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Some aspects of the rotating three-dimensional Einstein —anti-de Sitter black-hole solution con-
structed recently by Banados, Teitelboim, and Zanelli are discussed. It is shown explicitly that this
black hole represents the most general black-hole-type solution of the Einstein —anti-de Sitter theory.
The interpretation of one of the integrals of motion as the spin is discussed. Its physics relies on the
topological structure of the black-hole manifold, and the notion of simultaneity of spacelike-separated
intervals. The relationship of the black-hole solution to string theory on a (2+ 1)-dimensional target
space is examined, and it is shown that the black hole can be understood as a part of the full
axion-dilaton gravity, realized as a WZWN cr model. In conclusion, the pertinence of this solution
to four-dimensional black strings and topologically massive gravity is pointed out.

PACS number(s): 04.20.Jb, 04.50.+h, 12.10.Gcl, 97.60.Lf

I. INTRODUCTION

The black-hole conundrum has long been one of the
most outstanding problems of modern physics. It has re-
mained in focus as one of the potential testing grounds for
quantum-gravitational phenomena for a long time. The
formal diKculties of four-dimensional gravity, however,
have often made the study of black holes inherently more
complicated. To surmount some of these diKculties many
researchers have resorted to models of gravity in dimen-
sions lower than four, in the hope that the essential prop-
erties of black holes in lower dimensions will model rea-
sonably accurately those of four-dimensional solutions.
One such attempt has resulted recently in the construc-
tion of the Einstein —anti-de Sitter rotating black hole in
three dimensions by Banados, Teitelboim, and Zanelli
(BTZ) [1]. Their solution has attracted further attention
as it was later shown how it could be obtained by restrict-
ing a four-dimensional Minkowski manifold of signature
zero on a coset [2,3], followed by the one-point compactifi-
cation of one of the coordinates to a circle. Furthermore,
the conditions under which such black holes can form
in a collapse of matter in conventional general relativity
have been investigated in [4]. The purpose of this work is
to demonstrate that their solution can be easily incorpo-
rated in the framework of string theory with some minor
extensions [5]. Namely, the BTZ solution with half the
initial cosmological constant can be extended with the
inclusion of the antisymmetric Kalb-Ramond axion Geld
carrying the other half of the cosmological constant, and
then reinterpreted as either an ungauged or extremely
gauged Wess-Zumino-Witten-Novikov (WZWN) o model
derived from the group SL(2,R) [6—11]. The one-point
compactiGcation of one of the coordinates can be accom-
plished either by factoring out a discrete group in the
ungauged construction, or requiring that the model lives
on a coset SL(2, R) x R/R.

This paper is organized as follows. In Sec. II, I will de-
rive the solution by solving the equations of motion, by

employing the Kaluza-Klein dimensional reduction from
three dimensions to one [12], and show that the solution
of Ref. [1] is the uruque solution of three-dimensional
Einstein gravity with a negative cosmological constant
which features horizons. In Sec. III, I will comment on
the interpretation of one of the constants of motion as the
spin of the black hole, and show that this stems from in-
terweaving the topological structure of the manifold with
the requirement of global simultaneity of spacelike inter-
vals. Section IV concentrates on the stringy interpreta-
tion of the solution and demonstrates how the solution is
realized as a WZWN 0 model. Last, I will comment on
the relationship of this solution to topologically massive
gravity [13] and cosmic strings.

II. CLASSICAL THEORY

The classical theory is defined with the Einstein-
Hilbert action in three dimensions:

d x~g R+A ~,2K )'
where B is the Ricci scalar and A the cosmological con-
stant. The conventions employed here are that the metric
is of signature +2, the Riemann tensor is defined accord-
ing to B"& ——BpI'" —,and the cosmological constant
is defined with the opposite sign from the more usual
conventions: here, A & 0 denotes a negative cosmologi-
cal constant. In the remainder of this paper, I will work
in Planck mass units: r = 1.

The Einstein equations associated with this theory, in
the absence of other sources, yield the locally trivial so-
lution R"„=—A(b„"g„—8"g„p) which suggests that
the unique solution is the anti-de Sitter space in three
dimensions. However, there appear nontrivial conGgu-
rations in association with the global structure of the
manifold described with the above curvature tensor. It
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is interesting to note that all the metric solutions have
well-defined curvature, except possibly at a point later to
be identified with black-hole singularity [2,3].

Therefore, to inspect all possible solutions one should
resort to a closer scrutiny of the problem at hand. The
investigation of [1—3] demonstrates how nontrivial black-
hole solutions can be obtained by factorization and topo-
logical identification in the anti-de Sitter manifold. How-
ever, a particularly simple procedure can be followed,
where one solves the difFerential equations derived from
(1) and investigates allowed values for the integration
constants. In addition, this procedure yields further in-
formation regarding whether all possibilities for the con-
struction of nontrivial solutions are exhausted by the
above-mentioned identifications.

Instead of writing out explicitly Einstein's equations,
I will here work in the action, as this approach overs an
especially simple way to And the solutions. The back-
ground Ansatz is that of a stationary axially symmetric
metric:

ds = p, dr + G, i, (r) dx~dx". ,

detG = —-T («)',
2

1
G = — ~Go

det G

with ~ = io~ being the two-dimensional antisymmetric
symbol, the action (3) can be rewritten as

e4',
S,ir —— dr

~

2Ape ~+ —Tr(eG') + A Tr(eG)
4p

2p

Clearly, the theory has three Lagrange multipliers, p, , P,
and A, which all propagate according to algebraic equa-
tions. Thus the associated equations of motion are very
simple. Indeed, the standard variational procedure leads
to

e@
2Ap, e ~ — T—r (eG') = 0,

4p
e4 e —4—Tr (eG)
4p 2p

where the 2 x 2 matrix G~i(r) is of signature 0 as the
metric (2) is Lorentzian and one of the coordinates jx")
is timelike. The "lapse" function p is kept arbitrary as
its variation in (1) yields the constraint equation. The
cross terms drdx" corresponding to the "shift" functions
can be removed by coordinate transformations x" —+ x"+
yk(

The metric above clearly has two toroidal coordinates
1x") which are dynamically unessential. Hence the prob-
lem is e8'ectively one dimensional. The Kaluza-Klein
reduction, with rescaling of the action (1) according to
S,n = 2Sj f d x yields

1 1
Ses = dr pe @

~

—P' + 2A+ TrG' G'
~

(3)

with the "dilaton" field P being constrained (rather, de-
fined) by exp( —2P) = —det G. The minus sign here
follows from the fact that sgn(G) = 0, i.e. , det G ( 0.
The prime denotes a derivative with respect to r. Hence,
the problem is reducible to a simple mechanical system
describing the "motion" of the matrix G with several
rheonomic solvable constraints. As such, the "dilaton"
constraint above can be solved for P, which then may
be completely eliminated from the action. However, it is
instructive to keep the explicit dilaton in (3) and enforce
the above constraint with the help of an additional La-
grange multiplier A. Furthermore, there is an additional
simplification coming from properties of 2 x 2 matrices.
In the above equations for the action and the "dilaton"
the inverse and determinant of G figure explicitly, thus
giving the problem in question the appearance of a highly
nonlinear one. The 2 x 2 magic comes to the rescue: it
is possible to reexpress the action in. Gaussian form in
terms of G only. From

2Ap, e ~ ——Tr(eG') = 0,
4p

Tr(eG)' —2e '& = 0,

(e&
]
—G'f =0,

)
and by using the gauge freedom expressed by the arbi-
trary "lapse" p and fixing the gauge to pexp (—P) = 1,
the solution is easy to find. It is just

det G'

and C, D are constant symmetric matrices determined
from the initial conditions, and the constraint det C =
—4A. The minus sign in (8) is precisely the same one
discussed following Eq. (3).

What remains is to analyze the values of the integra-
tion constants. To begin with, the metric can be rewrit-
ten as

ds = — + (Cr + D)~i, dx'dx".
det Cr+D (9)

Since C is symmetric and nonsingular (det C = —4A g
0), it can be diagonalized with an orthogonal transfor-
mation. So, C = 0 CgO. From the metric (9) such a

2p
I

)
Obviously, A = 0. The system of equations above simpli-
fies to
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transformation is just a coordinate transformation of the
(x") part of the metric, x" -+ 0".x~. Hence C could
have been assumed to be diagonal from the beginning.
Furthermore, its eigenvalues cq, c2 can be set equal to +1
by a scale transformation x" —+ x"/ ~

cj, ~. Thus C is
just the 1 + 1 Minkowski metric, C = q = diag(l, —1).
At this point one could object that the rescaling can in-
troduce a nontrivial deficit angle if the coordinate x" is
compact. This can be restored later by changing the pe-
riod of compacti6cation. Moreover, the diagonalization
of C can also be accomplished with a shift of the space-
like coordinate by a linear function of time. Therefore,
the above discussion is fully justified.

The next step is the matrix D, which only has to be
symmetric. None of the above manipulations with coor-
dinates in order to reduce C to the 1+1Minkowski metric
aÃects the general structure of the matrix D. Therefore,
the 2 x 2 metric can be written as

f'r + d„ d
r+ d22 j—

and evidently, one of the diagonal elements of D can be
removed by a shift in r. This indicates an additional re-
quirement which ought to be imposed on D. Since one
is interested in a black-hole-type solution, with physical
horizons defined as the hypersurfaces where the time-
like Killing vector outside the black hole has a vanishing
norm, and Hips into spacelike after passing through the
horizon, it must be d22 & —dii. Then, one can simply
set diq ——0. Lastly, if the spacelike coordinate 0 is to
be interpreted as an angle, the identification 0 = 0 + 2'
must be made. Thus, the final solution is

4A[r(r —d„) + d'„]

—r+d22 (dt)

d,
2

ds =
2 + R (do+N dt)

A p —p+

2 2 2
P P~ dt2

A2 A

(12)

From the formulas above one Ands that physical black
holes should also satisfy the constraint

~

J ~& M. If
this were not satisfied, one would end up with a singular
structure, manifest by the appearance of closed timelike
curves in the manifold accessible to an external observer,
crossing the point R = 0. Such a voyage has been inves-
tigated in [5] for the spinless case, and also in [9] for the
vacuum. Moreover, it has been argued that, although

Equation (11) is precisely the solution of Ref. [1] as
can be seen after a coordinate transformation. The inte-
gration constants can be rearranged by introducing the
mass M = d22~A and the spin J = —2di2~A, as well
as the parameter measuring the position of the horizon
in the new coordinates: p+ ——M[1 —(J/M) ] ~ . With
the definitions R' = r = (i/A/2)(p' + M —pz+)»d

= —J/2R, the metric (11) can be put in the BTZ
form:

III. SPIN AND SIMULTANEITY

There still remains to determine the physical nature of
the spin J. It has been so interpreted by the careful ex-
amination of the boundary terms in the action which ap-
pear in the Arnowitt-Deser-Misner (ADM) formulation
of general relativity in three dimensions [1,2]. Yet an in-
teresting observation is in place here. The r-dependent
part of the metric G is an SO(l, l) invariant, being the
1+ 1 Minkowski metric. Then one can ask if the matrix
D can be diagonalized by a coordinate transformation.
Indeed, the transformation x' = O. x~ where

3

( coshP
( sinhP

sinh P
cosh P

hP (J) ~

V ( / )

v 2 E Ql —(J/M)2 ) (14)

removes the cross term d0dt from the metric, and is
clearly valid for all physical black holes with

~

J ~( M.
In terms of the new coordinates the metric (12) can be
rewritten as

d 2
s2 = ~ + 2do" —~ ~+d

A(p2 —p2+) A

This solution describes a black hole of spin J' = 0 and
mass M' = M(l —(J/M) )

The question one should ask is if transformation (13)
is globally defined. If the answer is positive, then the an-
gular momentum in the metric would be spurious. What
can be seen immediately is that with the help of (13),
which corresponds to a "boost" in the azimuthal direc-
tion, a comoving observer can be found who will not be
able to discern the influence of the angular momentum
by any local experiment. Hence (12) and (15) are com-
pletely equivalent locally.

The answer is that due to the identification 0 = 0+ 2'
the global structure of the manifold with the metric (12)
is not invariant under a coordinate transformation gener-
ated by a "boost" (13). This can be seen as follows. The
manifold can be foliated by cylinders Bx S correspond-
ing to constant r (or p). The cylinders in the frame where
the identification has been made (and the spin J has been

solution (12) does not have curvature singularities, they
can develop if the metric is slightly perturbed by a matter
distribution [2,3]. Thus, the singularities are hidden by a
horizon if the spin is bounded above by the mass. Ther-
modynamics of (12) has been analyzed in [1,2], where
the Hawking temperature has been calculated. The so-
lution with J = M is understood as the extremal black
hole, and J = M = 0 serves the role of the vacuum.
These two solutions actually appear to have similar local
properties, as will be discussed in the next section. The
anti-de Sitter metric is recovered with J = 0, M = —1
[1-3]
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defined) can be represented as rectangular patches in the
t-0 plane with edges at 0 = 0 and 0 = 2a identified
along the congruence t = 0. After the boost has been
performed, in the new coordinates the manifold is rep-
resented with patches tipped with respect to the t' axis
by angle arccoscoshP and identification now goes along
the congruence t' = coshPO'. Hence, the global simul-
taneity of spacelike events is lost. If one goes around the
Universe, with a clock which remembers the initial point,
upon the return to it the clock reading exibits a discrete
jump. Therefore, to measure the spin of the black hole,
one can build a stroboscopic d.evice by measuring the
discrepancy of the arrival time of light rays sent around
the black hole in opposite directions. Boosting in the az-
imuthal direction, observers can bring themselves to the
frame where the light signals arrive back simultaneously,
and then measure the spin. It is interesting to note that
precisely the same phenomenon can be found in special
relativity on a cylinder with a Bat metric.

The discussion above gives an interesting connection
between the vacuum J = M = 0 and an extremal black
hole J = M. If one takes the limit M ~ J + 0+ in
the boosted coordinates (15), the metric reduces to the
vacuum solution J' = M' = 0, but the coordinate trans-
formation (13) is ill defined in the limit, since tanhP ~ l.
But this corresponds to boosting up to the speed of light
in special relativity, where in the 1 + 1 case the space-
time tends to a degenerate case for such an observer.
Thus one can think of the extremal black hole as the
maximally boosted vacuum, up to the global structure.

The physical interpretation of spin is therefore derived
from the global properties of the manifold. Essentially,
the spin is introduced by choosing a special observer who
is granted the judgment of how to perform the iden-
tification. More elaborate, but similar properties have
been found by Misner in connection with Taub-NUT
(Newman-Unti- Tamburino) space-times [14]. These con-
clusions are in perfect agreement with the constructions
of Refs. [1—3].

IV. MESS-ZUMINO-MITTEN-NOVIKOV o.
MODEL APPROACH

In this section I will discuss the relationship of solution
(12) to string theory and show how it can be extended to
represent an exact string solution too. In order to do it,
an elementary review of the WZWN cr model approach
is provided first. The dynamics of string theory on the
world sheet is defined by the tree-level Polyakov action:

d 0. G„+2

where G„and B'~ are the world sheet target
metric and the Kalb-Ramond antisymmetric Geld. The
rather unusual factor 2+2/3 in Eq. (1) is introduced
following the normalization convention in earlier work,
where the wedge product of two forms is defined by
n h p = Alt (a C3 p) as opposed to the other usual con-

vention, n h p = "+,
, Alt (n p). Action (16) in gen-

eral also includes the dilaton, but it can be computed in
the semiclassical approach from the associated effective
field theory on target space. Its effective action is, in the
world-sheet frame and to order O(o.' ),

d xv Ge ~" R —H~„i,H~""
(2r.2

+8„4'0"(Ig+ A ~. (17)

Here H~ p ——B~~B~
~

is the field strength associated
with the Kalb-Ramond field B» and 4 is the dila-
ton field, which appears naturally in the string sector
and whose dynamics guarantee the conformal anomaly
cancellation. The brackets denote antisymmetrization
over enclosed indices. The cosmological constant has
been included to represent the central charge deficit
A = sbcT ——s(c7 —3) ) 0 . It arises as the difference
of the internal theory central charge and the total cen-
tral charge for a conformally invariant theory ct t ——26
[6—11,15].

The WZWN approach starts with the construction of
the field. theory on the world sheet defined by the WZWN
o model action on level k:

g'o Tr(g 'g~gg 'g g)

g'(T (g 'gg ~ g 'gg -~ g 'gg)--
(18)

where g is an element of some group G. The action above
has a very big global invariance, the continuous part of
which is G x G. One way to construct the string solu-
tions of this theory, which can be put in form (16), is
choosing a group G, the parameter space of which rep-
resents the target manifold, and maintaining conformal
invariance. The other may be to identify a part of the pa-
rameter manifold by factoring out locally a subgroup of
the global invariance group G x G. This is accomplished
by choosing an anomaly-free subgroup H c G x G and
gauging it with stationary gauge fields. Either way, after
the group has been parametrized, (18) can be rewritten
in terms of the parameters in form (16) and the metric
and the axion are just simply read off from the resulting
expressions. The dilaton then can be computed from the
efFective action (17), as has been mentioned above. It ap-
pears because of the requirement of conformal invariance.
In the remainder of this section I will demonstrate how
the solution (12) arises in this approach as the gravita-
tional sector of the WZWN constructions in two different
ways.

I will Grst demonstrate that the theory d.escribed by
(18) with the group G = SL(2, R)/P contains solution
(12). The discrete group P will be specified later. The
central charge of the target for this model for level k is
cT = 3k/(k —2) . Thus the central charge deficit, by the
formulas above, will be given by



2602 NEMAN JA KALOPER

6
bcT

A: —2
e ~h~ cosh 6n,( e & h~' sinh6

ev h~' sinh8
e v h~ cosh' )

in the semiclassical limit k —+ oo, where the theory is
most reliable. Therefore, the cosmological constant is
A = 4/k. The group SL(2, R) can be parametrized ac-
cording to

where q is an arbitrary constant. In terms of these pa-
rameters, the action (18) can be rewritten as

d o. —0+66 6 + q cosh 60+0'0 0' —q sinh 60+t'8 t'
jt 2

~2k,
( qt +in'sinhd) isnhcdoch(d8+'888 —8 8 8+8'). (21)

Comparing with (16), one deduces

r
0

(o
q2cosh 6

0
0

—q sinh 8)
(22)

Bpv
3k f ( 0

qt' + ln sinh 6
~

sinh 6 cosh 6 1
r (o

—1
0
0

The metric G„ is exactly the canonical metric on
SL(2, R), induced by the map of the Cartan-Killing
form in the neighborhood of unity in the Lie algebra

Tr(g dg) . This is no surprise, since this is exactly the
o. model part of the action. The axion is induced com-
pletely by the Wess-Zumino term. The dilaton for this
solution actually is constant, as can be readily verified
from the efFective action (17). The dilaton equation of
motion is

I

A careful examination of duality transformations of ac-
tion (17) confirms this. The axion field can be rewrit-
ten as B = /3/8 (t' + gk/2q2 ln[(r/q ) —lj} d0' 4 dr,
in form notation, and after the above transformation of
coordinates. The axion is apparently time dependent,
which can be remedied by recalling the gauge invariance
of the axion: B and B' = B + dT both describe the
same physics. Then, it T = / / t(t2'r g+ s/h/2qs(r-

qs)(in((r/qs)s —1] —1))dq', the gauge transformed ar-

A &'y —(my)'+ (-,'a —H'+ A) = o

and the substitution of solution (22) in (23) yields

(23) ion ls

r d0' R, dt'. (26)
2&,.~2m.3' (24)

where Q is the three-form cohomology charge of the axion
field H = dB, defined by the "Gauss law, " which, since
*H is a zero form, is just Q =

2 e ~2+' *H = const.
In order to make contact with solution (12), a change of
coordinates and the compactiflcation of the spatial coor-
dinate 0' need to be made. To do this, I will show that
solution (22) is equivalent to (11). Namely, the "radial"
coordinate is introduced by r = q cosh 6. Then, the
metric can be rewritten as

dr2
r d0' — (r —q ) dt' .

2A r(r —q2)
(25)

This is almost precisely solution (11), with dig ——0 and
d22 ——q . The only difference is the cosmological con-
stant in (11) is half that in (25). The reason for this
discrepancy is that the presence of the axion introduces
an extra contribution to the cosmological constant, which
just cancels one-half of it, since the dilaton is constant.

Solutions (25) and (26) have already been found previ-
ously in Ref. [5j. At this point, one can perform the
identification. Normally, it can be accomplished by iden-
tifying 0' = 0'+ 2'. This would correspond to factoring
out the discrete group P' = exp(2na('), with (' = 0/00'
the translational Killing vector generating motions along
0' and n integers, from SL(2, B). The resulting metric
would have zero angular momentum, J = 0. However,
as was discussed in Sec. III, one can arbitrarily choose
to identify along any boosted translational Killing vector
which is spatial outside the horizon. Hence, in order to
get solution (12) with mass M and angular momentum J,
one can boost back the coordinates 0', t' by (13) and iden-
tify points by factoring the subgroup P = exp(2n2r() out
of SL(2, R), where ( = 0/t90 = cosh PO/80' —sinh PO/Ot',
and sinhP is given in Eq. (14). The resulting configura-
tion is the metric (12) extended with the axion (26).

There is a minor subtlety here. In order to com-
plete the identification, the axion solution has been gauge
transformed by a gauge transformation which involves
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explicitly the compactified variables (t') and therefore is
not single valued on the covering space of the manifold.
In this respect, it can be treated as a "large" gauge trans-
formation. Furthermore, since the target has been corn-
pactified along 0, in general when a closed string moves
on such a world sheet there appear the winding modes
associated with the compact directions of the target [16].
The winding modes in principle can interact with the ax-
ion field before and after the gauge transformation differ-
ently, and thus distinguish between solutions (22), (25),
and (26). This can be avoided if one resorts to a differ-
ent way of constructing the black-hole solution (25) and
(26). The reason for the appearance of the gauge trans-
formation T was that the axion field has arisen &om the
Wess-Zumino term in (18). A simple remedy is to gauge
the WZWN o model on SL(2, R) x R by factoring out
the axial vector subgroup of SL(2, R) x SL(2, R) mixed

( a

( —v (27)

where a6+ uv = 1, the explicit form of the ungauged o
model of Eq. (18) is

with translations along B, and taking the extremal limit
where all the gauging is along R [9]. This amounts to
taking for the target the coset SL(2, R) x R/R. (A simi-
lar procedure has been performed in [17], where a closed
Bianchi-type I cosmology was constructed. ) The central
charge of this target for level k is cT = 3k/(k —2)+ 1 —1,
where +1 corresponds to the free boson and the gauging,
respectively. Hence, cT = 3k/(k —2) and the cosmo-
logical constant is still A = 4/k. The resulting solution
is exactly (25) and (26), as can be easily verified. The
group SL(2, R) x R can now be parametrized as

S k

47r
d cr 8+uB v+ 6 uB+v+ 6+aB 6+6 aB+6

d crlnu 6+a6 6 —0 aB+6 + — d o.8+0'8 0
27r

(28)

The gauge transformations corresponding to the axial subgroup of SL(2, R) x SL(2, R) mixed with translations along
the free boson are

ba = 2~a, b6= —2~6, bu = bv = 0,

(29)

b0' = et-, bA. = —8 e,

and the gauged form of the cr model (6) is

S (g, A) = S (g)+— d oA~ bB a —aO 5 —uO v+ vB u+ ci g'4qc
27r 2k

k 4gc (d o.A 60+a —aB+6 —vB+u+ uB+v + 8+0
27r

2c
d o4A+A 1+ —uv

The remaining steps of the procedure for obtaining the solution are to integrate out the gauge fields, fix the gauge
of the group choosing 6 = +a so that the anomaly cancels (removing the need for the "large" gauge transformation

T as argued above), rescale 8' —+ (2c/~k) 0', and take the limit c —+ oo which efFectively decouples the SL(2, R)
part from the gauge fields. The resulting Polyakov 0. model action can be rewritten as

k 2 v t9+uB u + u 8 v 0+v + (2 —uv) (g+uQ v + cl uol+v)
e ———

87r 1 —uv

g
2+-

27r
d 0 2 1 —uv 8+0'8 0'

d o. uB v —vt9 u 9+0'+ vB+u —uO+v 8 0' (31)
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A transformation of coordinates

reproduces solutions (25) and (26). The dilaton can be
found either from the associated effective action, as was
discussed before, or from a careful computation of the
Jacobian determinant arising from integrating out the
gauge fields [8]. Since the metric-axion solution is exactly
(25) and (26), by the arguments before the dilaton must
be a constant, 4 = 4O. The Jacobian matrix method
con6rms this. Its inspection before the limit c ~ oc
is taken shows that it is J oc 1/[l + (2c jk) —uv]
(k/2c )/(1+ (k/2c )(1—uv)) (see Refs. [8,17]). As c —+
oo the nonconstant terms decouple and do not contribute
to the dilaton. Then, the identification procedure can be
carried out along the lines elaborated following Eq. (26).

If one compares the method of obtaining (25) and (26)
to the constructions of Refs. [1—3], one might object that
the identification has invoked a somewhat arbitrary step
involving the choice of the vector ( along which the fac-
torization of SL(2, R) has been performed. The reason
for this arbitrariness lies in the asymptotic properties of
solutions (25) and (26). As r —i oo, the metric (25) ap-
proaches the vacuum solution with J = M = 0. The ax-
ion (26) is independent of the mass and spin, and already
in the "vacuum" form, and so invariant under boosts
(13). Therefore, infinitely far away from the black hole
the boost generator is approximately Killing, and hence
the metrics with different spins become locally indistin-
guishable. This, on the other hand, justices the inter-
pretation of J as a spin, as discussed in Sec. III, and
the factorization procedure outlined above. However, it
is possible to generate the spin directly in the effective
action of the type of Eq. (30), and always compactify
along the free boson which appears in the definition of
the group. This can be done if one starts with the group
SL(2, R) x R, and performs a double gauging down to
a coset SL(2, R) x R /R2 with two different vector fields.
The subgroups of SL(2, R) x SL(2, R) are axial and vec-
tor, mixed with the translations along the two bosons in
such way that the anomaly still cancels. This will neces-
sarily introduce a constraint on the gauge charges of the
two bosons, but it can be satis6. ed. I hope to address this
issue in a forthcoming paper [18].

a very interesting addition to the growing family of black
objects. It is not only a nice example of a black hole
in three dimensions, but also exhibits a surprisingly rich
structure. Moreover, it is also a solution of many different
theories of gravity in three dimensions, in growing order
of complexity: general relativity, topologically massive
gravity (TMG), and string theory. In this paper, only
GR and string theory have been explicitly investigated.
However, it is not difficult to see that solution (12) also
represents a solution of TMG with a negative cosmolog-
ical constant.

The reason for this is that TMG differs from GR in
the presence of the Lorentz Chem-Simons form in the
action. This changes Einstein's equations by adding the
Cotton tensor to the Einstein equation. Yet both these
terms vanish for solution (12). This can be seen as fol-
lows. The Cotton tensor is constructed from the covari-
ant derivatives of the Ricci tensor. When the construc-
tions encountered in this paper are present, the Riemann
tensor is covariantly conserved and so are all the other
curvature invariants. Hence the Cotton tensor is zero.
Furthermore, since by the boost (13) solution (12) can
be brought locally in the diagonal form (15), and the
Lorentz Chem-Simons form of (15) is trivially zero, it
also vanishes for (12). Therefore, as claimed, solution
(12) also solves the equations of motion of TMG in a
trivial way.

One other interesting feature of (12) is that it can be
used for constructing a black string configuration in four
dimensions. Effectively, all one needs to do is to ten-
sor (12) with a fiat direction R. Related. considerations
have been investigated previously in [5]. There remains
a subtlety regarding the interpretation of such solutions.
I hope to return to this question elsewhere [18].

In summary, the three-dimensional black hole has
shown great promise. It is a truly multifaceted config-
uration, which possesses rich geometrical structure, and
appears to relate different formulations of gravity by be-
ing a solution of all of them. One cannot resist the temp-
tation, that perhaps this is not an accident, but rather
a beacon pointing at a certain, more fundamental, inter-
connectedness of these theories of gravity.

Note added. Upon the completion of this work I have
received Ref. [19] which overlaps in some length the sub-
ject of this work, and where similar results were found.

V. CONCLUSIONS AND FUTURE INTERESTS

It is evident that the three-dimensional anti-de Sitter
black hole of Banados, Teitelboim, and Zanelli represents

Double gauging has been employed previously on difFerent
groups in the last of Refs. [7,8] as well as in [11].
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