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On self-dual gravity
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We study the Ashtekar-Jacobson-Smolin equations that characterize four-dimensional complex
metrics with self-dual Riemann tensor. We And that we can characterize any self-dual metric by a
function that satisfies a nonlinear evolution equation, to which the general solution can be found
iteratively. This formal solution depends on two arbitrary functions of three coordinates. We study
the symmetry algebra of these equations and Gnd that they admit a generalized TV TV algebra.
We then find the associated conserved quantities which are found to have vanishing Poisson brackets
(up to surface terms). We construct explicitly some families of solutions that depend on two free
functions of two coordinates, included in which are the multi-center metrics of Gibbons and Hawking.
Finally, in an appendix, we show how our formulation of self-dual gravity is equivalent to that of
Plebanski.

PACS number(s): 04.20.Jb

I. INTRODUCTION

In four dimensions the Hodge duality operation takes
two-forms to two-forms. Given a four-dimensional met-
ric, the most important two-form associated with it is
the curvature two-form R b. It is therefore natural to be
interested in four-dimensional metrics whose curvature
form obeys the self-duality relation

R b
— R b)

where * is the Hodge duality operator. We will refer to
such metrics as "self-dual. " Such metrics automatically
have vanishing Ricci tensor, and so satisfy the vacuum
Einstein equations with a vanishing cosmological con-
stant. Unfortunately, the only real Lorentzian self-dual
metric is Bat Minkowski space, so we choose instead to
work with metrics with four complex dimensions.

Physically, these metrics may be of interest in attempts
to quantize gravity. It has been suggested that we may be
able to interpret self-dual metrics as "one-particle states"
in a quantized gravity theory [1]. Alternatively, in the
path-integral approach to Euclidean quantum gravity,
such metrics will make large contributions to a path in-
tegral over metrics, since they are saddle points of the
classical Einstein-Hilbert action [2]. Also, by analogy
with Yang-Mills theory, we can look for "instanton" solu-
tions complete, nonsingular solutions with curvature
that dies away at large distances [3,4]. Solutions that
are asymptotically fIat at spatial infinity, but periodic in
time, then contribute to a thermal canonical ensemble
[5]. Solutions that are asymptotically flat in the four-
dimensional sense (asymptotically locally Euclidean) can
be interpreted. as tunneling amplitudes between inequiv-
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alent gravitational vacua.
From a purely mathematical point of view these

metrics are interesting since they are "hyper-Kahler. "
Hyper-Kahler manifolds are Riemannian dimensional
manifolds that admit three automorphisms J' of the tan-
gent bundle which obey the quaternion algebra and are
covariantly constant [6]. In other words,

~J = 0 J J2 = —$2+;2k (2)

where V is the covariant derivative with respect to the
Levi-Civita connection. In four dimensions, it turns out
that for a metric g to be hyper-Kahler it must have either
self-dual, or anti-self-dual, curvature tensor [7].

The problem of constructing metrics with self-dual cur-
vature tensor has been tackled in several ways. The most
direct approach is to formulate the problem in terms of
partial differential equations [8,9]. An alternative ap-
proach is Penrose's "nonlinear graviton" technique [1].
Here, the task of solving partial difFerential equations is
replaced by that of constructing deformed twistor spaces,
and holomorphic lines on them. In practice this turns
out to be just as difficult as solving partial differential
equations, but in principle one can construct the general
self-dual metric in this way.

Here we concentrate on partial differential equations.
In Sec. II we find a formulation which is similar to
Plebanski's flrst heavenly equation [8], but which can
be viewed as simply an evolution equation. This means
that the free functions in our solution are just a field
and its time derivative on some initial hypersurface, i.e. ,
two free functions of three coordinates. We construct,
in a somewhat formal manner, the general solution to
this equation in Sec. III. Section IV is devoted to an
analysis of the symmetries and conservation laws associ-
ated with the system. The conclusion is that the system
admits a symmetry group which is a generalization of
W W and we find two infinite-dimensional fami-
lies of conserved quantities which have vanishing Poisson
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brackets. This could be looked on as an explicit verifi-
cation of the fact that self-dual gravity is integrable. In
Sec. V we construct explicitly some infinite-dimensional
families of solutions to our equations with triholomorphic
Killing vectors. The analysis of the holomorphic Killing
vector case is, however, incomplete. Finally, in an Ap-
pendix, we show how this formulation of self-dual gravity
is equivalent to Plebanski's.

8 +iVi, B=V2 —iV3,

which, by virtue of (8), obey the Lie bracket algebra

[A, B] = 0, [A, B] = 0, [A, A] + [B,B] = 0, (10)

where the overbar denotes complex conjugate. We can
generalize these equations by considering four complex
vectors U, V, V7, and X that satisfy the relations

II. CONSTRUCTION OF SELF-DUALITY
CONDITION

[U, V] = 0, (1la)

In [10] the equations for complex self-dual metrics were
reformulated in terms of the new Hamiltonian variables
for general relativity introduced in [ll]. By fixing the
four manifold to be of the form M = Z xR and using the
coordinate T to foliate the manifold, they reduced the
problem of finding self-dual metrics to that of finding a
triad of complex vectors (V;: i = 1, 2, 3) that satisfy the
equations

DivV; = 0,

(4)

Defining the densitized inverse three-metric

"ab ya yb g 'tg )

we recover the undensitized inverse three-metric q
by the relation q = qq, where q = detq~b
(detq ) . If we now define the lapse function K by
N = (det q i, ) ~, then we find that the metric defined by
the line element

ds = K dT + q~bdx dx (6)

is self-dual.
Later, it was found that this triad of vectors could be

related to the complex structures J' that hyper-Kahler
metrics admit [12]. Given a self-dual metric, we choose
local coordinates (T, x ) to put the line element in the
form of Eq. (6). If we define the triad of vectors V;
—J'(w, Bz ), then these vectors will satisfy (3) and (4).

Here we will concentrate on the problem of finding local
solutions to Eqs. (3) and (4). We thus introduce a local
coordinate chart (A, Y, Z) on the three-surface Z with
its natural Hat metric and connection. Thus (3) becomes
just

[W, X] =0, (11b)

[U, W] + [V, X] = 0. (llc)

Here we are thinking of VV and X as "generalized com-
plex conjugates" of U and V, respectively. By Frobenius'
theorein, we can use (lla) to define a set of coordinates
(t,, z) on the two (complex)-dimensional surface defined
by vectors U and V, and take U and V to be

U= —,V=|9 t9

Bt Bx (12)

We can now foliate our whole space using the coordinates
(t, x, y, z). Equation (11c) then becomes OqW+0 X = 0.
This means there exists a vector field Y such that W =
8 Y, X = —Oq Y. Thus we are only left with the problem
of solving for vectors Y that satisfy [Oq Y, O Y] = 0 [13].
We expand W and X as

W = 8& + f~B„+g~O„

X — ftOy gt Bz )

h„+ h, h,„—h vh„= n(t, x). (15)

We can absorb the arbitrary function n into the function
h, and conclude that we can form a self-dual metric for
any function h that satisfies

where subscripts denote partial derivatives. (The reason
for the Oq term in W is, as alluded to above, that we are
thinking of % as a sort of complex conjugate of U = Bq.
Although this argument only seems sensible for t a real
coordinate, we are still perfectly at liberty to expand W
in this way if t is complex. ) If, by analogy with (3), we im-
pose .R = X = 0, then we find that there exists
a function h(t, x, y, z) such that f = h„g = —h„. Irn-
posing (lib), we find that there exists a function n(t, x)
such that

The crucial step is to realize that we can write Eq. (4)
as hing + h, hgy —h „h~, —0. (16)

(8)

If we consider only Euclidean metrics, then we take the
V; to be real. In this case we define two complex vectors
A, B by

This is just an evolution equation. Thus we can arbitrar-
ily specify data h and hz on a t = const hypersurface and
propagate it throughout the space according to (16) to
get a solution. For example, if we expand h around the
t = 0 hypersurface, and insist that h is regular on this
surface, then h is of the form



JAMES D. E. GRANT

6 = ao (x, y, z) + a, (x, y, z) t + a, (x, y, z) —,

g3
+as (x, y, z) —+

Substituting this into (16) shows that ao and ai are ar-
bitrary functions of x, y, and z. a2, a3, . . . are then com-
pletely determined for chosen ap and aq by

a2 = ap & ay —ap ay&

ds: dt(h, ydy + h, z dz) + dx(h ydy + 6 dz)

(h,„dy+ h„dz) .
1 2 (21)

U, V, YV, X. are proportional to a null tetrad that de-
termines a self-dual metric. Indeed the tetrad is given
by cr = f V, where V = (U, V, W, X) for a
0, 1, 2, 3 and f = e(U, V, W', X), for e the four-
dimensional volume form dt h dx h dy h dz. In our case,
f = —hiq and our line element is

a3 aozy a2z aozz a2y + lay alz —alzz alyl (19)

and so on. Thus, in principle, we have a solution that
depends on two arbitrary functions of three coordinates.
It is interesting to compare our Eq. (16) with Plebanski's
first heavenly equation

Bpq Op~ —Opp Oqq ——1. (2o)

Here it is not so obvious what our free functions are, and
an expansion along the lines of (17) does not work. [It
is shown in the appendix how to get Eq. (20) from our
equation, showing that the two approaches are equiv-
alent. Thus for any self-dual metric there will exist a
corresponding function h that satisfies (16).]

From the work of [14] we know that the vectors

III. THE FORMAL SOLUTION

We now construct, at least formally, the general so-
lution to (16). Instead of working with this equation
directly, it is helpful to de6ne two functions A = 6t, B =
h, and rewrite (16) in the equivalent form

At + AyBz —AzBy ——0)

A = Bt. (23)

If we just view B as some arbitrary function, then the
solution to (22) is

A(t, x, y, z) = exp dt, [By(t„x,y, z) Bz —B,(ti, x, y, z) Oy] a, (x, y, z), (24)

where ai(x, y, z) is the value of A at t = 0 as in (17). The exponential here is defined by its power series with the nth
term in this series being

~ ~ ~ dt„[$B (ty)ci), —B.(ti) c)yf (By(t„)c), —B,(t„)c)y)]ai(x, y, z).

We now must impose (23) as a consistency condition on this solution. This gives us

A(t, x, y, z) = exp dt2 [A „(t2,x, y, z) c) —Azz(t2, x, y, z) By] ai(x, y, z). (26)

Formally, this equation can now be solved iteratively. IVe can make successive approximations

A~') = a, (x, y, z), (27)

exp
I

tao y + ai y I
&

I

ta& + ai
I oy ai(xy z),(,) ( t' 5 ( t'

*") (28)

A(n+1) dt2 (A "„8 —A "
c)z ) a, (x, y, z),

for n & 1. Then de6ning A = lim ~ A( ~ gives the
formal solution for A [15]. Integrating A with respect
to t and imposing h(t = 0) = ao(x, y, z) then gives us a
solution of (16).

Finally, we note that (22) means that the quantity
y(t) = y+ dt, B,(t„x,y(t, ), z(t, )), (3o)

A(t, x, y, z) is t independent, where y and z are defined
implicitly by
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z(t) = z— dti By(t„x,y(t, ), z(ti)).
and B (t, x, y, z) are a solution of the system (22) and
(23) then we can implicitly define a new solution A and
B by

(This may be important if we were to look for action angle
variables for the system. ) This implies that A(t, x, y, z) =
ai(x, y', z'), where the coordinates y', z' are defined by
y(t, x, y', z') = y, z(t, x, y', z') = z. Thus the dynamics
are characterized by a coordinate transformation in the
y, z plane.

IV. CROUP METHODS

Several powerful techniques have been developed for
the study of partial difFerential equations [16]. One of
the most powerful is that of group analysis [17,18]. By
studying the Lie algebra under which a given system of
partial differential equations is invariant, we can hope-
fully find new solutions to these equations. One method
of doing so is to look for similarity solutions which are
left invariant by the action of some subalgebra of this
symmetry algebra. This will reduce the number of in-
dependent variables present in the equation, possibly re-
ducing a partial differential equation to an ordinary dif-
ferential equation. However, such similarity solutions, by
construction, will have some symmetries imposed upon
them, so this method is not very useful if one is looking
for the general solution to a system of equations.

A more powerful method of obtaining solutions is to
exponentiate the infinitesimal action of the Lie algebra
into a group action, which takes one solution of the equa-
tion to another. However, even if this is possible, it is
unlikely that the group action can be used to find the
general solution to the equation from any given solution.

Instead of attempting to find the symmetry algebra of
(16), it is easier to work with the equivalent system (22)
and (23). Using the standard methods [17,18], we find
that (22) and (23) admit a symmetry group defined by
the infinitesimal generators

A = A(t + fA (x, A), x, y, z),

B = B(t +. f~ (x, A), x, y, z) + f (x, A),

(37a)

[6(f),(2(g)] = 6(f~ g* —f.g~),

[(2(gl)1 (2(g2)] (2(glA g2~ gin g2A) ~ (37c)

Defining a basis for transformations

(n)Trn ( (
@+1 Ann+1) (38)

for o, = 1, 2, where m and i are integers, this algebra
becomes

[(1)Tvn (1)Tn) 0

for any function f (x, A). Using this implicit form we can
solve iteratively for the functions A and B given functions
A, B and f. This means that given one solution of (16),
we can form an infinite-dimensional family of solutions
depending on that solution. For a given function g we
can also exponentiate the action of (2, although its action
cannot be exponentiated directly for a general function
g.

Although both (34) and (35) give rise to infinite-
dimensional families of solutions from any given solution,
they are not enough to derive a solution with arbitrary
initial data from any given solution.

If we compute the commutators of generators (1(f;)
and (2(g~. ) for arbitrary functions f; and g~ we find that
they obey the algebra

(1 = f~A —f. c)a,

(t gx + BgA)A Bt + gA Bx g~oA
—(t g* + BgA)* c)a,

(32)

(33)

"'T"1= [( +1)(~+1)
-(n+ 1)('+ 1)](')T-,+",

(2 ——ktBg + kxc) + kyc)y,

(4 ——l, Oy —ly c),

(34)

(35)

[ T, , T ] = [(m+ 1)(j+1)

(n+1)(i+1)]('—)T, +".

where f and g are arbitrary functions of x and A, l is
an arbitrary function of y and z, and k is an arbitrary
constant [19]. (2 just generates dilations, whereas (4 gen-
erates area preserving diffeomorphisms in the y —z plane.
Although (4 gives a representation of W (modulo co-
cycle terms) [20], they are really only coordinate trans-
formations, so are not too interesting. However, we have
two interesting symmetries, generated by (1 and (2.

It is possible to exponentiate the action of (1 directly
for an arbitrary function f We find that if A (t., x, y, z)

d4x(-,'1,2 + —,
' h., (h,„h., —h., h.„)). (40)

The Hamiltonian is then

The algebra (39c) is again just the extended conformal
algebra W [20]. Thus (39) represents some generaliza-
tion of TV . These are similar results to those found in
[21,22].

We now note that Eq. (16) can be derived from the
Lagrangian
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1
H =—

2
d x [~ —s(h„h, —h, h y)], (41)

A (t, y, z) = exp(t(gyO, —Q, By) )a, (y, z),

(47)
where 7r = hi+ s (h„h, —h, h „)is the momentum canon-
ically conjugate to h. We now define the Poisson brackets
of functionals of h and m by

(~ &) = (8n SP hn hfdf
(42)

Ii (f(x, A)) = f (x, A) d x,

I2(g(x, A)) = [tg (x, A) + Bg~(x, A)]dsx. (44)

The time independence of quantities follows from the con-
servation equations

~ (f) + & (f B.) —~. (f B ) = o (45)

and

0, (t g + Bg~) + 0 (g) —B„(tg ~ B, + g~ BB,)

The algebra (39) now rellects the fact that, ignoring
surface terms, we have two infinite families of conserved
quantities of the form

B (y, z) = P (y, z).

For given functions P and ai it is straightforward to do
the exponentiation [18], giving A explicitly. Using the
exponentiated form of (32) and (33), we could now use
these solutions to generate new solutions which had some
restricted x-dependent initial data as well.

We can also consider metrics with a triholomorphic
Killing vector 8 . This means we require B,V,. = 0. In
this case, we take h = —t z + g (t, x, y). We then recover
the result [4,25] that g must satisfy the three-dimensional
Laplace equation g&z + g „= 0. The general solution
to this is known [26], and can be written in terms of
two arbitrary functions ao (x, y) and ai(x, y). An almost
identical reduction occurs if we take O„as a triholomor-
phic Killing vector. Again, using the symmetries (32)
and (33), we can generate infinite-dimensional families
of new solutions, that in general have no Killing vectors.

We note in passing that the solution corresponding to
the multicenter Eguchi-Hansen metric [4] is

( (t —t)
A = —z + o. ) arcsinh I

', (48)
(*—*')(y —y') )

+0, (tg ~By + g~BB„) = 0, (46)

derived from (22) and (23). Again these are similar to
results in [21,23] where an infinite heirarchy of conser-
vation laws were constructed for the system. Up to sur-
face terins, the quantities in (43) and (44) have vanishing
Poisson brackets; i.e. , they are in involution. This could
be looked on as a proof that self-dual gravity is classically
integrable. It also seems to be the relationship between
this formalism and the twistor approach to the problem
[21-24].

n )'. Q(t —t, )' + 4 (x —x, ) (y —y;)
2 =- (x —x;)

CgJ = 0, CqJ = J, CgJ = —J . (50)

In terms of the vectors V; this means that

where o. is a constant. This is the only metric with a
triholomorphic Killing vector that has a nonsingular real
(Euclidean) section [27].

It would be interesting now to study the case of a holo-
morphic Killing vector (. In terms of the complex struc-
tures this is characterized by

V. SOLUTIONS

We begin by looking for solutions that admit a triholo-
morphic Killing vector (. This means the three complex
structures J' are invariant under the action of (, i.e. ,

Eg J' = 0, where 8 is the Lie derivative. Using the rela-
tionship between the complex structures and the vectors
V, given in Sec. II and the fact that ( is a Killing vector,
we see that we require EgV; = 0.

If 8 is a triholomorphic Killing vector, this means that
8 X = 8 W = 0, where X and W are as in (13) and
(14). This means h is of the form a(t, y, z) + x b(y, z) for
some functions a and b. In terms of functions A = hq and
B = h this means that A = A(t, y, z), B = B(y, z),
so (23) is automatically satisfied. If we take A(t = 0)
ai (y, z) and B(t = 0) = P (y, z), it is straightforward to
show that the solution to (22) is then

l'.
q V1 ——0, l.q V2 ——V3, Zg V3 ———V2.

It should be possible to relate this to the known results on
such metrics [28,29]. It should also be noted that since
we have an initial value formulation of the self-duality
problem, we can systematically generate multicenter gen-
eralizations of a given metric. For example if a solution
has initial data ao(x, y, z), ai(x, y, z), then the multicen-
ter generalization will have initial data of the form

ao(x, y, z) = ) ao(x —x;, y —y, , z —z, ),

(52)

ai(x, y, z) = ) ai(x —x, , y —y;, z —z;),

for any points ((x;,y;, z;): i = 1, . . . , s). It would there-
fore be of interest to study the Atiyah-Hitchin metric
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[30] in this formalism, since it would give a systematic
way of generating a multi-Atiyah-Hitchin solution which,
though known to exist, has not been constructed explic-
itly.

VI. CONCLUSION

We have shown how, at least formally, to construct
the general complex metric with self-dual Riemann ten-
sor. We have also studied the symmetry algebra of the
system, which turns out to be a generalized version of
TV W, and found two infinite-dimensional families of
conserved quantities that have vanishing Poisson brack-
ets. This should be of interest if we were to try and quan-
tize the system [31]. Finally, although we have managed
to characterize metrics with a triholomorphic Killing vec-
tor, it remains to relate the holomorphic Killing vector
case to known results.

It should be emphasized that all the considerations
here have been inherently loca/ in nature, and we have
imposed no sorts of boundary conditions on our solu-
tions. If we were to look for metrics that are well defined
globally, this would lead us to cohomological problems
[32], which appear to be best tackled using the twistor
formalism [1].

Note added. Since this work was completed, the ideas
developed here have been extended by Plebanski et al.
to reduce the second heavenly equation, the holomor-
phic Killing vector equation, and special cases of the
hyper-heavenly equation to Cauchy-Kovalevski form and
to write down formal solutions to these equations [33].
I would like to thank Jerzy Plebanski for sending me a
copy of this work before its publication.
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APPENDIX: THE FIRST HEAVENLY EQUATION

We now show how our formalism is related to
Plebanski's [8]. Starting with (22) and (23), instead of
looking on A as a function of t, x, y, and z we take A as
a coordinate and look on f—:t and g—:B as functions of
p = A, q = x, r = y, 8 = z. This transformation is well
defined as long as At P 0. Inverting (22) and (23) gives

Qp) (Al)

(A2)

Equation (Al) means we can introduce a. function
A(p, q, r, s) such that f = —Oz, g = O~. Equation (A2)
then means that 0 must satisfy Op, Oq„—0» Oq, ——1.
Carrying out the same transformation on the line el-
ement (21), we find it becomes ds2 = O„„dp dr +
Op8 dp d8 + Oqz dQ dp + Oqp dq ds. Thus we have recov-
ered the Plebanski formalism. It would be interesting to
see if a similar transformation can be used to turn the
problem of conformally self-dual metrics with nonzero
cosmological constant into an initial value problem.
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