq. (2.34), we pick up an-
other sign ambiguity because Eq. (2.22) is quadratic in
H. These sign ambiguities are taken care of by the sign
factors h, = +1 and (; = +1 with i E (1,2). The first
sign factor 6; is determined as follows. If A, is an in-
creasing function of z, then 6, = 1, and conversely if
A; is decreasing then h,, = —1. Physically relevant so-
lutions to the matching conditions involve those with a
positive energy density o as well as sources correspond-
ing to the infinitely thin wall limit of a kinklike source.
Associating the direction of the wall's outward normal
with a chosen direction of the matter source gradient im-
plies (i ——(2 ——1 for a kink-type source. Sources with
(i ———(2 correspond to spike-type sources which we do
not consider. We will choose to orient the z coordinate
so that the vacuum of lowest energy (most negative A)
will be placed on the z ( 0 side.

C. Classi6cation of the domain wall solutions

The previous solutions can be classified according to
the three values of the parameter qo. The metrics written
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here in the comoving frame are locally related to more
standard coordinates of M4, AdS4, and dS4, depending
on the cosmological constant A = 0, A ( 0, or A ) 0,
respectively. We exhibit these relations in Appendix A.

In the case qo
———P, the line element intrinsic to the

wall has periodic singularities in comoving time. There-
fore, we do not consider it further here. The possibilities
qo ——0 and P are classified in the following two subsec-
tions.

Extreme uralls (qs ——0)

The qo
——0 solutions exist for AdS4 (A = —3cr ) and

for M4 (A = 0), the latter being the A ~ 0 limit of the
former. If the vacua between which the domain wall in-
terpolates are supersymmetric, then these walls are real-
ized as supersymmetric bosonic configurations in N = 1
supergravity coupled to chiral matter superfields [15]. In
this case, the walls are called extreme domain walls [18]
in analogy with the extreme Reissner-Nordstrom black
hole, which is also realized as a supersymmetric bosonic
configuration [44].

The line element (2.13) for the qo ——0 case has two
physically distinct solutions: S = 1 and the tmo solu-
tions for A(z) of Eq. (2.27). The solutions are written
in canonical M4 Cartesian coordinates and horospherical
AdS4 coordinates, respectively. The horospherical coor-
dinates are natural for describing AdS4 when it is juxta-
posed with a fI.at M4 region, as it is in the k = 0 extreme
wail [18—20].

The extreme walls [23] have been classified into three
types according to the nature of their space-times [17].
Type I is the planar wall interpolating between M4 and
AdS4. Type II walls interpolate between two AdS4 re-
gions with the metric conformal factor A(z) becoming
(n;z) z on the respective sides (i 6 (1,2)) of the wall.
Type III walls interpolate between two AdS4 spaces with
difFerent cosmological constants in such a way that the
conformal factor increases without bound for z moving
away from the wall on one side. The singularity in A(z)
represents the timelike boundary of the space-time, i.e. ,
afIine infinity. In the underlying supergravity theory,
Type I, II, and III walls can also be distinguished by the
behavior of the superpotential as the wall interpolates
between the two supersymmetric vacua [17].

The energy density of the extreme walls is

the four physically distinct solutions (2.28) for A(z).
A nonextreme wall has an energy density higher than

the corresponding extreme wall. Explicitly, the energy
density is

Kcr„„=2 (+ni+ P ) + 2 (+n2+ P ) . (2 36)

Here A, = ~3o.;, so that a minus sign in front of o. in
the above expression corresponds to a positive A term.
In the de Sitter case o.; & P [39].

The "planar" refIection symmetric wall discussed by
Vilenkin [45] and Ipser and Sikivie [9] with Ai ——A2 ——0
is a special nonextreme wall. These walls have an energy
density ro = 4P. Thick wall generalizations have been
studied in Refs. [46,47]. Note that these walls are spher-
ically symmetric bubbles [19] rather than planar walls.
For all the nonextreme walls, the radius of curvature Bg
of concentric shells at constant time decreases away from
the bubble on both sides. Hence, in this sense, the nonex-
treme bubbles have two insides.

An ultraextreme wall has an energy density lower than
the corresponding extreme wall. Its energy density is

~~„„,.= 2 (+n', + P')" —2 (+n', + P')". (2.37)

The signs in front of o. correspond to A, = ~3n; . It
follows that if A, = 3n, , then n, & P [39].

Ultraextreme AdS4 —AdS4 and AdS4 —M4 bubbles Qf the
false vacuum decay are more like ordinary bubbles than
nonextreme bubbles; their radii increase away from the
wall on one side and decrease on the other. Thus, they
have one inside and one outside, the outside being the
higher energy vacuum. M4 —dS4 and dS4 —dS4 walls were
addressed in Refs. [39—41].

In the static or extreme limit P i 0, the nonex-
treme and ultraextreme walls of AdS4 —AdS4 walls re-
duce to Type II and Type III extreme walls, respectively.
The non- and ultraextreme bubbles were discussed by
Berezin, Kuzmin, and Tkachev [24] with particular em-
phasis on the ultraextreme bubbles corresponding to false
vacuum decay.

D. Fiducial observers and Tolman's mass for
extreme walls of Type I and Type II

Eidueial abserver s

Kcrext = 2(ct'i + cxz) ) (2.35)

2. Non- and ultraeztreme waits (qs ——P )

The qo ——P solutions exist for closed walls for all
values of the cosmological constant. Specifically, me have

where A, = —3o.; with the plus sign for Type II walls
and the minus sign for Type III walls. It is understood
that o, i ) n~ in the latter case. Type I corresponds
to o.2 ——0. By using the thin wall approximation, a
refIection symmetric special case of Type II walls was
independently found by Linet [14].

Inertial observers on the M4 side of the extreme AdS4-
M4 wall experiences no gravitational efFects from the
infinite wall. A particular way to understand this result
is to investigate the proper acceleration, a~, necessary
to be a fiducial observer (an observer at a fixed spatial

Strictly speaking the "gravitational force" is exponentially
close to zero (exactly zero in the thin mall approximation),
which is consistent with the appellation "Minkowski side. "

Hats denote tensor components relative to a (pseudo)-
orthonormal tetrad frame, i.e., a physical frame.
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position) in the space-time described by the conformally
flat metric A(z)(dt —dx —dy —dz ). This acceleration
is given by [17]

clocks [49]

tta (2.39)

(2.38)

and is directed toward the wall region thus exhibiting
"repulsive gravity. " Clearly for A(z) = 1 the acceleration
is zero, and no gravitational effects are felt.

On the AdS4 side, A(z) = (nz —1), which yields
a constant proper acceleration of magnitude o. for Bdu-
cial observers. Observe that this acceleration is half the
surface mass density of an AdS4 —M4 wall. This fact will
prove important in the following formulation of the Tol-
man mass per area for the domain wall system.

2. Tolman's mass per area

A useful way to understand the equilibrium between
the extremal wall and the adjacent space-times is to com-
pute Tolman's effective gravitational mass for the sys-
tem. In spaces of high symmetry it is possible to rewrite
Einstein s Beld equations as an integral which can be in-
terpreted as an expression for an efFective gravitational
mass. By computing this mass one can understand the
effective "gravitational forces" and their sources.

For example, in pure AdS4, the effective gravitational
mass per volume is positive, thus indicating the attractive
nature of the gravitational Beld produced by the negative
energy vacuum. As discussed in Appendix B, the motion
of test particles is oscillatory in pure AdS4 refI.ecting the
fact that every point in the space-time attracts the parti-
cles with its positive effective mass density. The converse
holds for pure dS4, which is a familiar result from inHa-
tionary cosmology where the repulsive nature of a posi-
tive energy vacuum drives the universe into exponential
expansion.

In the domain wall system, the relevant object is the
gravitational mass per area. In particular, the zero Tol-
man's mass of the extreme AdS4 —M4 domain wall enables
one to understand why it is possible to be on the M4 side
and near the infinite wall, which possesses a nonzero mass
density, and yet feel no gravitational effects.

Tolman's formula for the gravitational mass was orig-
inally derived for a static spherically symmetric metric
[7]. We generalize this result to the case of the static pla-
nar symmetry of Types I and II extremal walls. In the
derivation of Tolman's mass formula one focuses on the
generalized surface gravity, s that is, the gravitational ac-
celeration as measured with standard rods and coordinate

]

Since we are seeking a "Newtonian" concept of gravita-
tional mass, it is natural to use coordinate time instead
of the local proper time because the latter time is subject
to time-dilation effects, which we eliminate by the factor
of ggqt. Note that only in the case where this coordi-
nate time becomes the proper time of the observers (e.g. ,
at infinity) is one guaranteed a direct physical interpreta-
tion of this mass. In the Schwarzschild case, for instance,
the Tolman mass obtained by integrating from the origin
to the surface of a finite, static source, is identical to the
M parameter in the Schwarzschild metric describing the
vacuum exterior to the source. For a metric as given in
Eq. (2.13), with S(t) = 1, the generalized surface gravity
is

(2.40)

In a spherically symmetric four-dimensional space-time,
one relates k" to the Tolman mass by defining a mass
M in such a way that the Newtonian force law is re-
produced: GM = —r k", and in the three-dimensional
case GsMs = rk, where G—s is the (2+1)-dimensional
Newton's constant [50]. In the plane-symmetric four-
dimensional case, considered here, we deal with an es-
sentially two-dimensional problem, and the appropriate
Newtonian force law implies xE = —2k' where K is the
gravitational mass per area of the plane. The factor of 2
is included because the gravitational acceleration is half
the mass per area in the planar symmetric case (in the
reflection symmetric case [45,51] one finds that the accel-
eration on both sides is a quarter of the mass density).
In the same spirit as the compact spherically symmetric
case, Eq. (2.40) leads to

rZ(z) = H(z). (2.41)

For this equation to make sense in the wall case we
rewrite the right-hand side in terms of an integral. Start-
ing from the Einstein tensor (2.20) one finds (in the static
case qo ——0)

nflA
(2.42)

Using g—gl l = A2, ggl2l = A, G" = vT"„, and Eq.
(2.42), we can rewrite the right-hand side of Eq. (2.41)
as the following integral expression:

~ J Q gl4ldz' (T', —T; ——T"„—Tss) 1'dxdy
~Z(z) = H(z) =

ggl2l(z) I d2:dy
(2 43)

ln black hole theory [48] the term "surface gravity" means
the acceleration at the horizon surface. By the "generalized
surface gravity" we mean the acceleration of gravity at any
surface.

where we used A'( —oo) = 0, as is the case for both the
asymptotically M4 and AdS4 sides of Types I and II ex-
tremal walls. The numerator on the right-hand side of
Eq. (2.43) is recognized as the Tolman mass of a static
space-time [7]. This mass is nonlocal, which is consistent
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with it giving a Newtonian perspective to a static space-
time. Basically, the Tolman mass formula expresses the
fact that mass and energy are equivalent quantities in rel-
ativistic physics. On account of this, energy in the form
of pressure contributes to the gravitational Geld along
with the mass density. In this vein, one can define a
gravitational mass density by pg = p + 3p for a perfect
Quid in 3 + 1 dimensions. In the limit where we inte-
grate &om z = —oo to z = oo, we get Z(oo) = 0. This
means that the total gravitational mass of Types I and
II extreme space-times is zero. It should be noted that
Type III space-time is causally identical to pure AdS4
(see Sec. III). Therefore, the efFective mass per volume
of this system is the relevant object; the effective mass
per area, as with pure AdS4, is inGnite.

8. Tolman, 's mass Jrer area of a thin extreme eall

In the thin-wall approximation we can distinguish con-
tributions to the Tolman mass per area due to the wall
itself and due to the vacuum energy of the adjacent space-
time. In this case, a domain wall has an effective gravi-
tational mass per area, Z ~~

——S'~ —S"„—S &, given by
~~

= cr —2w. Since the tension 7 is equal to the energy
density o for a vacuum domain wall [see Eqs. (2.18) and
(2.19)], we find Z ii = —cr ( 0. By use of Eq. (2.35) one
6.nds that Ko. = 2o. , which yields

KZ ~~]i = —20!. (2.44)

This negative gravitationa1 mass per area for the wall,
with its repulsive gravity, must be compensated by a pos-
itive gravitational surface mass density from the AdS4
space-time on the AdS4 side of the wall in order for there
to be no force on the M4 side. This is precisely the case
as we now show. Again, taking into account the effect
of vacuum pressure, p„= —p„, the gravitational mass
density of AdS4 is

KPg
——A —3A = 6O. . (2.45)

= lim
z-+0

= 20.'.
(nz —1)

(2.46)

Hence, as seen from the M4 side of the domain wall (the
z ) 0 side), there are two gravitational surface mass
densities on the z & 0 side. First, there is a negative
mass per area coming from the domain wall: KE
—2n. Second, there is a positive integrated mass per
area coming from AdS4 space itself: KEATS ——2o. , which
exactly cancels that of the domain wall.

The analysis used for the extreme AdS4 —M4 wall can
also be applied to the extreme type II AdS4 —AdS4 wall.
When one side is M4, the Killing time, t, corresponds to
the proper time of an observer infinitely far away from

Integrating out the z direction from z = —oo to the po-
sition of the wall at z = 0 yields the following mass per
area for the AdS4 side of the wall:

I' (6n') Q—gt4l dz I dxdy
KEATS = llm

o l gg(2ld~dy

the wall on the Minkowski side. In the Type II case, one
may use an observer sitting in the center of the wall. Here
too, there is a frame where all the connection coefFicients
vanish, the metric is Minkowskian, and where the proper
time of the observer is equal to the Killing time. Thus,
in the thin-mall approximation, one finds the effective
mass per area of the two AdS4 sides to be 2(ni + n2).
This positive effective mass is exactly canceled by the
negative effective mass of the domain wall separating the
two regions of AdS4. Likewise, the general expression
Eq. (2.43) yields a zero Tolman mass per area for the
space-time.

Note that in the above calculations we have integrated
along a constant time slice —oo & z & oo. As we shall
see when discussing the global space-time induced from
the extreme domain walls in Sec. III, there is a past and.
future Cauchy horizon for data placed on such a slice.
The above calculation implicitly assumes no contribution
to the effective lnass arising from the past of the past
Cauchy horizon. This assumption is consistent with the
extensions of the space-time beyond the Cauchy horizon
considered in Sec. III. Indeed, it is the only assumption
consistent with there being a global balance of gravita-
tional "forces."

III. GLOBAL PROPERTIES OF DOMAIN WALL
SPACE- TIMES

The line elements found in the previous section are so-
lutions to Einstein's equations under the chosen assump-
tions, but the global structure of the space-times they de-
scribe is not prescribed since the field equations are local.
In this section we present geodesically complete space-
times induced from the domain walls. In particular, we
give the conformal diagrams and the corresponding coor-
dinate atlases. As we shall see, the resulting geodesically
complete space-times exhibit nontrivial causal structure.
This structure is achieved without space-time singular-
ities. The most symmetric extensions possess a lattice
structure similar to those of the extreme and nonextreme
Reissner-Nordstrom and Kerr black holes.

We begin this section with a discussion of the global
space-time for the three extreme walls. Then, we present
extensions for the non- and ultraextreme wall space-
times. Global space-times for the non- and ultraextreme
walls were described in Ref. [23] for the case with M4 on
one side and AdS4 on the other and in Ref. [19] for the
M4 —M4 case. Here we also present the walls with AdS4
on both sides; i.e. , the non- and ultraextreme generaliza-
tions of Type II and Type III walls.

As indicated earlier, the parameter P in the
parametrization of the metric represents the deviation

We do not discuss the global space-times of the walls with
dS4 on at least one side. Such walls can arise from quantum
tunneling when Ai g A2 and have been discussed in Refs.
[24,39—41]. The fine-tuned Ai ——A2 ) 0 will not be discussed
here either.
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of the Geld configuration from the corresponding super-
symmetric (extreme) one. In addition, the spatial part
of the metric internal to the wall (k = P2) is geodesically
complete. The curvature scalar of this part of the space-
time is 2P A(z) S(t) . Therefore, only in the extreme
P—:0 case do we have a noncompact Ji/anar configu-
ration. For P g 0, the walls are compact bubbles [19].
The (2+1)-dimensional space-time parallel to the wall is
the (2+1)-dimensional de Sitter space (dSs). The causal
structure of dS3 is similar to the well-known dS4, which
is discussed in Ref. [30]. In the following we therefore
focus on the novel aspects of the direction transverse to
the wall, that is, we consider geodesic extensions in the
(t, z) directions.

Understanding of the space-times induced by these
configurations is facilitated by examining the causal
structure of pure AdS4. For this purpose, the salient
features of AdS4 are reviewed in Appendix B.

A. Space-times of the extreme domain walls

There are three types of extreme domain walls realized
[15,17] in four-dimensional (K = 1) supergravity theory.
All these walls have P = 0. Thus, they are field theo-
retic realizations of the planar k = qp = 0 walls. The
space-time metric induced by these walls is conformally
Hat with conformal factor A(z) becoming unity on the
M4 side of the Type I wall and falling of as (nz) 2 on
the AdS4 side, where A = —3o. . The Type II conformal
factor falls off as (zni 2) on the respective sides. For
the Type III wall, A(z) has an irremovable coordinate
singularity at a finite value of z representing the afIine
boundary of the space-time. In this section we present
geodesically complete extensions of the space-times for
Types I, II, and III extreme domain walls. The global
space-times of the Type I wall have been considered pre-
viously in Ref. [18] and the Type II wall in Ref. [19].

For each of the walls, we must extend across a Cauchy
horizon on the AdS4 side [18,19]. The Cauchy horizons
occur on the nulls at ~z~ = oo where A(z) = 0, i.e. , where
the line element degenerates. Although these nulls are
an infinite proper distance away, the geodesic distance is
finite. This type of geometry is familiar from the extreme
black hole space-times [30—33]. The horospherical coor-
dinates must be extended across the Cauchy horizons on
these AdS4 sides. As shown in Appendix 8, the need to
extend across a Cauchy horizon also arises in pure AdS4.

Cauchy horizons represent the boundary of causal evo-
lution; therefore, one has the possibility of making identi-
fications across the Cauchy horizons which can introduce
closed timelike curves (CTC's). The possibility of CTC's
is inherited from the AdS4 portion of the space-time.
Identifications are especially intriguing for type I walls, as
CTC's could lead to a supersymmetric time machine [52]
for travelers leaving M4 passing across the wall and then
reemerging into the M4 region. Due to the underlying su-
persymmetry, the quantum energy-momentum infinities
[53—56] which plague nonsupersymmetric time machines
are avoided [18,53,57].

There are three possible extensions across the null

Cauchy horizons:

1. Move onto a new diamond patch with the scalar
field permanently settled into its vacuum, i.e. , be-
yond the Cauchy horizon there is pure AdS4.

2. In the case of the Type II wall, shift the old di-
amond along the null such that the new diamond
is oriented just as the old. This extension yields a
new wall as well as a jump in the cosmological con-
stant at the Cauchy horizon for non-Z2 symmetric
walls.

3. Refiect the old diamond onto the new diamond
across the Cauchy horizon. This extension leads
to a new wall as well as a smooth matching of the
cosmological constant at the horizon.

In the following we consider geodesic extensions of the
third kind. One reason for doing so is that it yields the
most interesting causal structure for the resulting space-
times. It is for the third approach that the causal struc-
ture of Types I and II space-times exhibit a symmetric
lattice structure similar to those first realized by the ex-
tensions of Carter for the Kerr and Reissner-Nordstrom
black holes [32,33]. The extension for the Type I wall re-
alizes the identical causal structure as the extreme Kerr
black hole along its symmetry axis [30—32]. Finally, it
is through the infi. nite lattice for Types I and II space-
times that one eliminates the time-like boundary of pure
CAdS4 (the covering space of AdS4 —see Fig. 10 in Ap-
pendix 8) in exchange for a countably infinite number,
8p, of isolated points which are an infinite affine distance
away from interior points (see Figs. 1 and 2). For exam-
ple, the Cauchy problem for Type I space-time can be
specifi. ed by prescribing initial data on one constant time
slice in an AdS4 region and freely chooosing boundary
data on past null infinity of the countably infinite num-
ber of adjacent M4 spaces (see Fig. 1). In contrast, for
pure CAdS4, the Cauchy problem is defined only after
prescribing an infinite amount of boundary data along
the timelike boundaries which has to be self-consistent
with the specified initial data [58,59]. The third approach
for the extensions can also be employed in the case of the
nonextreme and ultraextreme bubbles as discussed in the
next section. For this case, the infinite lattices are natu-
ral generalizations of the present extreme space-times.

The three types of extreme space-times, constructed
from the third kind of geodesic extension described
above, have the conformal diagrams shown in Figs. 1, 2,
and 3. In each of the figures, the x and y coordinates are
suppressed; therefore, each point represents an infinite
plane with distances in the plane scaled by A(z). The
compact null coordinates u', v' = 2 tan [n(t + z)] de-
fine the axes. As the figures indicate, these coordinates
can be extended smoothly across the Cauchy horizons
(denoted by the dashed nulls) separating the diamonds
on the AdS4 side. Explicitly this fact is seen by writing
the (1+1)-dimensional line element near the horizon as

Z2 symmetry means Az ——A2, which can be realized for
Type II walls.
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ds = (nz) (dt —dz ) = (n sin[1/2(u' —v')]) 2du'dn'

which has a smooth extension across the null u'
I

vr, —7t & v & 7t as well as all the other Cauchy hori-
zons. Thus, the null (u', v') coordinates provide an atlas
for describing the global space-time. Note that the full

+ &~- imensional metric has coordinate sin ularities in
the x or y &directions crossing the Cauchy horizon.

The extension chosen for the Type I wall [18] (o,„t 1

~n) in Fig. 1 possesses the same causal structure
as the extreme Kerr black hole along its symmetry axis
[30—32]. The extension chosen for the Type II wall in
Fig. 2 [cr,„t y1

——2r (oq + n2)] tiles the whole plane
with a lattice of walls. For the Type III wall (cr,„t 11'
= 2K ]oq —n2]) shown in Fig. 3, the conformal factor
A(z) diverges at some finite coordinate z* [17]. This
point represents the boundary of the space-time just as
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FIG. 2. Conformal diagram of the extreme Type II domain
wall. Conventions follow Fig. 1. AdS4 regions are on both
sides of the wall. As there are Cauchy horizons on both sides
of the wall the geodesically complete extension covers the
whole plane with an infinite lattice of domain wall diamonds.

z = 0 (g = vr/2) represents the edge of pure AdS4 as
seen in the horospherical coordinates (see Fig. 10). As a
result, the extension of the Type III wall is causally the
same as pure AdS4.

For each of the extensions, the vertices are special
points [19]. To illustrate their nature, consider a photon
moving along one of the Cauchy horizons, say v' = —m.

Since the Cauchy horizon has zero surface gravity, the
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/

/
/

/

FIG . 1. Conformal diagram of the extreme Type I do-
main wall, which separates AdS4 from M4. The x and y
directions are suppressed. therefore each tc poin represents
an infinite plane with distances in the plane conformally
compressed by A(z). The compact null coordinates are
u', e' = 2 tan [n(t ~ z)]. The domain wall is the double
timelike arc splitting the diamonds. The complete extension
consists of an infinite lattice of diamonds. The vertices are
infi. nitely conformally compressed points; i.e. , they are an in-
fj.nite afFine distance away from points interior. Cauchy hori-
zons for data placed on the constant time slices in one dia-
mond are the dashed nulls separating the AdS4 patches. The
walls smooth out the singularities at the timelike boundaries
of pure AdS4 seen in Fig. 10. The removal of the timelike
boundary allows for a formulation of the Cauchy problem on
the covering space-time which prescribes initial data on one
slice across an AdS4 region and freely chooses boundary data
on the past null infinities of the countably infinite number of
M4 regions. Note the similarity of the extension taken here to
that of the extreme Kerr black hole along its symmetry axis
[30,32] (diagram taken after [18]).
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/

FIG.. 3. Conformal diagram of the extreme Type III do-
main wall. Conventions follow Fig. 1. AdS4 regions are on
both sides of the domain wall. The irremovable singularity
at z = z = z' is represented by the timelike afIine bound-
aries. This diagram has the same causal structure as pure
AdS4 seen in Fig. 10 (see also [20]). In this way this systemis way,
can be thought of as a generalized AdS4.
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photon never reaches the wall in the next diamond at
u' = z, v' = —vr [60]. These points are an infinite affine
distance away from all other points; i.e. , they represent
an infinite conformal compression. This is analogous
to the situation in the extreme Reissner-Nordstrom and
Kerr black holes [30—33].

The conformal diagram of a space-time containing a
Type I or II extreme domain wall centered at z = 0
should be compared to that of pure AdS4 shown in Fig. 10
in Appendix B. One sees that the timelike a%ne infinity
of AdS4 at z = 0 (equivalently g = m/2) is smoothed out
by the wall, which allows for another space-time region
across the boundary of pure AdS4. In this sense, one
can think of the wall as living at spatial inanity of AdS4.
It has been speculated [19] that the extreme walls are
related to the "Membrane at the End of the Universe"
which arises in supermembrane theory [61].

B. Space-times of nonextreme and ultraextreme
domain walls

The generalizations of the extreme walls to P ) 0 yield
the non- and ultraextreme walls. As discussed previously,
only the A: = P version of the line element completely
covers the spherical domain wall bubble. Again, with
sin 0 = /3r in Eq. (2.13), the line element for these walls
is

ds = A(z) (dt —dz —P cosh Pt d02), (3.1)

Minkowski inside and outside of the nonextreme
and ultraextrem, e walls

The line element for the M4 side of the bubble, as
written in the comoving coordinates, is given by

ds = e+ ~' (dt —dz —P cosh Pt d02) . (3.2)

A metric coefBcient decreasing away from the wall rep-
resents the M4 side being on the inside of the wall, and
if the exponential is increasing away from it, the M4 side
is on the outside. For nonextreme walls both sides are
on the inside. For ultraextreme walls, the side with the
highest energy density (less negative A) is on the outside
of the wall and the other side is on the inside. Recall
that we have chosen to orient the z coordinate so that
the most negative A term is placed on the side z & 0.
Thus for an ultraextreme AdS4 —M4, the M4 side is on
the outside, and it is described by the plus sign solu-
tion above, whereas for an ultraextreme M4 —dS4, the
Minkowski space is on the inside again described by the
plus sign solution but now for z & 0.

When describing the inside, these coordinates have a
cosmological horizon along the null where ~z~ = oo. It
is here that the line element (3.2) degenerates. As seen

where dA2 ——d0 + sin ed/ and A(z) is given by one of
the A = 0 and A = —3n solutions in Eq. (2.28). The
A = 3o. solution is not discussed here.

below, this horizon is a Rindler horizon arising from the
hyperbolic motion of the bubble accelerating away from
inertial observers. For the case of M4 being on the outside
of the bubble, the comoving coordinates are geodesically
complete. The null where z = oo represents the usual
afBne boundary of M4 and thus requires no extension.
The two bubbles are complementary in the sense that
the radii of the spatial region covered by the respective
line elements, r'"„t = P i exp(~Pz) coshPt, satisfy: 0 &
r'" & P coshPt & r „~ & oo. This complementary
nature is also rejected in the conformal diagrams, as we
now discuss.

For the purpose of investigating the causal structure
of the space-time induced by the nonextreme and ul-
traextreme bubbles, we introduce the radial Rindler
coordinates t'"„t —— P i exp(pPz) sinhPt and r'"„~

P exp(pPz) coshPt. This transformation brings the
line element Eq. (3.2) to the spherically symmetric form
ds = dt dr2 —rd02. T—he (t, r, 0, g) coordinates define
an inertial frame in which the bubbles at z = 0 live on the
hyperbolic trajectory r —t = —tan(u'/2) tan(v'/2) =
P . Here u', v' = 2 tan [P(t~r)] are the usual compact
null coordinates of M4. From this hyperbolic trajectory,
it is apparent that in order to remain comoving with re-
spect to the walls, observers require a constant proper
acceleration of magnitude P. Therefore, the comoving
frame of the bubble is a Rindler fraine [62]. The hyper-
bolic trajectory of the wall is a general feature of vacuum
bubbles, as discussed in Refs. [3,25].

For the case where M4 is on the inside of the bub-
ble (e.g. , the nonextreme case), the wall accelerates away
from inertial observers, and consequently it produces a
Rindler horizon. This horizon manifests itself as the
boundary of the comoving coordinates (t, z, 0, P). As
this horizon arises from acceleration, freely falling par-
ticles reach it with a finite affine parameter [23]. As a
result, an extension of the comoving coordinates must
be provided across the horizon. As we have globally de-
fined inertial coordinates (t, r, 0, P), the unique extension
across this horizon onto pure M4 is taken. On the outside
(e.g. , the M4 side of an AdS4 —M4 ultraextreme domain
wall), the bubble accelerates toward all inertial observers
and the comoving coordinates do not require an exten-
sion. Indeed, unless timelike observers maintain a con-
stant proper acceleration not smaller than that of the
bubble, the wall will eventually hit them.

The conformal diagram for the M4 side of the nonex-
treme bubble is given in Fig. 4. The dotted line repre-
sents the null Rindler horizons where ~t + z~ = oo. The
unique extension across these horizons is into pure M4
space-time. As seen by inertial observers in M4, the world
tube of the nonextreme bubble is represented by the sur-
face of the (2+1)-dimensional de Sitter hyperboloid. The
M4 embedding space of dS3 is the physica/ M4 space
for this bubble. Inertial M4 observers are on the inside
of the de Sitter hyperboloid [19]. To remain with the
wall observers must accelerate toward the wall. In this
global sense the wall exhibits "repulsive gravity. " Figure
4 shows a slice of this hyperboloid, whose surface is the
space-time trajectory of the wall. The bubble's center of
symmetry is the timelike line in the center of the figure.
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Opposite points represent spatially antipodal points of
the sphere. The diagram has to be matched to another
qo ——P2 solution on the wall's world tube.

In the ultraextreme AdS4 —M4 case, the inertial M4 ob-
server is on the outside of the de Sitter hyperboloid. The
corresponding conformal diagram (slice of the de Sitter
embedding) is given in Fig. 5. Thus, the M4 side of an
AdS4 —M4 ultraextreme wall is the complement of the
nonextreme M4 diagram of Fig. 4. Here, the nulls are
the usual null infinities of pure M4. The two hyperbolic
trajectories represent the space-time trajectory of two
spatially antipodal points on the wall surface. Again, the
diagram is to be glued to another solution at the position
of the wall, e.g. , one can put the inside of the AdS4 cylin-
der (described in the next section) in the hole where the
de Sitter hyperboloid was taken out, and identify along
the wall's trajectory.

FIG. 5. Conformal diagram for the M4 region outside of the
AdS4 —M4 ultraextreme bubble. This diagram is the comple-
ment of the nonextreme bubble of Fig. 4. The two sides rep-
resent spatially antipodal pieces of the spherically symmetric
space-time. In this case, the M4 side corresponds to the out-
side of the de Sitter hyperboloid of Fig. 4. These wedges are
covered by the comoving coordinates (t, z). The solid curved
line is the hyperbolic trajectory of the wall at z = 0. The
solid nulls are the affine boundaries. Timelike observers with
insufficient acceleration eventually encounter the wall. In this
sense, the ultraextreme bubble exhibits "attractive gravity. "

2. Anti de Sitt-ev inside and outside of the non- and
ultv eentsy em, e mall8

A
~ ~

The line element for the AdS4 side of the bubble, as
written in the comoving coordinates, is given by

2

ds = . , (dt —dz —P cosh Pt diaz),0!Slnh z — z

(3 3)

FIG. 4. Conformal diagram for the M4 side of the nonex-
treme bubble or the M4 side inside an ultraextreme bubble.
This diagram is part of (3+1)-dimensional Minkowski space
as seen in the compactified (t, r) plane. Angular coordinates
(0, P) are suppressed. The axis of symmetry represents the
world line of the center of the bubble at r = 0. Oppo-
site points on the right and left sides of r = 0 represent
antipodal points 0 ~ u —8 and &P

—+ P + a. The time
direction increases upward. The solid curved lines asymp-
toting to the dotted nulls are the world lines of antipodal
points of the nonextreme bubble wall at z = 0, or equiva-
lently r —t = —tan(u'/2) tan(u'/2) = P . This diagram
is a cross section of the hyperboloid of dS3 as embedded in
M4 (see [30] for the analogous case of dS4). The rest frame
of the wall is a Rindler frame whose acceleration has magni-
tude P. The dotted nulls are the Rindler horizons on which
the comoving coordinates (t, z) degenerate (z = oo). In order
to remain with the wall, observers must accelerate toward it.
In this sense, the nonextreme bubble exhibits "repulsive grav-
ity. " The unique extension of the comoving coordinates across
the Rindler horizons is onto pure Minkowski space-time.

where z ) 0 is the side with the less negative cosmological
constant.

For the AdS4 on the outside of an ultraextrerne bubble,
z' = z+ ) 0, which allows (z —z') to vanish at z* = z+.
z* is an irremovable singularity in the line element and
represents the timelike afBne boundary of the AdS4 side
of the ultrabubble. The inside of an ultraextreme bub-
ble has a more negative cosmological constant than the
outside. This side as well as the sides with z ( 0 of a
nonextreme bubble has z' = z+, whereas the other inside
of a nonextreme bubble with z ) 0 has z' = z', and
so the line element (3.3) degenerates at ~z~ = oo, which
corresponds to the center(s) of the bubble. As with the
nonextreme M4 bubble, the null on which ~z~ = oo rep-
resents a cosmological horizon which is reached within
a finite aKne parameter by timelike and null trajecto-
ries [23]. Therefore, an extension across the horizon is
necessary. This horizon arises from the compactified hy-
perbolic motion of the wall as viewed in the frame defined
by the Einstein universe coordinates. This frame is dis-
cussed next.

The Einstein universe coordinates [30] define a frame
in which the bubbles exhibit properties analogous to the
M4 side of the bubbles as seen in inertial M4 coordinates.
This frame provides the analog of the inertial frame for
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the M4 case. The transformation to the Einstein uni-
verse frame is presented in three steps. Appendix A gives
the explicit form of the line element in the intermediate
steps. (1) Define ln" = P(z —z'). From the definition
of z', it is seen that 0 « =„„ 1 &:-„it, . (2) In-
troduce the radial Rindler coordinates: T =:-sinhPt
and R =:-cosh Pt. (3) Define the compact timelike
and radial coordinates: T 6 R = tan[(t, + g)/2]. Per-
forming these transformations on the line element (3.3)
yields ds = (n cos vP) (dt, —d@~ —sin @d022), where
—m & t 6 @ & vr and 0 & @ & vr/2. The spatial cen-
ter of symmetry is at Q = R = 0. In the frame de-
Bned by the Einstein universe coordinates, the bubble
at z = 0 lives on a hyperbolic trajectory B —T
—tan[(t, —v/r)/2] tan[(t, + @)/2] = e ~' . To remain sta-
tionary with respect to the bubble —to stay at a fixed
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FIG. 6. Conformal diagram for an AdS4 region inside the
nonextreme or ultraextreme bubble. This diagram is part of
pure AdS4 as seen in the Einstein cylinder coordinates (t„g)
(see Fig. 10). The angular coordinates (0, P) are suppressed,
and the center of symmetry represents the world line of the
center of the bubble at R = Q = 0. The vertical bound-
aries are the timelike boundaries of pure AdS4 at @ = 7r/2 or
R = oo. Opposite points on the right and left of @ = 0 rep-
resent antipodal points 8 —+ m —8 and P ~ P+ vr. The time
direction increases upward. The solid curved lines asymp-
toting to the dotted nulls are the world lines of antipodal
points of the nonextreme bubble wall at z = 0, or equivalently
R —T = —tan[(t, —g)/2] tan[(t, + g)/2] = exp(2Pz'). The
wall on the AdS4 side sweeps out a compactified hyperbolic
trajectory over half the fundamental domain of pure AdS4
(e.g. , —7r & t, & 0 in Fig. 10). The rest frame of the wall
is a frame whose acceleration has magnitude rx cosh P(z —z').
The dotted nulls are the horizons on which the comoving co-
ordinates (t, z) degenerate (z = —oo). The unique extension
of the comoving coordinates across the horizons is onto pure
AdS4. The dashed nulls represent the Cauchy horizons of
pure AdS4.

FIG. 7. Conformal diagram for the AdS4 region outside of
the ultraextreme bubble. This diagram is the complement of
the nonextreme bubble in Fig. 6. Conventions are as in that
figure. The comoving coordinates (t, z) cover these slivers.
The vertical line is the affine boundary and the curved line
is the trajectory of the bubble wall. Timelike trajectories in
these patches eventually encounter the wall, just as for the
M4 ultraextreme bubble.

(z, 0, P) position —requires a proper acceleration of mag-
nitude ~a„a+~ = n cosh P(z —z'). Nonextreme bubbles
accelerate away from observers on both sides, and thus
we expect a horizon analogous to the Rindler horizon of
the M4 side. The ultraextreme bubbles approach time-
like observers on the outside and eventually collide with
them. The inside of an ultraextreme bubble is indistin-
guishable &om the inside of a nonextreme bubble.

As seen in the Einstein cylinder coordinates, the con-
formal diagram for the AdS4 inside of the non- and ultra-
extreme walls is shown in Fig. 6, and the AdS4 outside
of an ultraextreme wall is shown in Fig. 7. Note the
complementary nature of the two diagrams; a relation
also exhibited by the M4 sides as shown in Figs. 4 and
5. For the nonextreme wall, the space-time is uniquely
extended across the cosmological horizons (the dotted
nulls) onto pure AdS4 (see Appendix 8). The dashed
nulls are the Cauchy horizons of pure AdS4. For the ul-
traextreme wall, the region between the wall at z = 0 and
the timelike boundary of the space-time, at z = z* & 0,
is covered by the (t, z) coordinates.

C. Comments on the extensions

The previous conformal diagrams represent the mini-
mal extensions of the space-times on the M4 and AdS4
sides of the walls. In the form presented here, they are
quite similar. The difference is the presence of null afIine
boundaries in the M4 regions as opposed to timelike afIine
boundaries in the AdS4 regions. To obtain a complete
space-time we glue the two sides together at the wall's
world tube.

Since the AdS4 inside a nonextreme bubble has a
Cauchy horizon, we are able to introduce a lattice struc-
ture such as discussed in [23] and shown in Fig. 8. This
lattice is a generalization of the extreme lattices shown in
Figs. 1—3. The diagrams of Figs. 4—7 should be thought
of as pieces of a space-time which can be fit together in
different ways. In placing a wall on the AdS4 side, we
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eliminate a portion of the timelike boundary of AdS4,
and just as in the case of the extreme walls, the Cauchy
problem can be formulated for the infinite lattice space-
times by placing initial data on one AdS4 slice of constant
time and freely specifiable boundary data on a countably
infinite (Ho) number of past null infinities of M4 space-
times.

These lattices of walls exhibit similarities to the lat-
tices obtained in extending the nonextreme black holes
[30—32]. Furthermore, there are local coordinate relations
mapping the horizons in the (time, radial) directions of

the black hole space-times to the (t, z) horizons in both
the extreme and nonextreme domain wall systems [18,23].
By making this coordinate connection, it is shown that
near the horizons of both the nonextreme and extreme
black holes (with dO = 0), the space-times are locally
AdS2.

Figure 9 illustrates the causal properties of the ultra-
extreme bubble corresponding to the quantum tunnel-
ing event for decay of a metastable Minkowski space-
time into the lower energy anti-de Sitter vacuum. At
time zero, the bounce becomes the tunneling two sphere
which forms at rest with a finite radius and then accel-
erates along the hyperbolic Rindler trajectory. Notice
that timelike trajectories on the M4 side (the metastable
side) eventually collide with the wall and pass through
into the AdS4 region (the stable side). This situation was
addressed by Coleman and De Luccia [25] and later by
Abbott and Coleman [63] who used a singularity theo-
rem of Penrose [64] to conclude that a bubble of AdS4
forming inside an M4 region is unstable to the formation
of singularities. A necessary assumption for establishing
this result is the absence of Cauchy horizons. In this re-
gard, the dashed null in Fig. 9 is drawn to indicate the
Cauchy horizon for data placed on any constant time slice
after the bubble forms. The existence of this horizon pre-
cludes the use of Penrose's theorem for establishing the
singularity result.
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FIG. 8. Conformal diagram for the gluing together of bub-
ble insides to form a lattice of nonextreme bubbles. The left
diagram is that of the AdS4 side shown in Fig. 6 with two
successive wall trajectories asymptoting to the timelike afFine
boundaries. For the infinite lattice, there are an infinite num-
ber of these walls. The right diagram is that of the adjoining
nonextreme M4 bubbles shown in Fig. 4. These regions are
not overlapping, i.e. , they do not touch. Movement between
the M4 patches is only realized by first passing through the
bubble, into the AdS4 side, and then back out the next bubble.
Periodic identifications lead to CTCs for the space-time. The
two diagrams are identified across the wall region by revolving
and rotating the de Sitter hyperboloid of the wall space-time
as embedded in Minkowski space (the M4 side) around the
AdS4 cylinder and identifying adjacent points of the two wall
regions. In a similar manner to the extreme lattices of Figs. 1
and 2, the replacement of the timelike affine boundary allows
for a more conventional Cauchy problem where initial data is
placed a timelike slice across an AdS4 region and boundary
data is given on the past null infinities of the M4 sides.

FIG. 9. Conformal diagram for the classical evolution of
a quantum tunneling event where M4 (M) decays into AdS4
(A). This is the ultraextreme bubble where M4 is outside and
the lower cosmological constant (and thus higher pressure)
AdS4 region is inside. The gluing of the diagrams is performed
as in Fig. 8. The quantum tunneling bubble forms at real time
(t = t = t, ) = imaginary time = zero. The tunneling event
cannot be described by classical gravity, thus the jagged line
in this region.
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IV. DISCUSSION

We have studied the space-times of vacuum domain
walls in general relativity interpolating between vacua of
nonequal cosmological constant. Our emphasis has been
on vacua of nonpositive cosmological constant since the
resulting solutions are the natural generalizations of the
supersymmetric walls studied in Refs. [15—19]. The co-
ordinates in which the domain wall is spatially at rest
(the comoving coordinates) is a useful frame for deduc-
ing the local properties of the solutions through the
use of Israel's formalism of singular hypersurfaces. We
have presented a unified picture of three types of do-
main walls: (1) extreme (supersymmetric) walls which
are static, noncompact planar configurations, with sur-
face energy density o. = o,„t, (2) nonextreme domain
walls which are bubbles with two insides and energy den-
sity o = o„„)o,„t, and (3) the ultraextreme walls
which correspond. to the false vacuum decay bubbles with
energy density 0 = u„~t,~ & oe„t.

A. Domain walls as gravitational shields

The extreme AdS4 —M4 space-time (Type I) represents
a solution where the gravitationally repulsive domain
wall exactly compensates the gravitational attraction
caused by the negative energy AdS4 vacuum. This pre-
cise balancing is realized with the added feature of an
increased symmetry in the field equations, i.e. , the config-
uration is supersymmetric and is described by first-order
rather than second-order equations. One could say that
the Type I domain wall acts as a gravitational shield pro-
tecting M4 observers &om the curved space-time of the
AdS4 side.

Upon breaking supersymmetry, the energy density of
the wall can increase or decrease. Additionally, the non-
compact planar geometry of the wall is replaced by a
compact spherical bubble with time dependent radius.
Increasing the energy of the wall, one may expect to get
a bubble where the repulsive domain wall overcompen-
sates the attractive gravity of the AdS4 region inside the
bubble. If this were the case, the result would be a finite
object with negative efFective gravitational mass. Neg-
ative mass objects introduce very interesting possibili-
ties [10]. For example, controlling such objects would
allow for a free source of acceleration [11].This fact can
be seen through the equivalence principle, which implies
that the negative mass object falls toward any positive
mass, which in turn is repelled by the negative mass ob-
ject. Note that this propulsion mechanism does not vio-
late conservation of momentum since the negative mass
object has a momentum vector antiparallel to its velocity.
The present analysis has, however, shown that for the
domain walls considered, space-time is warped so that
observers on both sides of the would-be negative mass
object (the nonextreme bubble) are on the inside of the
bubble. Hence, this kind of negative mass object cannot
be observed from the outside.

As noted above, these classes of solutions shed light

on the nature of configurations with negative effective
gravitational mass. They indicate a new kind of censor-
ship, analogous to Penrose's cosmic-censorship hypothe-
sis [65,66]. Nature does not only keep singularities hid-
den under horizons, but also seems to prevent us from
being outside negative mass objects. Accordingly, the
supersymmetric type I wall system represents the lowest
gravitational energy state accessible to an outside ob-
server in Minkowski space. When the energy density of
the domain wall is further increased, thus decreasing the
effective gravitational mass below zero, the bubble curves
onto both sides making both sides of the bubble an inside.
We conjecture that similar protection will take place in
all singularity free models and formulate:

The Positive Mass Conjecture: T'here is no singu-
larity free solution of Einstein s field equations for physi
catly acceptable matter sources for tvhich an exterior ob
server can see a finite object ivith a negative effective
gravitational mass.

By "physically acceptable" we mean that mat ter
sources —not including the vacuum itself—obey the weak
energy condition, and "singularity free" does not exclude
singular hypersurfaces tractable by Israel's formalism.

At the same time we see see that supersymmetry serves
as a positive mass protector in the sense that supersym-
metry is characteristic of the limiting case where the total
efFective gravitational mass is zero below which the do-
main wall encloses space on both sides. Again, we note
the analogy with cosmic censorship where supersymme-
try has been identified as a cosmic censor [27].

B. Relation to physical domain walls

In this paper we have presented the local and global
properties of exact solutions of Einstein's Geld equations
for infinitely thin walls. To obtain them it was neces-
sary to assume a high degree of symmetry. Yet, however
idealized these solutions may be, many of the properties
of these solutions are shared by more realistic, physical
domain walls.

Cosmological domain walls are the transition region
between two different vacua and there are at least three
ways of forming walls in a cosmological context: (1) Walls
separating vacua that are absolutely stable against quan-
tum tunneling could form via the Kibble mechanism [1,2].
(2) Primordial walls which could be born with the uni-
verse when it was created by a quantum tunneling process
out of nothing [4—6]. This tunneling can yield regions of
difFerent vacuum states separated by walls. (3) Walls
could also be the boundary of a bubble created from a
Grst-order phase transition between a false and true vac-
uum through the mechanism of quantum tunneling [3,25].

The stable vacuum manifold for a scalar Geld theory
consists of minima of the scalar potential which are not
connected by quantum tunneling. For scalar theories
without gravity, any potential possessing minima of the
same energy are degenerate; there is no tunneling because
the corresponding bounce instanton has infinite action
[3]. Conversely, if there is a nonzero difFerence in the
value of the scalar energy at the minima, there will be a
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finite probability for decay to the global minima through
the formation of a tunneling bubble [3,67—69]. In the
case with gravity, the coupling of a constant scalar vac-
uum energy to gravity through the effective cosmological
constant, the value, and most importantly the sign, of
the vacuum energy are essential for understanding the
stability of a vacuum to quantum decay.

For dS4, gravity always tends to increase the probabil-
ity for decay to a lower cosmological constant vacuum rel-
ative to the corresponding process in the nongravitational
theory [25]. Therefore, the domain walls considered in
Sec. II separating different cosmological constant vacua,
where at least one vacuum is dS4, represent the local
properties for the classical evolution of a bubble formed
from such a first-order phase transition. Discussions of
these bubbles can be found in the literature [24,39—41].
Only those walls separating dS4 of the same cosmolog-
ical constant are stable topological walls, and these are
unstable to perturbations in the adjacent vacuum energy.

If one vacuum is M4 and the other AdS4 [25], or if both
vacua are AdS4 [21], there is a lowering of the probability
for decay relative to the corresponding nongravitational
case. If the scalar potential energy barrier is such that the
surface energy of the tunneling bubble ob„bb~ is greater
than or equal to 2r (nq + n2), where Az ———3nz and
A2 ———3o.&, then the tunneling instanton has infinite
action which renders the tunneling probability to zero.
As a result, stable topological domain walls can exist
between such vacua even without the scalar energy in
the two vacua being the same.

We have discussed three kinds of walls: the nonex-
treme, extreme, and ultraextreme walls. Here we point
out the relation between the idealized models and physi-
cal domain walls. The nonextreme wall, whose surface
energy is 0„„&2r (nq + n2), correspond to walls
which may have formed by the Kibble mechanism or to
primordial domain walls born with the universe at the
time of creation. If one starts out with a universe with
closed spatial sections, and allows the scalar field to fall
into two different vacua, these two regions can be sepa-
rated by a nonextreme bubble with two insides. A lower
dimensional picture will illustrate that this can happen.
Assume that we live in a two-dimensional space, repre-
sented by the surface of a sphere. Let us divide it in two
halves along a great circle. Both sides are on the inside of
the great circle. Therefore, if the initial spatial geometry
is closed, the seemingly strange topology of the nonex-
treme wall causes no problem to the creation of walls
of this type through the Kibble mechanism. Indeed, it
has been speculated [24,40] that we actually live inside a
nonextreme bubble.

The ultraextreme wall, whose surface energy is o.„~t,
2e (nq + n2), represents the classical evolution of a
quantum tunneling bubble (which also could be primor-
dial) that forms when a metastable region of Minkowski
or anti-de Sitter false vacuum decays into a lower energy
anti-de Sitter vacuum. First-order phase transitions of
this type can occur in theories for which the potential
energy barrier is insufIicient to suppress the tunneling.

There is no tunneling [21] between supersymmet-
ric vacua since the minimal energy tunneling bubble

saturates the Coleman-De Luccia bound: o.b„bbi,
2r, ~(nq + o.2), thus rendering the decay probability to
zero. This result is exact to all orders in Newton's con-
stant and applies to both supersymmetric AdS4 —AdS4
and AdS4 —M4 vacua. As a consequence, all supersym-
metric vacua are degenerate in the sense that there
is no tunneling between them. The noncompact pla-
nar extreme walls with surface tension 7 = o.

2' (o.q + n2) interpolate between these supersymmetric
vacua [15—17]. The extreme walls separate supersymmet-
ric vacua of nonpositive cosmological constant where at
least one of the vacua is anti-de Sitter and they are the
configurations intermediate to the spherical non- and ul-
traextreme bubbles.

C. Final rexnarks

We have given a unified, global presentation of the
gravitational aspects of domain walls. Apart from the
theoretical insight in general relativity and supersymme-
try gained from these walls, and the relation to possible
physical realizations of domain walls in Nature, we also
would like to point out the didactic value of these so-
lutions. In this very simple model one encounters maxi-
mally symmetric spaces, Tolman's mass, Israel's thin wall
formalism, comoving coordinates and the FLRW metric,
the de Sitter hyperboloid, Rindler motion, cosmological
horizons, Cauchy horizons, and the problem of geodesic
incompleteness. For this reason, it is an ideal tool for
illustrating many important concepts and techniques in
general relativity.

The role of the supersymmetric domain wall as a
perfectly balanced planar configuration intermediate be-
tween two types of spherically symmetric bubbles have
been explained. For wall energy densities below the
supersymmetric value (ultraextreme), the wall surface
curves away from timelike observers on the side with the
highest vacuum energy density and accelerates toward
them. If the wall energy density is above the supersym-
metric value (nonextreme), the wall curves toward ob-
servers on both sides and accelerates away from them.
Analysis of these nonextreme bubbles has also yielded
the "positive mass conjecture, " which precludes the free
acceleration realized from gravitating bodies of negative
effective mass. We also note that supersymmetry serves
as a "positive mass protector. "

This study has provided the first steps toward a the-
oretical foundation for studying the cosmological effects
of these walls; especially those arising from supergravity
where the vacua are either supersymmetric or have spon-
taneously broken supersymmetry. It should, however, be
emphasized that physically realistic domain walls break
many of our symmet. y assumptions by being wiggly and
anisotropic.

To conclude, the domain wall solutions give valuable
insight in nonperturbative aspects of gravity. In particu-
lar, it is noteworthy that gravity, however weak it might
be, determines the topology of the domain walls. In this
way, nonperturbative gravitational effects play a very im-
portant role both in the evolution of cosmic domain walls
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and in the evolution of the inside of quantum tunneling
bubbles.

Finally, addding an extra dimension coordinated by z and
allowing for a nonpositive cosmological constant yields
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APPENDIX A: COORDINATE
TRANSFORMATIONS

In this paper we produced a number of line elements
describing vacuum solutions external to domain walls. In
this appendix we provide local transformations relating
the coordinates natural for the wall geometry to canoni-
cal coordinates for the appropriate vacuum solutions. We
present results only for the cases qp ——0, +P, since the
case qp ———P corresponds to a solution with a metric
that is singular for certain proper times.

ds = A(z) dt —dz —(Pt)
~

+ r dP
i 1 + (Pr)2

(A5)

where A(z) is one of the qp = 0 (extremal) solutions in
Eqs. (2.27).

2. Non an-d nltraeztreme toalls (qs ——ps)

a. The A = —3o, solution. Consider the AdS4 metric
as written in the Einstein universe coordinates discussed
in Appendix 8:

ds2 = (n cos @) (dt, —dQ —sin @d02) . (A6)

Note that these coordinates, just as the Schwarzschild-
coordinates, cover the whole AdS4 manifold. In the latter
coordinates the metric is

T + R = tan[-,'(t. + @)]. (A8)

This transformation, restricted to the branch —vr & t,
kg & 7r, brings the line element (A6) to

a ds' = (1+p') dt,' —(1+p') dp' —p'd02, (A7)

where p = tan@. We now decompactify the coordinates
(t„g) by introducing

Eztrevnal mails (qs ——0)

ds = dt —dr —r dy (Al)

Introducing the Milne coordinates [43,62]

t = t coshPy, r = t sinhPy,

brings the line element to

ds = dt —(pt) [dy + p sinh py dp2] . (A3)

The k = 0 solutions are written in the canonical
static coordinates: Cartesian for M4 and horospherical
for AdS4. The horospherical coordinates are discussed in
Refs. [19,20].

The k = —P line elements are related to the A, = 0
line elements through a coordinate transformation not
involving the spatial coordinate z. For this case, consider
the metric for flat (2+1)-dimensional space-time written
in planar polar coordinates

(dT —dB —B d02) . (A9)

Transforming to the radial Rindler coordinates [62] T =
e~i' ' l sinhpt and R = e~~' ' l coshpt, where z' is given
in Eq. (2.30), brings (A9) to

2

ds =
2 (dt —dz —P cosh Pt d02) .

[n sinh(Pz —Pz') ]

(A10)

ds2 —dt2 dp2 p2dQ2 (A11)

and transforming to the radial Rindler coordinates [62]

t = P 'e+~ sinhPt, r = P 'e ~' coshPt, (A12)

brings the line element to the desired form

This metric corresponds to the erst of the solutions of
Eq. (2.28).

b. The A = 0 solution. Starting from the Bat space-
time metric written in spherical coordinates,

Transforming to a radial coordinate r = P ~ sinhPy
yields ds = e+ ~' (dt —dz —P cosh Pt d02) . (A13)

( dr'
ds = dt —(Pt) i

+r dP&1+(P )' (A4)
This metric corresponds to the second of the solutions
(2.28).

c. The A = 3o. solution. Starting from the de Sitter



2632 MIRJAM CVETIC, STEPHEN GRIFFIES, AND HARALD H. SOLENG 48

metric in canonical coordinates

d s = dT —cosh czT
i

— + p d02
~

2=
( 1 —o.'2p2 (A14)

and defining (cost,)—:coshnT and sing—:np gives
the metric

1
ds = (dt, —dg —sin g d02) .

C

(A15)

We now decompactify the coordinates (t„g) by defining
T and R as in Eq. (A8). This transformation restricted
to —vr & t, 6 g & vr, brings the de Sitter metric (A14) to
the form

4
ds = (dT —dB —B d02) . (A16)

Transforming to the Rindler coordinates T
eel' ' ) sinhPt and R = eel ' ) coshPt, where z" is
given in Eq. (2.31), brings (A16) to

ds 2 (dt —dz —P cosh Pt dB2) .
[n cosh(Pz —Pz")]

(A17)

ds = (n cos g) (dt, —dg —sin g d02), (B3)

and the range on these dimensionless coordinates suK-
cient to cover all of AdS4 is —vr & t, & 7r, 0 & g
vr/2, 0 & 0 & 7r, 0 & g ( 2x. The line element with-
out the (ncosg) 2 conformal factor is that of the static
Einstein universe, where in addition 0 & g & vr. The
spherical coordinates are inextendable; i.e. , all geodesic
motion on AdS4 is described in these coordinates.

AdS4 has the topology S (time) x K (space) which
means it has a periodic time and closed timelike curves
(CTC's). This fact is intimately related to the negative
vacuum energy density (negative cosmological constant)
which violates the familiar positive energy conditions. In
the context of Type II walls, Gibbons discusses this point
in Ref. [19]. If satisfied, these energy conditions restrict
space-times to have a nonperiodic timelike coordinate. It
is possible to avoid CTC s by using the covering space-
time CAdS4 in which the compact time coordinate t, is
allowed to range over the whole real line. In other words,
we unwrap the S (time) rendering the topology R4. Nev-
ertheless, neither CAdS4 nor AdS4 have a Cauchy sur-
face, and on account of this, neither AdS4 nor CAdS4

This metric corresponds to the third of the solutions in
Eq. (2.28).

APPEND!X 8: ASPECTS OF ADS

To help in understanding the properties of space-times
with a domain wall where at least one side is AdS4, we
present here the salient features of AdS4. More detailed
discussions of AdS4 can be found in Hawking and Ellis
[30], Avis et al. [58], Gibbons [19], and. Griffies [20].

AdS4

AdS4 is the maximally symmetric solution to Einstein
gravity in four space-time dimensions with a negative
cosmological constant A = —3o.

1 2+pv +gatv — 3O, ggv.
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nY = cost, secg,
aY = singcosgtang,
o.Y = sin 0 sin g tan g,
n Y = cos 0 tan g,
n Y = —sin t, sec g.

(I'-l2)

The line element ds = g~~dY dY takes on the form

The length scale of AdS is set by its "radius" o,

AdS4 is isomorphic to the coset SO(3, 2)/SO(3, 1)
and is realized as a hyperboloid einbedded in a Hat
five-dimensional space with two timelike directions:
rj~iiY Y = n and q~~ = diag(+1, —1, —1, —1, +1).
One can completely cover the hyperboloid and thus all of
AdS4 with the following choice of spherical or Einstein
universe coordinates:

FIG. 10. AdS4 as seen on the Einstein cylinder. AdS4 is
the region 0 ( g ( 7r/2 and —m & t, ( vr. The covering
space-time, CAdS4, is the region —oo & t & oo. The static
Einstein universe is the region 0 ( g & 7r and —oo ( t, & oo.
Timelike and null world lines are indicated. The 45' dashed
lines which form the diamonds are the null geodesics. The
dotted periodic lines are the timelike geodesics. For increasing
energy, the timelike geodesics approach the nulls and thus
reach closer to afFine infinity located at g = 7r/2. Left of
the center is identified with 0 = 0 and the right with 0 =- vr.

Data place on the constant time slices, say t, = —n/2, have
past and future Cauchy horizons given by the dashed nulls
forming the diamonds. In the horospherical coordinates with
line element ds = (a.z) (dt —dz —dy —dz ), the affine
boundary at g = vr/2 maps to z = 0 [17,19,20] (figure taken
after Avis, Isham, and Storey [58]).
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is globally hyperbolic. Therefore, an infinite amount of
boundary data as well as initial data must be introduced
in order to properly deffne the Cauchy problem [58,59].
AdS4 can be regarded as the canonical space-time in
which the issues of Cauchy horizons and CTCs arise. (dg/d7 ) = (a cos @) E —(cos g) (B6)

(proper time for the timelike geodesics), allows us to ex-
press the line element for these geodesics ds = dw ) 0
as

2. AdS4 snapped on the Einatein universe

In understanding the global aspects of AdS4, such as
its causal and geodesic properties, it is useful to map
AdS4 onto the Einstein cylinder. The static Einstein uni-
verse has the topology R(time) xS (space) and the line
element

sin @ = 1 —(nE) sin t, . (B7)

Setting E to infinity in (B7), yields the null world line

Note that the timelike nature of the motion imposes the
constraint (nE) ) 1. Solving for g(r) and t, ( r) is
straightforward. Eliminating w yields the periodic world
line for the timelike test particles

ds, = dt, —dQ —sin @d02 ——dt, —dOs (B4)
sin Q = sin t, . (B8)

where —oo & t, & oo, 0 & vP, O & rr, 0
CAdS4 is conformal to the half of the static Einstein
universe with 0 & Q & rr/2. If we suppress the S co-
ordinates 0 and P, the Einstein universe is a cylinder
with g running along the S and t, along the R. Since
0 & @ & rr, opposite sides of the cylinder are identified.
Cutting the cylinder at @ = rr yields Fig. 10. AdS4 is
the region where 0 & g & rr/2, —rr & t, & rr and each
point on the cylinder a two-sphere S of radius n tang.
Radial nulls are at 45 . The nontrivial causal structure
of AdSg, where d & 2, is understood from investigating
AdS2.

Finite energy timelike geodesics never reach g = rr/2.
Rather, the constant curvature of AdS4 acts as a perfect
gravitational harmonic oscillator causing the timelike test
particles to always return to their original position in a
proper time of rr/n. Thus, the proper time period for a
full transit through a fundamental AdS4 domain is 2rr/n
This oscillatory motion is consistent with AdS4 having
the positive gravitational mass density of 6K o. at every
point; cf. Eq. (2.45). These world lines are indicated in
Fig. 10.

Cauchy horixon for AdSs

8. Geodesic structure of AdSs as seen on the Einstein
cylinder

ds = (ncosg) (dt, —d@ ) . (B5)

Introducing the conserved energy parameter E
(n cos Q) dt, /dr, where w is the affine parameter

The mass dimension of E' is —1.

Integration of the geodesic equations on AdSp is facil-
itated by the maximal symmetry of the space-time. For
AdS4, maximal symmetry allows us to lay down coordi-
nates such that the geodesic of interest has zero 8 and P
angular momentum. The geodesics are thus determined
by the AdS2 line element

As can be seen from obtaining the null geodesics
in terms of the null affine parameter [20], nulls reach
@ = rr/2 only after an infinite affine parameter. This
means that @ = rr/2 is identified as the affine boundary
of AdSg. It is here that the line element (B3) has an
irremovable coordinate singularity which is characteris-
tic of affine boundaries. The timelike nature of @ = rr/2
precludes AdS4 from having a Cauchy surface. Space-
times with a Cauchy surface allow for a deterministic
description of the classical evolution of free fields given
a sufBcient amount of initial data placed on a space-
like slice [30]. Equivalently, every point to the future
of a Cauchy surface must have a past directed light-cone
which intersects it. It follows that a Cauchy surface can-
not be timelike. Since spatial infinity in AdS4 is timelike,
information evolved from some initial spacelike slice, say

= —vr in Fig. 10, can be corrupted from data flowing
in from beyond the null diamonds. These nulls represent
the Cauchy horizon for this data.
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