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Closed strings with low harmonics and kinks
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I ow-harmonic formulas for closed relativistic strings are given. General parametrizations are
presented for the addition of second- and third-harmonic waves to the fundamental wave. The
method of determination of the parametrizations is based upon a product representation found for
the finite Fourier series of string motion in which the constraints are automatically satisfied. The
construction of strings with kinks is discussed, including examples. A procedure is laid out for
the representation of kinks that arise from self-intersection, and subsequent intercommutation, for
harmonically parametrized cosmic strings.

PACS number(s): 98.80.Cq, 11.17.+y

I. INTRODUCTION

The relativistic string model has been at the heart of
much of theoretical elementary particle physics for the
past decade, both as a model of elementary particles and
as a description of cosmic string defects postulated to
have been produced in the early Universe. The cosmic
string hypothesis [1] in particular continues to attract in-
terest in attempts to understand the large-scale structure
observed in galaxy distributions. Recently it has been
argued that cosmic strings are consistent with the non-
uniformities observed in the background radiation [2].
In addition, the string model has proven to be a well-

spring of discoveries in connecting diff'erent mathematics
to physics, and as a vehicle for exploring new mathemat-
ics and new mathematical techniques.

In the study of closed cosmic strings, one subject of
interest has been the harmonic solutions to the relativis-
tic string equations in fiat space. Whenever there are
damping mechanisms at work, one expects that higher
harmonics would get relatively suppressed. One can then
consider a finite Fourier series a series of a Bnite num-
ber of harmonics and derive the Fourier coeKcients re-
quired by the constraint equations in a given gauge. Al-

though an infinite number of harmonics is considered at
the outset in the study of a quantized string, in order to
have a complete basis for distributions and to preserve
locality, certain fundamental string issues may be conve-
niently studied with strings containing a finite number of
harmonics.

There is a specific mechanism that regularly dumps
power into the higher harmonics of cosmic strings, in the
midst of the damping. As a result of the intercommu-
tation of intersecting strings, infinite and closed, scars
develop in the form of distinct kinks [3—5]. The kinks
present in generic cosmic loops at early stages of the uni-
verse do eventually decay away, not by radiation alone [6],
but by back reaction to that radiation [7].

In the course of cosmic string studies concerning radi-
ation, self-intersection, and black-hole formation, it has

proven useful to construct loop solutions for a few low
harmonics [8—11]. A systematic investigation of more and
more general parametrizations of the low-lying harmon-
ics has been undertaken by our group over the past few
years [12—14]. This has led to a general solution for any
closed string with an arbitrarily large number N for the
largest harmonic to be included [15—17]. The result cor
responds to ending the most general Fourier series of a
unit vector, given an arbitrary but Bnite number of har-
monics. Consistent with what we have come to expect
from string theory, we have a new mathematics tool use-
ful for other applications.

In this paper we put the new methodology to work.
We construct general % & 3 solutions for closed loops.
A catalog of previous solutions is presented in terms of
the product representation parameters, and the inclusion
of kinks is considered (see Refs. [18,19] for earlier discus-
sions). A construction algorithm for string solutions con-
taining a single left- or right-moving kink is illustrated.
We analyze the fact that when kinks are created through
intercommutation, the kink will split into right- and left-
traveling pieces. A general procedure is provided for an-
alytically describing these resulting equations of motion,
and an example is given.

The fiat-space string equations and their Fourier anal-
ysis comprise Secs. II and III, respectively. Section IV
concentrates upon the exact solutions for the general case
of strings with erst, second, and third harmonics using
the special rotation form described in Sec. III. Strings
previ. ously developed by others are rewritten within the
framework of the rotation form in Sec. V, and shown to
be a subset of this more general procedure. Figures are
used to illustrate loop motion for various parametriza-
tions. We next introduce the concept of a kinked string.
In Sec. VI we show how single kink strings may be in-
troduced by 6ne-tuning the parametrization of the right-
(or left-) traveling wave as it traverses the Kibble-Turok
sphere. Section VII describes the process of intercom-
mutation and an example, employing the results of the
previous section. Section VIII contains some concluding
remarks.
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II. CLOSED STRING REVIEW b' = b„' —k/2vr, (12)

In an orthonormal gauge [20], the string position r(o., t)
satisfies the wave equation rqq —r = 0 (fq = Of/Ot,
etc.), and the constraints are transverse motion rq r = 0
and unit energy density r~ + r = 1. Within this I orentz
frame, the string parameter o. has the same units as the
time t, and we scale to the interval 0 & o. & 2'. The
general "right-going" (u = o —t) plus "left-going" (v =
o + t) wave solution is

1
r = -[a(u) +b(v)],

in what has become rather standard notation. The con-
straints imply

a =b =1./2 &2
) (2)

a(u + 2vr) + b(v + 2vr) = a(u) + b(v), (3)

that is, a' and b' traverse the Kibble-Turok sphere [8].
We see that we must have both left- and right-going
waves, and they must be "equally weighted" in the sense
that both derivatives have unit magnitude.

The overall spatial periodicity of a closed loop of string,
r(o + 2~, t) = r(o, t) or

are indeed periodic, and +k/2vr are identified as the re-
spective zero harmonics.

Finally, we have

r(o., t) = r„(o., t) + Kt, (13)

with

1=—2[a ( )+b (")] (14)

K—:—k/~.

r„(o,t+ 2vr) = r„(cr, t). (i6)

But in fact the efFective time period is half of this [8]
because under o —+ o + m, E —+ t + vr, we have u —+ u,
v M v+27t)

Equation (13) is the generic form for closed loops: peri-
odic left-going and right-going superimposed on uniform
(c.m. ) motion.

Now we address temporal periodicity. Modulo the c.m.
motion, the string certainly repeats in 2' time intervals.
From (4),

holds true up to linear (c.m. ) terms for a and b as well.
Consider two values of u, but with v fixed. Equation (3)
yields

r„(o + ~, t + vr) = r„(o., t).

The string "looks" exactly the same every time interval
T

a(ui + 2vr) —a(u2 + 27r) = a(ui) —a(u2), (4)

and,

Similarly,

a'(u+ 2vr) = a'(u).

b '(v + 27r) = b '(v). (6)

The first half of the string (0 & o. & 2vr) switches places
with the second half (vr & o' & 2') every time T. The
individual unit vectors Eqs. (9) and (10), however, have
period 2'.

That is, the unit vectors of Eq. (2) are periodic. From
Eqs. (3), (5), and (6),

III. FOURIER ANALYSIS AND PRODUCT
REPRESENTATION

We can write

a(u + 2~) = a(u) + k,

b(v + 2~) = b(v) —k.

a(u)—:a„(u) + ku/2~,

b(v) = b„(v) —kv/2m,

We are thus led to consider the Fourier analysis of a'
and b', the integration of which will give us the string
configuration. We restrict ourselves to a finite number
of harmonics according to the discussion in the introduc-
tion. The problem of finding the harmonic coefFicients
in the finite Fourier series for a periodic vector whose
magnitude is fixed has just recently been solved. The
product representation of Ref. [15] automatically satisfies
the magnitude constraint, exhibits the correct degrees of
freedom, and gives the general solution.

Consider a periodic unit vector u~(s) = uiv(s + 2m)
defined by the N-harmonic real series,

where az and b„are periodic functions of their argu-
ments, with period 2'. In a Fourier series, a„' and b„'
have no zero harmonic terms. The derivatives,

a' = a„'+ k/2x,

N

uiv(s) = Z+ ) (A cosns+ B sinns),
n=1

with N arbitrary. The constraint (uiv) = 1 requires a
set of nonlinear relations among the vector coeKcients in
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Eq. (19). In terms of the real basis, we have the 4N + 1
real equations

N

) (cx„n „—P„P „)=48 p,
n=m —N

m = 0, 1, . . . , 2N, (20)

Here,

p = R.(-g.)R-(e.)R.(g, ).
We can let gi ——vri2, or

pi = R, (-4i).
Also, there is the overall orientation freedom

(26)

) (~ . p +P ~ ) =0, m=1, . . . , 2N.

R, (~)R.(P)R.(q), N & 1,
R (a.)R (P), N = 0. (27)

n=m —N

(21)

Here,

P„=—P „=B„, n$0, (22)

0 —2Z) Pp ——0. (23)

iiN(8) = TNRz(8) pNRz(s) pN i ' ~ Rz(s)—plz.

The product representation which solves Eq. (19) can
be written in terms of standard matrices such as Rg(g),
which refers to a rotation of a vector through the angle
Q about the (-axis (or of the coordinate system through
—Q). Making a specific choice of a constant unit vector
which we rotate in succession, we have

where n, P, and p are additional constants (angle param-
eters).

Let us consider how Eq. (24) gives the desired proper-
ties. The rotations preserve the vector magnitude, satis-
fying the original constraint, and the N factors of R (s)
generate K harmonics. In general, this is a complete and
independent representation, although one needs to look
at the detailed proof [15,16] to see this. The 2N + 2
independent degrees of freedom [(6N + 3) —(4N + 1)]
are unrestricted angles, g; and P;, whose ranges are in-
dependent of each other (0 & g; & vr, 0 & P; & 2a). (In
examples, there may exist reHection symmetries, such as
P, —+ —P; or vr —P; for some of the angles, reducing the
overall range accordingly. ) Because the signs can be a
source of confusion in the derivation of the results in the
next section, we list the matrix conventions for active
rotations

(i o o ) ( e o ei (e —,eoi
R (g)= 0 cg —sg, R„(g)= 0 1 0 ~, R(g)= sg cg 0

0 sg cg ) i —sg 0 cg ) I 0 0 1)

aiv(ii~ gi~ 4i) = [R,(u) p;]z. (29)

with 80 —= sin 0, c0 = cos 0.
To complete the groundwork for a procedure for con-

structing closed strings for a given N (zeroth plus first
N harmonics), we note that the overall rotation. re can.
be omitted in the product representation (24) of the unit
vector a,

I

That is, u ~ v, and prime everything else. Finally, we
must have the periodicity condition (15),

~w (g', 4*) = —A (g,', 4,') = ——KN

This last condition can be met in two ways. The first we
call the traveling string case where all g!, P', , x', y', z'
are found so that (33) is satisfied. . The second we refer
to as the c.m. frame, where K~ ——0. We find all g, , P,
such that

Here, f(g,)—:f((g, )), etc. In place of r~, we consider
the (x, y, z) basis as arbitrarily oriented. To obtain final
polynomial expressions in sin0, , cos0;, etc. , it is conve-
nient to use the iterative property

and g,', P,' such that

(34)

(ii gN)R (O'N)R (gN)aiv —i. (3o)
PN (35)

Afterwards, it is necessary to separate out the zero har-
monic piece in Eq. (11), defined to be cxN,

'
( g' 4') = .', ( g' 4') + (g' 4') (31)

( gi yl) bl ( gl yl) + p (g/ y/)

g ( r e e 4'i) ixyswx'y's
(32)

tA'e can immediately write down the other unit vector
and its zero harmonic component Piv

IV. CENERAL PAR, AMETRIZATIONS OF
%=0,1,2)3 CLOSED STRINGS

We begin with a zeroth harmonic and then add in se-
quence a first, second, and finally a third harmonic. In
each case we describe two different solutions correspond-
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c.m. stri nging to moving strings and c.m. strin dings, as escribe in
the previous section.

2551

A. 2V=O

The N =Otriv 1trivial zero-harmonic case for Eq. (30) is
included if only to highlight th f de ree om to choose an
overall z-axis direction. We h ' ——", b' = "',e ave a = —z, b' = z', with
t e perio icity of r in o forcin~ z ' = " '

e result is a point moving at the speed of lightight,

In the "cm"c.m. procedure, we eliminate the zero har-
monics in Eqs. (37) and (38) separately and hence the
c.m. motion, by the requirement that 0 = 0' = vr 2.
Visualizing the most general t tin ersec ion o two great
circles on the Kibble-Turok sphere, we let y' = y and
x' = x cos g + z sin@:

ro ——zt.

B. &=1

(36)
sinr = —[(slI1 u + slIlv cos @)x—(cos u + cos v)y

+ sin v sm gz]. (43)

The general combination of zeroth 1 fi t h
is the = 1 case in E

p us rs armonic
is e = 1 case in Eq. (30). In simpler notation

, respectively), matrix multi-
plication leads to the intermediate answers

/ ~a = sin0cosuw+ sin0sinuy+ cos Oz, (37)

/ ~b = sin0'cosvx' + sin0'sinvy'+ cos0'z'. (38)

In addition to the z freedom w h h
handed

om, we ave c osen a particular
andedness for the time rotation of a' f
hen b can have both right- and left-handed circulation

These strings look like rotating ellipses that oscillate in
size, collapsing periodically to sticks. They are natu-
ral interpolations between the circle and stick results
in Eqs. (40), (41), forms to which they reduce in the

g = 0, 7r limits but without any overall motion. See Fig.
1 for an illustration. It is interesting, however, that we

cannot get the general c.m. solution by simple limits on
the traveling string solution.

C. 1V=2

Traeeling string

or the moving string' procedure of satisfying o. pe-

traveling-loop solution for both circulations )

.+ =1.;r = —sin 0[(sin u —sin v) x + (—cos u + cos v) "]cos v

(39)

[In such deliberations any rotation b l
/ ~

ion y an angle y of x'
" —y an e absorbed into redefinitions—y relative to w —" can be b

s its) of rr and t: x'cosvcosv + y sinv = xcos(v+ y)
ysm(v+y) ~ xcosv + ysinv, for o' -+ o

—y/ .] quation (39) refers to two simple planar
strings with constant c.m. motion th t '

circles with oscillating radii,
e, respec ive y,

r+ =—r = —sin 0 sin tp(0) —cos Ozt,

—cos Ozt.

(40)

and uniformly rotating sticks of fixed length )

r = —sin 0 cos o'P( —t) —cos Ozt.

Here we have used the cylindrical unit vectors

p(A) = xcosA+ ysinA,

(41)

(42)

@(A) = —x sin A + y cos A.

The speed of light is reached at the ends of the sticks
or when the circ es
0=0 vr ive

'
c es pass through zero radius. The 1'e lmlts

, vr give the trivial case presented in Eq. (36).

4i

l~44
44

44
44
44
4
~ i

&1

0
4
4
4
4

FIG.G. 1. The N = 1 c.m. string with P = —at t = 0.—
2

The combination of the three harmonics —zeroth, first
and second —i—illustrates an interesting point. In the c.m.
string limit where one eliminates the zeroth harmonic,
it is seen that no solution is possible for that particular
"half" of the string (a or b). A first harmornc and a

n ac, e on y pair ofsecon armonic cannot coexist. In fact, the onl
nonzero harmonics that can coexist must be in the ratio
of three to one [13].
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Traveling stv'ing y', = +y„y'I = pl + ~, 0', = 0„ (44)

For a nonzero zero-h. armonic contribution, all three
harmonics coexist. In the "moving string" procedure of
dealing with the zero harmonics of a' and b ', the o terms
cancel when the angles are related by

where the unprimed and primed angles are parameters
of a and b, respectively. This gives four strings due to
the two possible values of P2 (represented by k2) and
to the freedom for b to rotate in a right- or left-handed
direction (represented by +):

( cos ~z' sin&I ) & (
0 —(sin 2u —sin 2v) + cos2 ~' sin QI —(—cos 2u + cos 2v)

r E o )
( —sin P2 cos PI sin 02 ) & ( sin P2 cos PI cos 02

+ ~
—sill p2 cos QI cos 02 —(sill v—(,+2) sin v) + —sin p2 cos QI sill 02 —(—cos u + (k2) cos v)

sin P2 sin PI sin 02 sin P2 sin PI cos 02

( —sin. 2' sin/I cos202 )+ sin ~z' sin PI sin 202
—cos 2 cos ]

(45)

2. c.m. string

There are two ways to set both the zero harmonics
equal to zero.

the above constraints on one half of the string, and an-
other set of constraints on the other half. For example,
setting p2 ——0, QI ——2, pz ——2, QI = 0, we obtain the
string

P'I = PI = 0, ~. (46)

This reduces the string to a two-parameter N = 1 string
where 01 ——02, QI ——2, 0', = 02, QI = 2.

The second set of angles

1 ( —2(cos Og cos u + sill 02 sin u) + cos It sin 2v )
F 2(cos u sin 02 —cos 02 sin u) —cos 2v

sin g sin 2v

give a string with only a second harmonic

( (sin 2u + cos g sin 2v) )
r = +— —cos2u g cos2v

sin Q sin 2v r
(48)

which is simply a z rotation of u on Eq. (43).
Other solutions may be obtained by satisfying one of

D. N=3

Tr a@cling string

The general equations fixing the zero harmonics so that
they cancel are highly nonlinear, and the solution set is
very difEcult to define, but the following four solutions
are fairly easy to see:

4s =Ps,
4s =Ps,
4s = —4s
4s = —4s,

O3 = O3,

O~ = O3,

O,'=O, +sr,
O' =O

42 =42, O'I = OI+~,
02 = 02 + lr,
02 =02, PI = $1~7r,
02 = 02+ vr,

These all give the same two string equations [in the more concise form of @, p from (42)],

24S 24~. . . & 2Ar = ——cos —cos —sin QI sin 3t p(3a ) + —cos —sin &p2 cos QI sin 2t p(2cr —02)3 2 2 2 2
1+—sin ps sin p2 sin QI sin 2t p(2cr —Os + 02) ——sin ps cos —sin QI sin 2t sin (20 + Os) z

2 2

—cos —sin —sin QI sin t p(o —202) —sin —sin —sin QI sin t p(o —20& + 202)
. 24S

2 2 2 2



48 CLOSED STRINGS %ITH LO% HARMONICS AND KINKS 2553

+ sin $3 cos p2 cos QI sin t p(o —03) —sin —cos —sin QI sin t p( cr——203)
. , 03

2 2
cos p3 sin p2 sin QI sin t sin (o + 02)z + sin $3 sin p2 cos QI sin t cos (o + 03 0$)z
1

2
——slI1 $3 sin P2 sin PI t p( —03 —02) —sin —sin P2 cos PI t p(283 0$)

2

—
~

cospscosp2cospl + sinpssin —sin/I sin(03 202) ~
tz

or

243 1 2r = ——cos —cos —sin PI cos 3o P(—3t) ——cos
3 2 2 2
1+—sinp3 slnp3 sin/I cos 2o p( —2t —03 + 02)—

—cos —sin —sin PI cos cr P(—t —202) —sin, 43 . 2 42 ~ 2

2 2

—sin P2 cos PI cos 2o p( —2t —02)
43
2

1—sin $3 cos —sin PI cos 2' cos (2t —03)z
2 2
43—sin —sin QI cos Ir @(—t —203 + 202)
2 2

—sinp3 cosp2 cospl cosa. p( —t —03) + sin —cos —sin/I cosa @(t —203)
. .A

2 2
cos Q3 sin p2 sin QI cos o cos (t —02)z + sin $3 sin p2 cos QI cos cr sin (t —03 + 02)zl. . 243
2

——sin $3 sin 42 sin QI t p( —03 —02) —sin —sin 02 cos QI t p(203 02)
2

cos (63 cos p3 cos QI + sin $3 sin —sin QI sill (03 —202)
I

t z.
2 (51)

2. c.rn. sh ing

There are many ways to set both zero harmonics equal to zero. Because any combination of these string halves is
possible, we present only the equation for a.

There are three solutions which produce a string with first, second, and third harmonics:

~ 3~
$3 ——0,

2 2

1- 1 1a =
~

—sin/I sin 3u —(+2) —cos QI cos (2u —02) + —sin/I sin (u —202)
~

x
6 2 2

( 1 1 1 ~+
~

——sin QI cos 3u —(+2) —cos QI sin (2u —02) ——sin QI cos (u —202)
~ y6 2 2

+[—(+3) sin QI cos (u + 02)] z,

3"(4= —, —,42=o,2' 2'
1 1a =

~

—sin/I sin 3u —(+3) cos QI cos (u —03) + —sin/I sin (u+ 203)
~

3c
y6 2

1 1+
~

——sin QI cos 3u —(+3) cos QI sin (u —03) + —sin QI cos (u + 203)
6 2

1+
~

(+3)—sin QI cos (2u + 03)
~

z

K 3~
2' 2'

(1 2/3 . . 3/3a = (+I)
~

—cos —sin 3u + sin —sin (u + 203)
~

x
2

1 . 24'+(+I) ~

——cos —cos 3u + s111 —cos (u + 203)
3 2

r2

1
+(+I)

~

——sings cos (2u+ 03)
~

z,
2
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The angles
7t 37'4s=o, 2' 2'

give a string with only first and third harmonics

a = (+1)
~

—cos —sin 3u + sin —sin (u —202)
~

x
2 r

1
+(+1)

~

——cos —cos 3u —s111 —cos (u —20z)

+(+1)[
—slxl Q2 cos (u + 02)] z .

The eight other solutions found reduce to strings with only a first harmonic. These solutions are

&1=2 '2

3~
P2 ——vr, P1 ——0, vr,

03 ——202,

4's z & 2 & 4'2

&1=-2 '2

0, =20, +~,

03 ——202,
(60)

$, =7r,

P, =sr,

Os = 20. + -„A= -41+ -„-4+ —', ,

Os = 20z+ —',", 4s = rt1+ —2, 41+ —', .

An example of an N = 3 string is given here,

+—cos (f)1
4

1+—sin P1
4

cos (v + 02).

COS 0! —SlIl 0!COS

r = —sin P1 sin a sin 3u ——sin P1 cos n cos P cos 3u

SlIl 0!COS cos 0!
—cos a. cos P sin (2u —02) ——cos P1 i sin a cos (2u —02)

—sin p ) 0 )
cos 0,' —sin cx cos
sin a sin (u —202) ——sin Q1 cos a sin P cos (u —20z)

0 ) sin p j
sin o. sin ( sin&'1

I——sinrt1 —coscxsinP I cos (u+ 02) + — 0 sin3v
—cosp ) "& ~ )

0 ) 1 ( 0
sin p1 cos 3v + — —cos p'1 sin (2v —02)

( COS Q1 t' sin&'~ )0 cos (2v —0 ) + —
' 0 sin (v —02)

0 ) ( 0

, (
I , (

sin P1 cos (v —202) —— 0
'& ~ ) sing'1 )

This string is displayed in Fig. 2 for a given choice of parameters.

V. PREVIOU8 STRIN GS

In this section we rewrite other existing parametrizations in terms of our rotation angles. (These rewritten versions
have also been referenced earlier in [15].) The Turok string [9], shown in Fig. 3 for a particular choice of parameters,
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44
444x ~ %4

~ ' 444
4
~4~ 44 4

44
~Q4444444~--

4
4

;th ~ —0.8 and p =
2 ~t t=o.FIG. 3. The Turok strsng wit

8 = 1.23, 8' = 3.011, Q = 0.785, and Q' = 2.901 at t =

and a first in b. Defining Turok's parameter o.n which has a first an d third harmonic in a, and a first in . eis a two-parameter string w ic
the string equation isto be o. = sin

—"sin 3u+ cos 2 sinu2 'Ir 3 SiIl
——sin 2 coT 3 —sing cosu j

SlIl 'U

—cos P cos v
1

—sin cos v
(62)

ich ields the 1-3 half of this string isThe product of rotations which yie s e

az, —B,(2u) R (m —g) R, (u) x, (63)

= 3 with ps ——0, p2 ——~ —i1, 82 ——0, fi = —,res onds to our complete produc r pct re resentation for N = 3 wit 3 — 2 — —0

The second string half is given by

bT = B (P)B,(v )x. (64)

strin is not in what we call standard form. e see that thisis due to the fact that the Turok string is not in w a we cThe leftmost rotation is ue o e strin is not in

F' 4 for a give h
'

o araine erss (CDH) string [12], shown in ig.
r in a which contains the Turo s

'
g

hen DiCarlo, Hotes s
strin as a limit. e re e n

to be consistent with our de nition o o.
'

gCDH =

r Ccos8
S

12

r —Scos8 )
C 't cos 3'sin 3'll-

Ssin8 )
r 2 —Ccos8 )+- —S1

C sin 8 j
r 0

v —— cos P cos v,~ sinu —— cos8+ cos i1 0 sin

( —sin g(1 —3 cos2 8)

where

C = cosa —cosy, S = sinosing.
~ ~The product representation is
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IacDH: Ry (0)Rz (y)Rz (2u)Rg ( 02)R~ ($2)R~ (02)R~ (u)x (67)

bcDH = R (p)R, (v)k,

where

cos y = C/(1 —cos 0 cos g), sin y = 8/(1 —cos 0 cos q~

cos 02 ——cos 0 sin rI/d, sin 02 ——sin 0 ~d (70)

cos Qg = cos 0 cos 'g) sin $2

d = +(1 —cos Ocos q) '. (72)

DeI aney, Engle, and Scheick ~DES~ have deriveave derived a general five-parameter 1-3 1-3 ts ring equation [13]

cos 3tL

( 1 —c'sing' )
cos 3v + —

i
c' cos P'

)

cos sin
~ ~ ~

&
—smgssngsinp+ cosgcosp )

+- -' ' —
2

~ f

+— —cos g' sin 3v —— sin 0' sin P'
0 ) cos0' )

1 (*,')
sinv —— y'

l cosv,' 4") (73)

with

x = —3csingcosg,

y = sin 0(l —3c sin P),

z = cosgsing —csee 0(l —3sin 0),

c = cos 0(1+ sing)/2, (74)

and with the same relationships between the primed vari-

ables.
In terms of the product representation,

&DFs ——R~ ( p) R, (p —vr /—2)R (7r /2 —0)B,(2u) R, (—02 )

x R.($,)R, (0,)R, (u)~,

bDEs = Rz(P —w/2)Rz (7r/2 —0 )Rz (2v)Rz (—02)

x R (p2) R, (02)R, (v) x, (76)

with

cos 02 ——+ sin 0(1 + sin P) / f, sin 02 ——~ cos P/ f, (77)

4
4
4
4

&i

4
4
4

4
4

4
4

4
4

& ~
4

4
4

4

f = [cos P+ sin 0(1+ sing) ]2, (79)

cos p2 ——cos 0 sin p —sin 0, sin p2 ——+f cos 0 (73)

FIG. 4. The CDH string with 0 = —", g = 1.60160, and

P = 2.644 60 at t = 2.03.

~ ~and similarly for the primed angles. This string is dis-

p aye in ig. 5 for a given choice of parameters.
These early parametrizations contained only odd har-

monics. For this reason the t' f thm ', ey sa is y e symmetry rela-
tion r(cr+vr, t) = —r(cr, t) On the other ha. nd, in Ref. [10]
Burden introduced a simple l f tc ass o s rings with vn and
n harmonics in the left and r ht trig sec ors, respectively,
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4

4 4

4 4 ~ 444

FIG. 6. The Vilenkin-Uachaspati string with o. = 0.6 and
P = 2.644 60 at t = 0.

FIG. 5. The DES string with 8 = 3, 0 ' = 2.03,
Q = 0.644 60, Q' = 2.2345, and p = —at t = 2.0.

a' u = cos mu w —sin mu z,
b '(v) = cos(nv) (cos@x + sin@y) —sin(nv) z. (80)

For m and n relatively prime, this symmetry no longer
holds, and gravitational radiation is no longer suppressed
[10]. We can describe this class of strings as a subclass
of our general parametrization in the following way,

third harmonics in the left-going string half, and a first
in the right-going half:

1 1
'—-o, sin 3u + (1 —n) sin u + sine

rvv = — —
s n cos 3u —(1 —n) cos u —cos P cos v

2 ga(l —n) sin2u —sinPcosv )
(82)

where 0 & n & 1, and —vr & P & n. Defining Ps by the
relation o. = cos @&', the product representation gives

avv —— B(vr)B,—(u)B, ( 7r/2)B (P—s)B,(7r/2)B, (2u)x,

(83)

a (u)=[B ( )]
b'(v) = B,(i') [By(v)]"x. (81)

bvv —B.(y)B,(v)x. (84)

Another string without the aforementioned symme-
try is the Vachaspati-Vilenkin string [11], an example
of which is shown in Fig. 6. This has first, second, and

]

Kibble and Garfinkle and Vachaspati (GV) have de-
rived a formula for cuspless loops [6], shown in Fig. 7,
again with arbitrary parameters:

1 1 1
2 @2+2 2@2+ 1

2"—sin4u+ (p + 1) sin2u

pcos 3u —2~2p(p2 + 2) cosu

1 1 1+—
2 p'+ 2 2p2 + 1

( —~4 cos4u —((p + 1) —2) cos2u )
( —, sin 4v+ (p + 1)'sin 2v

"4 cos4v+ ((p + 1) —2) cos2v

p cos 3v + 2~2p(p2 + 2) cos v j
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only one bend at the instant when the two pass through
each other.

A. Paired kinks

Parametrization of loops with kinks has been investi-
gated by Garfinkle and Vachaspati [6]. Using a greatest
integer function, they were able to put symmetric sets of
kinks (i.e. , two symmetric pairs of left and right kinks)
in an extension. of Burden trajectories [10]. Wit our
parameters, p, q, b, and 4, define

c = 7r(1 —p) [2(cr —t)/L],
P = vr(l —q) 2(a-+ t)/L + b,

where [x] is the greatest integer less than or equal to x.
The Garfinkle-Vachaspati solution is given by

FIG. 7. The GV cuspless, kinkless striag wit p-with = 0.2 at
g 2 ~

a'= sin(2mp(cr —t)/L + n)x+ cos(2np(0 —t)/I + n)z,
(92)

b '= sin(2mq(o + t)/L + P) [cost'x + sin4y]
+cos(2vrq(0 + t)/L + P)z.

where p is a constant. In terms of the product represen-
tation, this is

B. Symmetric kinks

The paired kinks can be generalized to a symmetric
set. Define

2~ 2~
f(u) = pu+ —(1 —p) ub ' = R„(7r)R, (—v) R (p4) R, (2v) R~ g&2) R, (v) x, (87)

where P4 and P2 are related to p by the definition

4'4 4'2p:— v2 cot — —= tan—/v~Z, —
2

so that

where p E (0, 1) is real and n ) 1 is an integer. [x] ys

defined to be the greatest integer less than or equal to x.
Then a string with n symmetric kinks (n ) $) is given
by

sin/2 ——2v 2p/(2p'+ 1),

cos$2 = —(2p —1)/(2p + 1).
(90)

singe — 2~2p/(p + 2—), cos$4 ——(p —2)/(p'+ 2),

(89)

a' = (cos(f (u)), sin( f (u) ), 0).

Due to the symmetric placement of the kinks, the integral
of a' over u = 0 to 2' clearly vanishes.

this parametrization can be genera ize in the manner
discu d ' Sec. III. For example, a large multiparame-
ter set of symmetric kinked strings is given by

/a R, (2m;u + P;) R, (f(u)) xg,

VI. KINK PAB.AMETB.IZATIDNS

While a cusp is a point on a string whereh er =0 a
kink is a discontinuity in r . A discontinuity of this type
may occur after intercommutation ~e.g. , if a loop crosses

d loo s~. Theitself, it splits and reconnects as two closed loops, .
produced kink splits into right and left traveling kinks

)

these as right kinks and left kinks, for short. Indeed, a
picture of a loop with both a left and right kink will show

where the x, , m;, and p; are, respectively, arbitrary axes,
integers, and angles.

C. Single kinks

Parametrizations having a single kink in eit er a or
(left or right kink), or both, instead of a pair of sym-
metric kinks such as shown above, are difFicult to express
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r (o.)do. = 0. (96)

in closed form. To see this, consider the continuity con-
straint,

time, and depending on b ' and an arbitrary constant o, .
The problem now lies in finding a parametrization of the
path that a' takes a.long the unit circle such that its
integral vanishes.

We can set

For symmetric kinks, this constraint becomes trivial as
the first half of the integral cancels the second half for all
components.

For the single-kink string we can satisfy this continuity
constraint in the following way. As before, we split r
into its left-going and right-going modes. Letting b be
smooth, we derive the discontinuity solely from a'. We
ask that a ' lie in the x-y plane and that the discontinuity
occur at u = 2nvr where n is an integer. Letting

cos 0! + tL

a'(u) = sin(n+" f(u))
)

(9S)

asking that f(0) = 0 and f(2vr) = 2n. To get the inte-
gral to vanish, one component can be taken care of by
symmetry condition on f For. the other component, we
need f to change slowly over a sinaller part of the circle
and then quickly over the rest. A simple example is

cos 0!
a'(0) = ~ sinn, , a'(2vr) =

o

cos 0!
—sin o. (97) f(u) = u —6sinu. (99)

will give us a kink with a discontinuity angle varying with
8 is positive and constant. The integration constraint
results in a nontrivial relation between o. and b,

tano. =
J — (b ) —cosa J (—b ) —si nnE (—8 —)

E (8 )+sinn J --(—8 ) —c sooE (—h — )
(ioo)

where the Anger function and Weber function, J and E
respectively, are given by

VII. KINKS AFTER INTERCOMMUTATION

E„(.) = —.
' sin(vs —zsins) ds.

J„(z) = i cos(vs —zsins) ds,
0

(ioi)

In the previous section we have discussed representa-
tions of strings with single kinks traveling in one direction
around the string loop, where only a' or b ' but not both,
contains a discontinuity. We have also mentioned, how-
ever, that this description is not adequate for describing
a string kinked as a result of intercommutation. We will
first consider a generic case of intercommutation. This is
followed by an explicit analytic example.

This transcendental relation is well defined, and has as
a sample numerical solution, b = 0.7365 for o. = 4. This
solution generalizes easily to an infinite parameter set of
string solutions, where f (u) is

A. A construction algorithm

f(u) = u+ ) S„sin(nu), (i02)

f(u) = u+ ) o.„
72, =ocid

(u —vr) (i03)

subject to two conditions. The first being the continuity
condition, which is transcendental in the arguments a.
and the condition that f (0) = 0, which means that the
sum of the coefEcients o, vanishes.

subject to a single integral condition as a generalization
of Eq. (97).

Other modulating functions can also be considered,
such as polynomial functions

At the point of intercornmutation (say, o = t = 0),
locally the two legs of the newly formed kink describe
a plane in three-space. The directions of these legs are
given by r to the left and right of the kink, and we de-
fine these vectors as r (—e, o) and r (+e, o), respectively.
Because the two legs of the kink were originally parts
of string segments crossing through each other, each leg
moves transverse to itself and the plane, and opposite,
generally, to each other. That is, the initial conditions
require that rz has a nonzero component transverse to
this plane that changes in sign when crossing through
the kink. We will show that this initial condition is con-
tradictory to the conditions of a string containing only a
single left and right kink.

Consider the initial time-derivatives of r to the left and
right of the kink, rq( —e, o) and rq(+e, o), respectively.
Suppose only a' is discontinuous, as in the examples in
the previous section. From Eq. (1) we have,
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-(- 0) =-,'[ '(- )+b'(0)],

r (+e, o) = 2[a'(+e) + b'(0)],

r( eo)= [ a( e)+b(0)]

r, (+e, o) = 2[—a'(+e) + b'(0)].

(1o4)

r(o, t+ Ao) = r(o, t) —k. (11o)

1
r(o, t) = —(A(o- —t) + B(cr + t))2

satisfies the gauge conditions discussed in Sec. II. The
loop moves with c.m. velocity k—/Acr, corresponding to
the shift relation

Noticing that the right-hand. sides contain only three in-
dependent vectors, we can write one in terms of the oth-
ers,

ri(+e, o) = ri( —e, o) + r (+e, o) —r (—e, o). (105)

And clearly since the last two vectors on the right-hand
side of Eq. (105) lie in the above-mentioned plane, the
component of rq transverse to this plane must be equal
on both sides of the kink, in contradiction with the ini-
tial motion. We see therefore that discontinuities must
occur in both a' and b ' to correctly describe a kink after
intercommutation.

Under these circumstances, the kink will split into left-
and right-moving parts (left and right kinks) after in-
tercommutation. Given a string parametrization of a
string that self-intersects, we should like to show how one
constructs the parametrization for the daughter loops.
Consider a low-harmonic string that at some point in
time crosses itself. Let this crossing occur at t = v. , for
o = pro, o~. To describe the resulting motion, we con-
centrate on one of the daughter loops. Note that at the
point of intercommutation, this loop is described by its
left and right moving parts: a(u), u C [op —7, o'i —7] and
b(v), n E [o'p + w, oi + 7], respectively. We can define a
new string with A, 8, of invariant length 40 = o.

q
—0.0,

in terms of these functions a, b. We ask that the left-
and right-moving parts of this new string, A, B, take the
same values as a and b over the intervals given above,
respectively, and demand that their derivatives A', 8 '

be periodic with period Lo.
A, 8 will not generally be periodic, with the daughter

usually acquiring some center of mass velocity. To wit,
let

k = R(o i —7 ) —R(o'p —7') = —(b(o i + 'r) —b(os + 7 ) ) .

(1o6)

We thus have a procedure for determining the equa-
tion of Inotion for a cosmic string after intercommuta-
tion. Given the harmonic parameterization for a string,
one erst needs to calculate the points of self-intersection
(see Refs. [12,13,26] for typical calculation). Then the
above procedure can be used to 6.nd an analytical ex-
pression for the resulting string motion.

B. Ex.ample

The construction of a loop with a single kink has been
discussed in the previous section. It was explained how
a kink could be described in terms of a phase modifica-
tion of a low harmonic form. Here we wish to look at
the more realistic situation where a daughter loop is pro-
duced upon the self-intersection of a closed low-harmonic
string.

ln Ref. [12], the range of parameters have been care-
fully determined for which self-intersections occur in the
Turok string of Eq. (62). We shall follow the evolution
of one of these strings whose parameters lie in this range,
before and after self-intersection. The harmonic forms
can be adapted according to the equations of the above
subsection in order to describe the daughter loops.

Using the techniques of Ref. [12],we find, for our exam-
ple, that a Turok-string self-intersection occurs for o. =
0.5, P = 9vr/20 at 7' = 4.88707, o'o ———0.404027, o.i
0.333862. One can add 7t to the 0 values to describe the
other self-intersection occurring simultaneously (due to
the symmetry of this class of loops). This example will
subsequently split into three subloops. Using the afore-
mentioned procedure, we have calculated the resulting
disintegration of the string. Figure 8 displays the parent

1.0

k determines the resulting c.m. velocity of the piece.
Define A, B in the following way. For s E [0, Ao], set

A(s) = a(o.e —~ + s),
B(s) = b(os+7-+ s).

For s = neo + s', s' g [0, Ao], n g Z we let

(107) C

0.0—
E0
O

self-i

A(s) = a(op —~+ s) + nk,
B(s) = b(a.e+ ~+ s) —nk. (108)

-0.5

The functions A and B in Eq. (108) describe a closed
string of period 40 containing a single kink at the time of
intercommutation that subsequently splits into left- and
right-moving kinks. The closed-loop trajectory

-1.0
-1.0 -0.5 0.0

x component

I

0.5

FIG. 8. Self-intersection of a Turok string.

1.0
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FIG. 10. A close-up of the intercoInmutation region.

FIG. 9. The Turok string shortly after intercommutation.

string at the point of self-intersection. Figure 9 shows
the split, and Fig. 10 is a close-up of the point of inter-
commutation after the separation.

The evolution of the example is faithful to the gauge
conditions chosen (and described in Sec. II). All strings
segments have the appropriate transverse motion and
unit energy density, in view of the fact that both A ' and
B ' are unit vectors. The two outside daughter loops have
indeed acquired c.m. motion (with one kink in each) but
the middle daughter (with two symmetric kinks) having
none. Of course, the number of left and right kinks is
twice the number of kinks. Correspondingly the middle
loop spins after the split, conserving angular momentum.
The outer loops are more circular and have smaller peri-
ods; they are observed to shrink rapidly down to rather
small size, as seen in Fig. 9. Finally, we note that as the
kink separates into the left and right kinks, the string seg-
ment between the two kinks is curved. In general, there
will not be a straight line between the left and right kinks.

Harmonic parametrizations have been called upon in
the calculation of string angular momentum [9,13], mod-
els of cosmic strings in an expanding universe [27,28]
and also of the string gravitational radiation with and
without kinks [29—33]. Gravitational particle produc-
tion of cosmic strings has been studied using harmonic
forms [34]. It has been observed that string trajecto-
ries containing only odd harmonics do not emit grav-
itational radiation [10,35]. It is hoped that the more
general trajectories presented in this paper will aid in
giving a more realistic description of the gravitational
radiation of cosmic strings. The electromagnetic self-
interaction of a string has been calculated using harmonic
parainetrizations [36—38]. The probability that harmoni-
cally parametrized string loops will collapse to black holes
has also been addressed [39] and the interaction between
harmonic strings and domain walls has been studied [40].
Solutions incorporating these parametrizations have the
advantage that analytic precision is not sacrificed for in-
creasingly complex structure.
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