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Generalizing the original work by Hodges and Blumenthal, we outline a formalism which allows one,
in principle, to reconstruct the potential of the inAaton field from knowledge of the tensor gravitational
wave spectrum or the scalar density fluctuation spectrum, with special emphasis on the importance of
the tensor spectrum. We provide some illustrative examples of such reconstruction. We then discuss in

some detail the question of whether one can use real observations to carry out this procedure. We con-
clude that, in practice, a full reconstruction of the functional form of the potential will not be possible
within the foreseeable future. However, with a knowledge of the dark matter components, it should
soon be possible to combine intermediate-scale data with measurements of large-scale cosmic microwave
background anisotropies to yield useful information regarding the potential.
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The detection by the Cosmic Background Explorer
(COBE) Differential Microwave Radiometer (DMR) in-
strument of fIuctuations in the temperature distribution
of the cosmic microwave background radiation (CMBR)
on large angular scales [1] is certainly one of the most
significant cosmological results since the detection of the
CMBR itself. These Auctuations provide valuable infor-
mation about the nature of primordial perturbations be-
lieved responsible for the origin of structure in the
Universe. The horizon radius at the epoch of last scatter-
ing of the CMBR corresponds to angular scales of about
2 on the sky, which implies that fluctuations on scales
probed by COBE were not predominantly afFected by
causal processes or the nature of the matter constituents
of the Universe at the time of last scattering of the
CMBR. Indeed, the large-scale (greater than 2') Iluctua-
tions arise from the Sachs-Wolfe effect when photons are
either red or blue shifted as they climb out of, or fall into,
gravitational potential wells [2]. It is most likely that the

fluctuations in the CMBR are the result of processes that
occurred very early in the history of the Universe, so they
yield vital information concerning the physics that led to
the primordial perturbations.

There are currently two very attractive scenarios for
the origin of the primordial fluctuations: quantum effects
during inflation, and gravitational effects of defects re-
sulting from cosInological phase transitions. Both
scenarios involve physics beyond the standard model of
particle physics, involving energies in the range 10'
GeV&E 10' GeV, an energy scale we will refer to
loosely as the grand unified theory (GUT) scale. A major
difference in the predictions of the two scenarios concern
the Gaussian nature of the fluctuation pattern, and we
should be able to use this to differentiate between the two
possibilities in the near future. In this paper we will as-
sume that the fluctuations are the result of inflation, and
we discuss what might be learned about particle physics
at very high energies from astronomical observations
from which we can infer the primordial fl.uctuation spec-
trum.

All models of inflation involve a period of rapid growth
of the size of the Universe. This is most easily illustrated
by considering a homogeneous, isotropic universe with a
tlat Friedmann-Robertson-Walker (FRW) metric de-
scribed in terms of a scale factor a(t). Here, "rapid
growth" means a positive value of

d /a = —(4m.G~/3)(p+ 3p),
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where p is the energy density and p the pressure. In all
successful models of inAation, the Universe is dominated
by some sort of scalar "potential" energy density V) 0
that is positive, resulting in an efFective equation of state
p= —p = V, and hence 2 )0. If one identifies the poten-
tial energy as arising from the potential of some scalar
field P, then P is known as the inflaton field.

Even within this traditional view of inAation, there are
two major ways to implement the scenario. One way in-
volves a first-order phase transition. In this method, ei-
ther in the original proposal of Guth [3] or the latest ver-
sion called extended infiation [4], the infiaton is trapped
in a metastable, or false-vacuum, state while the Universe
inAates. InAation is ended when the Universe undergoes
a first-order phase transition in which the inAaton field
tunnels to its true-vacuum state. In the second method,
inAation occurs because, for some reason, the inAaton
field is displaced from its minimum and its potential ener-

gy density dominates the Universe; inAation occurs while
the inAaton field is slowly evolving, or rolling, to its
minimum [5,6]. It is this second class of "slow-roll"
models we will consider in this paper. '

Although the early slow-roll models had potentials
that were reasonably simple (Coleman-Weinberg,
etc.), or at least polynomials in some scalar field, many at-
tractive models have been developed where the scalar po-
tential driving inAation is quite complicated. Perhaps the
study of the density perturbations produced by inAation
can shed some light on the nature of the potential.

Broadly speaking, inAation predicts a very nearly
Gaussian spectrum of density perturbations that is scale
dependent, i.e., the amplitude of the perturbation depends
upon the length scale. Such a dependence typically arises
because the Hubble expansion rate during the
inAationary epoch in fact changes, albeit slowly, as the
field driving the expansion rolls towards the minimum of
the scalar potential. This implies that the amplitude of
the Auctuations as they cross the Hubble radius will be
weakly time dependent.

Within the context of slow-roll inAation, Hodges and
Blumenthal [7] have shown that any scale dependence for
density perturbations is possible if one considers an arbi-
trary functional form for the infiation potential, V(P). In
this sense, inAation makes no unique prediction concern-
ing the form of the spectrum and one is left with two op-
tions. Either one can aim to find a deeper physical prin-
ciple that uniquely determines the potential, or observa-
tions that depend on V(P) can be employed to limit the
number of poss bilities.

Improved observations of large-scale structure, of
which COBE provides the most dramatic example at
present, are important because they allow us, in principle,
to determine the spectrum of primordial density pertur-
bations. This may very well provide a direct experimen-

tal window on the physics of the grand unified era corre-
sponding to energy scales of the order 10' GeV. The
purpose of the present work is to investigate to what ex-
tent information from the CMBR and large-scale galactic
structure will allow us to reconstruct GUT physics.

In the following section we will review the salient as-
pects of slow-roll inAation. In Sec. III we discuss the
reconstruction of the inAaton potential from knowledge
of scalar or tensor perturbations. Section IV illustrates
the formalism by several examples in which the function-
al form of the potential is found from knowledge of the
tensor and scalar perturbation spectra. Section V illus-
trates what can be learned about the potential from ob-
servations of the properties of the tensor and scalar spec-
tra at a particular length scale. In Sec. VI the reader may
find a discussion of how one determines the primordial
density spectrum. Finally, Sec. VII ofFers an assessment
of the prospectus for reconstruction of the inAaton poten-
tial.

II. REVIEW OF SLOW-ROLL INFLATION

5p(x) p(x) po5(x)=
Po

(2.1)

For the benefit of those not familiar with the genera-
tion of scalar and tensor perturbations in slow-roll
inAation, we review the salient features in this section.
Those comfortable with the basic results may wish to
skip this section, and refer back to it as needed to under-
stand notation and conventions. We set c =A = 1, and
define ~ =SAG~ =8m./I p).

Slow-roll infiation requires a scalar field P to be dis-
placed from the minimum of its potential at some time
early in the evolution of the Universe. If during the evo-
lution of the field to its minimum a region of the Universe
is dominated by the potential energy of the field, then the
volume of that region will undergo rapid expansion,
inAate, and grow to encompass a volume large enough to
contain all of the presently observed Universe. Eventual-
ly, the potential energy ceases to dominate when the field
evolves through a steep region of the potential and the
field evolves so rapidly that the kinetic energy of the field
comes to dominate. This is the end of inAation, and is fol-
lowed by the scalar field oscillating about the minimum
of its potential, with the inAation field decaying and
"reheating" the Universe by conversion of vacuum ener-
gy to radiation. Technically, inAation is defined as an
epoch during which iV(t)) 0, where a is of course the
scale factor of the Universe.

We are interested in the perturbations resulting from
inAation. The "density" perturbations are usually de-
scribed in term of Auctuations in the local value of the
mass density. In a Univer. "-.,e with density field p(x) and
mean mass density po, the density contrast is defined as

In reality, the distinction between the two methods is often
not so clean, and it is possible to consider some types of first-
order inAation models as variants of slow-roll models. See Ref.
[4].

5(x)= 3 f 5„exp( —ik.x)d k, (2.2)

where 3 is an overall normalization constant, interesting

It is convenient to express this contrast in terms of a
Fourier expansion:
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6p
27T2

(2.3)

where again we have included an overall normalization
constant 3'. The perturbations are normally taken to be
(statistically) isotropic, in the sense that the expectation
of ~5z~ averaged over a large number of independent re-
gions can depend only on k =~k~. The dependence of
6p/p as a function of A, is the spectrum of the density per-
turb ations.

In a spatially flat isotropic Universe the Hubble expan-
sion rate is H(t) =a /a, and its inverse H (r) (the Hub-
ble radius) is the scale beyond which causal processes no
longer operate. Of crucial importance is the relative size
of a scale A, to the Hubble radius. The physical length be-
tween two points of coordinate separation d is
A(t) =a (t)d, so that a length scale comoving with the ex-
pansion will grow in proportion to a(t). The condition
for inAation to occur is precisely the condition for physi-
cal scales to grow more rapidly than the Hubble length;
that is, for the comoving Hubble radius H /a to shrink.
Thus, a given scale can start sub-Hubble radius, A, & X~,
pass outside the Hubble radius during inAation, and final-
ly reenter the Hubble radius long after inAation. Thus,
perturbations can be imparted on a given length scale in
the inAationary era as that scale leaves the Hubble radius,
and will be present as that scale reenters the Hubble ra-
dius after inAation in the radiation-dominated or matter-
dominated era.

Microphysics cannot affect the perturbation while it is
outside the Hubble radius, and the evolution of its ampli-
tude is kinematical, unaffected by dissipation, the equa-
tion of state, instabilities, and the like. However, for
super-Hubble radius sized perturbations, one must take
into account the freedom in the choice of the background
reference space-time, i.e., the gauge ambiguities. As usu-
al when confronted with such a problem, it is convenient
to calculate a gauge-inuariant quantity. For inAation it is
convenient to study the Bardeen potential g [8]. In the
uniform Hubble constant gauge, at Hubble radius cross-
ing, g is particularly simple, related to the background
energy density and pressure po and po, and the perturbed
energy density p&.

0:5p/(po+po) . (2.4)

where 6p =p& —
po is the density perturbation.

In the standard matter-dominated (MD) or radiation-
dominated (RD) phase, g at Hubble radius crossing is
equal (up to a factor of order unity) to 5p/p. Thus, the
amplitude of a density perturbation when it crosses back
inside the Hubble radius after inflation, (5p/p)z„, is

only for those who enjoy keeping track of factors of 2m.
What is usually meant by the density perturbation on a
scale A, , (5p/p)&, is related to the square of the Fourier
coefficients 6&..

' 2

given by g at the time the fluctuation crossed outside the
Hubble radius during inAation.

As inferred from the adoption of g, the convenient
specification of the amplitude of density perturbations on
a particular scale is when that particular scale just enters
the Hubble radius, denoted as (5p/p)z„. Specifying the
amplitude of the perturbation at Hubble radius crossing
evades the subtleties associated with the gauge freedom,
and has the simple Newtonian interpretation as the am-
plitude of the perturbation in the gravitational potential.
Of course, when one specifies the Auctuation spectrum at
Hubble radius crossing, the amplitudes for different
lengths are specified at diferent times.

Now let us turn to the scalar field dynamics during
inAation. Consider a minimally coupled, spatially homo-
geneous scalar field P, with the Lagrangian density

&=BI'PB„Q/2 —V(P)=P /2 V(P) —. (2.5)

/+3M/+ V'(P) =0, (2.6)

with the expansion rate in a Aat FRW space-time given
by

2

H = —P +V(P)
3 2

(2.7)

Here an overdot and prime denote differentiation with
respect to cosmic time and P, respectively. We assume
that inAation has already provided us with a Aat universe
by the time the largest observable scales cross the Hubble
radius.

By diff'erentiating Eq. (2.7) with respect to t and substi-
tuting in Eq. (2.6), we arrive at the "momentum" equa-
tion

2H= —~ P (2.8)

All minimal slow-roll models are examples of
subinAationary behavior, which is defined by the condi-
tion H &0. SuperinAation, where H)0, cannot occur
here, though it is possible in more complex scenarios
[9,10]. We may divide both sides of this equation by P if
this quantity does not pass through zero. This allows us
to eliminate the time dependence in the Friedmann equa-
tion [Eq. (2.7)] and derive the first-order, nonlinear
(Hamilton-Jacobi) differential equations

(~')2 3~2II2 —K V(p) (2.9)

x P= 2H' . — (2.10)

With the assumption that p is spatially homogeneous, the
stress-energy tensor takes the form of a perfect Auid, with
energy density and pressure given by p&

=P /2+ V( P ),
and p&=P /2 —V(P). The classical equation of motion
for P is

The notation "hor" follows because in the literature the Hub-
ble radius is often referred to (incorrectly) as the horizon.

A common framework for discussion of inAation is the
slow-roll approximation, though let us emphasize here
that in much of our treatment of inAation dynamics we
shall not need to resort to it. We can define two parame-
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ters, which we will denote as slow-roll parameters, by

3P (5 2 H'
2 2 H

leaves the Hubble radius during inAation, we may con-
struct the gauge-invariant g from Eq. (2.4) using the fact
that during inflation pe+go =P:

(b 2 H"
H

(2.1 1) BV 1
(2.1S)

Slow roll corresponds to te, ~i)~ I ((1. These conditions
correspond respectively to the cases when the first term
in Eq. (2.9) and the first term in its iIi derivative can be
neglected.

With these definitions, the end of inAation is given ex-
actly by e= 1. A small value of g guarantees

Now, using Eqs. (2.9) and (2.10), the amplitude of the
density perturbation when it crosses the Hubble radius
after inflation is

hor

—As(P) =m ma H (P) V (P)
&2 ' 8~'" IH'(P) m'„V(y)

'

3HQ = —V'(P), (2.12)
(2.16)

which is often called the slow-roll equation. Although the
terminology "slow-roll approximation" is normally used
rather loosely, one could imagine carrying out a formal-
ized perturbation expansion in the slow-roll parameters,
and we shall refer to such results later.

Density perturbations arise as the result of quantum-
mechanical Auctuations of fields in de Sitter space. First,
let us consider scalar density fluctuations. To a good ap-
proximation we may treat the inflation field P as a mass-
less minimally coupled field. (Of course, the inflaton does
have a mass, but inAation operates when the field is
evolving through a "flat" region of the potential. ) Just as
Auctuations in the density field may be expanded in a
Fourier series as in Eq. (2.1), the fluctuations in the
inAaton field may be expanded in terms of its Fourier
coefficients 5/i, .

5$(x) ~ J5$i, exp( ik—x)d'k . (2.13)

During inflation there is an event horizon as in de Sitter
space, and quantum-mechanical Auctuations in the
Fourier components of the inflaton field are given by [13]

k'15yk I'/2~'= (H /2~)',

where H/2' plays a role similar to the Hawking temper-
ature of black holes. Thus, when a given mode of the
inAaton field leaves the Hubble radius during inAation, it
has impressed upon it quantum-mechanical Auctuations.
In analogy to Eq. (2.3), what is called the fluctuation in
the inflaton field on scale k is proportional to k ~5$t, ~,

which by Eq. (2.13) is proportional to H/27r Fluctua-.
tions in P lead to perturbations in the energy density:

(2.14)

(2.17)

The total amount of inflation is given by X„,=E(P; ), —
where P, is the initial value of tt) at the start of inflation
(when a first becomes positive). In general, the number of
e-folds between when a length scale k crossed the Hubble
radius during inAation and the end of inflation is given by
fl 1]

N(A, )=4S+ln(A, /Mpc)+ —', ln(M/10' GeV)

+ —,
' ln(TRH/10' GeV), (2.18)

where M is the mass scale associated with the potential
and TRH is the "reheat" temperature. Relating X(X) and
X(~))) from Eq. (2.17) results in an expression between iI)

and A, .
In addition to the scalar density perturbations caused

by de Sitter fluctuations in the inAaton field, there are

where H(P) and H'(P) are to be evaluated when the scale
k crossed the Hubble radius during inAation. The con-
stant m equals —', or 4 if the perturbation reenters during
the matter- or radiation-dominated eras, respectively.
Now we wish to know the A, dependence of (5p/p)i,
while the right-hand side of the equation is a function of
P when k crossed the Hubble radius during inflation. We
may find the value of the scalar field when the scale A,

goes outside the Hubble radius in terms of the number of
e-foldings of growth in the scale factor between Hubble
radius crossing and the end of inAation.

It is quite a simple matter to calculate the number of
e-foldings of growth in the scale factor that occur as the
scalar field rolls from a particular value P to the end of
inflation tt'i, :

Now considering the Auctuations as a particular mode

3These definitions diA'er slightly from, and indeed improve
upon, those of Refs. [11,12] which were made using the poten-
tial rather than the Hubble parameter. As defined here they
possess rather more elegant properties.

With the definition of e in Refs. [11,12], this result is true only
in the slow-roll approximation.

~The 4 for radiation is appropriate to the uniform Hubble con-
stant gauge. One occasionally sees a value —instead which is

appropriate to the synchronous gauge. The rnatter-domination
factor is the same in either case. Note also that it is exact for
matter domination, but for radiation domination it is only
strictly true for modes much larger than the Hubble radius, and
there will be corrections in the extrapolation down to the size of
the Hubble radius.
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gravitational mode perturbations, g„—+g „" +h„,
caused by de Sitter fluctuations in the metric tensor
[14,15]. Here, g„" is the Friedmann-Robertson-Walker
metric and h„are the metric perturbations. That de Sit-
ter space Auctuations should lead to Auctuations in the
metric tensor is not surprising, since after all, gravitons
are the propagating modes associated with transverse,
traceless metric perturbations, and they too behave as
minimally coupled scalar fields. The dimensionless tensor
metric perturbations can be expressed in terms of two
graviton modes we wi11 denote as h. Performing a
Fourier decomposition of h,

h(x) ~ f 5hk exp( ik x—)d k,

Second, 3G and Az increase with A, . FinaHy, A~ & 36
for scales of interest, although not by an enormous factor.

To conclude this exercise, it is worth reminding the
reader how little of the inflation potential is available for
reconstruction. The scales of cosmological interest at
the present epoch lie in the range 1h ' Mpc for galaxies
up to the current horizon size of 6000h ' Mpc, where, as
usual, h is Hubble's constant in units of 100
km s ' Mpc '. Taking the present horizon distance to
have crossed the Hubble radius 60 e-foldings from the
end of inAation, we see that we only sample the small re-
gion of the potential V(P) for P H [2.7m pi 3.0m pi ]. By

we can use the formalism for scalar field perturbations
simply by the identification 5/i, ~hk//rv 2, with resulting
quantum fluctuations [cf. Eq. (2.13)]

0
l

)l

20 60 80
N(Q)

k'~i „~'/2~'=2~'(a/2~)' . (2.19)

V.1 /2
lk'"h„~""=~ (y)= H(y)-4m'" m 'm p]

(2.20)

While outside the Hubble radius, the amplitude of a
given mode remains constant, so the amplitude of the di-
mensionless strain on scale A, when it crosses the Hubble
radius after inflation is given by

3f2

I /2

I

I

I I
I

I I

I I I

AG

where once again H(P) is to be evaluated when the scale
k crossed the Hubble radius during inAation.

We illustrate via the simplest model, chaotic inAation

[6], which is to inflationary cosmology what drosophila is
to genetics. In chaotic inflation the inAaton potential is
usually taken to have a simple polynomial form such as
V(It ) =/(, It, or V(p) =p p . For a concrete example, let
us consider the simplest chaotic inAation model, with po-
tential V(P)=p P [16]. This model can be adequately
solved in the slow-roll approximation, yielding
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a (t) =a; exp — P, t — — tv'3 ' v'3/~
(2.21)

H= '"
v'3 ' v'3 /r v'3

Using Eqs. (2.16) and (2.20), A& and AG are found to be

As(A ) = (V2/~p/V12~ )[45.5+1n(A /Mpc) ],
AG(A, ) =(/~p, /V 12m. )[45.5+in(k/Mpc)]'~

(2.22)

We can note three features that are common to a large
number of (but not all) inflationary models. First, As and

have different functional dependences upon

with inflation ending at /rP, =V 2 as determined by e= 1,
where e was defined in Eq. (2.11). The number of e-
foldings between a scalar field value P and the end of
inflation is just N(P) =~ It /4 —

—,', giving

/~ It /4=[45. 5+in(A, /Mpc)] .

FIG. l. A schematic figure illustrating the main concepts
behind reconstruction. For inflation the two main steps involve
converting the observations (lower half of figure) into the pri-
mordial scalar (Az) and tensor (AG) fluctuation spectra and
then working in reverse to reconstruct the potential Vlf). The
main observational information from the cosmic microwave
background arises through the Cosmic Background Explorer
(COBE) satellite [1], and the Tenerife (TEN) [48] and South
Pole (SP) [50] collaborations. Galaxy surveys (APM [41], CfA
[34], and IRAS [39,40]) may provide useful information up to
100h ' Mpc, while the Sloan Digital Sky Survey (SDSS) [32]
should extend to the lowest scales measured by COBE. Peculiar
velocity measurements using the POTENT (P) [42] methods are
important on intermediate scales. The angle 0 measures angu-
lar scales on the CMBR in degrees, and length scales A, are in
units of h ' Mpc. dH refers to the horizon size today and at
recombination and dNL =8h ' Mpc is the scale of nonlinearity.
(See the text for details. ) Perfect observations will only recon-
struct a small portion of the inflaton potential corresponding to
between 53 ~ AX ~ 60 e-foldings before the end of inflation.
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any standards, the density perturbations from inflation
we can actually sample represent an extremely small re-
gion of the potential. However, it should be realized that
although we have potential information about a small re-
gion of the potential, any information about the GUT po-
tential, no matter how meager, is precious. Indeed, in the
exploration of GUT's, cosmology may reveal the first
"piece of the action. "

We have one further piece of information, which is
that we know that the remainder of inflation must occur
in the remaining section of the potential, with the scalar
field coming to rest with V(P) =0. Although this
represents a significant constraint on the potential on
scales below those that large-scale structure observations
can sample, it does still leave an uncountable infinity of
possible forms in this region. (One other constraint in this
region comes from primordial black holes, whose abun-
dance can in principle be calculated from the spectrum.
Should black-hole formation be copious, this constrains
the spectrum at the mass scales corresponding to the size
of detectable black holes, which are most prominent at
around 10' g [17].)

To conclude this section we call the reader's attention
to Fig. 1, which illustrates the procedure. The figure il-
lustrates a scalar field P rolling down a potential V(P).
At some point in the evolution the slow-roll conditions
break down and inflation ends. We can count back from
this point the number of e-foldings from the end of
inflation, and use this information to find a relationship
between the value of P in the evolution, and the length
scale A, leaving the Hubble radius at that point. While P
evolves, quantum fluctuations imprint scalar and
gravity-wave perturbations upon each scale as it leaves
the Hubble radius. The scalar perturbations depend
upon the potential and its derivative, while the gravita-
tional modes depend only upon the potential. In princi-
ple, AG and Az are probed by observations of large-scale
structure and by measurements of CMBR fluctuations.
The length scale, and corresponding angular scales, of
several important observations are indicated.

In the next section we will discuss the procedure for
reversing the process discussed in this section, knowing
AG(A, ) and As(A, ), how does one determine V(P)?

III. RECONSTRUCTION OF THE POTENTIAL

A number of authors [12,18—20] have recently em-
phasized the possibility that tensor modes excited during
inflation, corresponding to gravitational waves, may play
an important role in generating microwave background
anisotropies. We thus develop an extension of the poten-
tial reconstruction methods of Hodges and Blumenthal
[7] to include tensor as well as scalar modes. As discussed
in the previous section, the expressions for the amplitudes
of the scalar and tensor modes may be written as

+2IC H (p)8»' l~'(y)l '

(3.1)
AG(p)=-, 2~(p),4~'"

respectively. Note that the definition of Az(P) in Eq.
(3.1) is related to the power spectrum P'~ (k) defined in
Hodges and Blumenthal [7] by

P'"(k) =3&2~A, (y) . (3.2)

Utilizing the slow-roll approximation, there are useful
expressions for the scale dependence of the spectra, the
spectral indices, to first order in the departure from slow-
roll. These are

1 —n =d in[As(A, )]ld lnk=4e~ —2il

nG =d ln[ AG(A, )]/d Ink=2', ,
(3.3)

where an asterisk indicates evaluation at the time when
the scale A, passes outside the Hubble radius during
inflation. In keeping with convention, we drop the sub-
script S on the scalar mode index. Whenever the slow-
roll conditions are closely obeyed, the spectrum is close
to scale invariant. When this is not true, there are, in
general, corrections to the expressions for the fluctua-
tions at the next order in an expansion in slow-roll pa-
rameters.

The reader may have noticed that although we are
keeping the equations of motion general (i.e., not subject
to a slow-roll approximation), our expression for the sca-
lar modes in Eq. (3.1) is an expression based on the slow-
roll approximation, te, ~i)~] &&1. Ideally, one would like
to completely abandon the slow-roll regime, because
within it, the scalar spectrum is always close to the scale-
invariant case and the gravitational wave amplitude is al-
ways small, as we have seen. In practice, it seems very
possible that should inflation have occurred, it may well
have been pushing the outside of the slow-roll approxi-
mation envelope, and indeed much of the recent interest
has been on the possibilities of both tilt and gravitational
waves. True reconstruction assumes nothing about V(P)
(flatness, etc.) except that it inflates. Unfortunately, al-
though we are able to keep the dynamics completely gen-
eral, general expressions are not available for the pertur-
bation spectra.

Recently, an improvement has become available in the
form of general expressions for the spectra to first order
in departure from slow roll [21]. These give rise to
"first-order corrected" spectra, which can be written

Az"'=[1 —e+(2 —ln2 —y)(2e —i))]As""",
Acorr —[1+(1 ln2 ~)&]A nncorr

(3 4)

where @=0.S77 is Euler's constant. If the slow roll is
breaking then these can represent a significant improve-
ment on the uncorrected results, but unfortunately the
reconstruction loses its analytic tractability. The one ex-
ception to this is the case of power-law inflation —in that
case the effects of the corrections cancel exactly [22] in
the reconstruction equation (3.10) we derive below.

Rather than resort immediately to numerical construc-
tion, we elect instead to make the operational choice that
we shall adopt the slow-roll expressions for the spectra.
A reconstruction can then be made subject to a consisten-
cy check that the slow-roll conditions are indeed satisfied;
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if not, then our formalism will have to be enhanced to in-
corporate these improvements.

It is clear that the ratio of amplitudes of the scalar and
tensor modes is given by

inAaton potential to be determined. We consider general
inflationary behavior for the field equations (2.9) and
(2.10) and it proves convenient to parametrize the full set
of solutions in terms of the function H [A,(P)], where A, is
the scale. Equations (3.1) now become

H (3.5)

and if e«1, then AG/As «1. It is possible that the
COBE satellite is in fact observing a sum of contributions
from the tensor and scalar fluctuations, as opposed to the
pure scalar modes as originally thought. If these are un-
correlated and obey Gaussian statistics, the quantity of
observational interest on large angular scales is the sum
of the squares:

S (p) =(m /2) As(p}+ AG(p) . (3.6)

2AG

I S

for I =—', . Although it is not mandatory (one can break
the slow roll only in the q parameter as in natural
inflation), the gravitational wave contribution is typically
significant whenever there is a deviation from the slow-
roll regime.

On the other hand, the gravitational waves behave as
relativistic matter when they reenter the Hubble radius
and do not interact with the other matter components.
Consequently their energy density redshifts as a
which implies that only scalar modes affect the CMBR
anisotropy on angular scales 0(&2'. However, the an-
isotropy on these scales is also affected by the form of
dark matter present. (For a recent discussion of some of
these issues, see Ref. [23].)

To proceed, we shall assume that the functional forms
of As(A, ) and AG(A, ) are known explicitly and defer until
Sec. VI a discussion on the many difhculties associated
with determining these quantities from observation. Our
initial aim is to develop a framework which allows the

The relative weighting of Az and AG in this equation is that
appropriate to large angle anisotropies (greater than 2') in the
slow-roll approximation. This is discussed in depth in Sec. VI,
and exact weighting formulas are provided there.
7If one is performing a theoretical reconstruction of the poten-

tial by specifying either AG or A~, it is essential to ensure this
condition is always satisfied for consistency. Indeed, observa-
tions violating 2& /Az (1would immediately rule out the mod-
els we are considering.

Using m =—', and recalling that e must be less than unity,
we see immediately that the tensor modes dominate
S (P) if —,', & e & 1, or equivalently if

/H'/

5 H v'2

The largest relative tensor contribution to S (P) obtains
for e= 1:

(3.7}

AG(A, )= H(A, ) .

exp[A(P)] iso

H(P) a,
(3.8)

where X(P) is given by Eq. (2.17). Differentiating Eq.
(3.8) with respect to P yields

dA, (P) i~ ~s
d(b v'2 AG

and taking the ratio of Eqs. (3.7) implies

S
(3.9)

gg dlnwG
V'2 As dP dA,

(3.10)

Note that expression (2.10) in Hodges and Blumenthal [7]
consists of only our first term in Eq. (3.9), indicating their
assumption of slow-roll behavior. Substituting Eq. (3.9)
into Eq. (3.10) gives

dAG(A, )

AG(A. ) dA,

AG(X)

As(A, ) —AG(A, )
(3.11)

Note that the left-hand side is just equal to nG/2. This
equation is similar to Eq. (9) in Davis et al [19],provided.
one interprets their n as being the tensor index and not

8If one were to use the "first-order corrected" expressions for
the spectra discussed earlier, the right-hand side of Eq. (3.10)
would be multiplied by ( I —l.27m+ 1.27' ).

Each length scale k is associated with a unique value of
when that scale crossed the Hubble radius during

inflation. We will indicate that relationship by writing
A.(P). Now when a present length scale A, crossed the
Horizon radius during inflation with scalar field value P,
its physical size was H (P). The physical size grew be-
tween horizon crossing and today, and is now simply
P.(P)=H '(P)ao/a(P), where ao is the present value of
the scale factor and a(P) was the value of the scale factor
when the scale crossed the Hubble radius during
inflation. Now we can make use of Eq. (2.17) to relate
a(P) to the value of the scale factor at the end of
inflation, a, :

a (P) =a, exp[ —X(P)] .

This allows us to express A.(P) as
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the scalar one. It clearly shows that there exists a
correspondence between the scalar and tensor modes and
is valid for an arbitrary interaction potential. In princi-
ple, if the scale dependence of either the scalar or tensor
modes is known, the other can be determined from Eq.
(3.11). If only AG(A, ) is known, then As(k) follows im-
mediately by diff'erentiation. However, if only As(k) is
known, a first-order difterential equation must be solved
to find the form of AG(A, ). Thus, knowledge of only the
scalar spectrum leaves an undetermined constant in the
tensor spectrum.

Once the form of the tensor spectrum is known, the po-
tential, as parametrized by k, may be derived by substi-
tuting Eqs. (3.7) into Eq. (3.10). We find

which to decide how to best reconcile the data, to gen-
erate some kind of "maximum likelihood" reconstruc-
tion. Such a procedure would presumably also allow one
to demonstrate that the measured spectra were not com-
patible with each other within the inflationary paradigm,
if indeed inflation were not the correct source of the Auc-
tuations. In practice, the situation is skewed by the sca-
lar fluctuations being considerably easier to observe than
their tensor counterparts, and it seems prudent to await
the arrival of considerably better data before properly
contemplating how one would deal with the possibility of
marginally incompatible observations.

The reconstruction procedure simplifies
AG(k) «As(k) (i.e., e«1):

16ir AG(A, ) AG(A, )
V[/(A, )]= 3— (3.12) dAG(A, ) AG(k)

AG(A, ) dA,

Finally, integration of Eq. (3.9) yields the function
P=P(A, ) given by (3.15)

As (k') AG(X')
(&)=+

As (A, ') —AG(A, ') (3.13) V[/(A, )]=(48ir'/ir )AG(A). ,

, As[AG]

G

(3.14)

We have absorbed the integration constant by taking ad-
vantage of the freedom to shift P by a constant. The
functional form of V(P) follows by inverting Eq. (3.13)
and substituting the result into Eq. (3.12). It will also
prove convenient at times to express P in terms of AG. If
the functional form of 3z as a function of 3G is known,
A& [ AG ], then using Eq. (3.11) in Eq. (3.13) gives

We conclude this section by summarizing the condi-
tions necessary for the perturbation amplitudes to in-
crease or decrease with increasing wavelength [17]. Such
information alone can place strong limits on the function-
al form of the potential. The scales that first cross the
Hubble radius are the last to reenter during the radiation-
or matter-dominated eras (see Fig. 1). Consequently, the
amplitudes of the modes increase (decrease) with wave-
length if they decrease (increase) with time during
inAation. Immediately we conclude that

The reconstruction equations are Eqs. (3.11)—(3.13). It
is worth emphasizing again that for any choice of AG(A, ),
there is a unique associated A~(k) and V(P) (at least in
the slow-roil approximation), but that the converse is not
true. As shown by Hodges and Blumenthal [7], the scalar
spectrum leaves an undetermined constant in the tensor
spectrum, and as the equation relating V and AG is non-
linear, different choices of this constant might lead to
functionally diff'erent forms of the potential [24]. In or-
der to reconstruct the potential from scalar modes, one
needs an additional piece of information. Technically
what is needed is knowledge of the functional dependence
of As upon AG, As[AG]. This can be fixed either by
knowledge of the amplitude of the tensor spectrum at a
single scale, which would fix AG uniquely, or knowledge
that Az is independent of AG. As AG cannot be in-
dependent of A., the latter possibility arises only if As(A, )

is constant.
It is also worth emphasizing consistency, which can

provide an important check. If our inflationary assump-
tions are correct, then the two spectra are intimately re-
lated as illustrated above. However, observations are
typically subject to both systematic and statistical errors,
and within these one might find that measured spectra
are not exactly consistent. Were one to be confronted
with such data, one would like some prescription by

dAG/dA, )0 (3.16)

for all subinflationary (H(0) models. One requires an
era of superinflation (H )0) if this inequality is to be re-
versed. SuperinAation is only possible with a minimally
coupled self-interacting scalar field if the spatial hyper-
surfaces of the manifold have positive-definite curvature
[9]. An observation indicating

NAG�/dA,

(0 would there-
fore require some of the main assumptions made in the
inAationary analysis to be significantly altered. Within
the context of the FRW universe, for example, one would
need to extend the gravitational sector of the theory
beyond general relativity, or assume that the value of the
density parameter was significantly larger than unity at
first Hubble radius crossing. Indeed, Eq. (3.16) implies
that any eAects of the gravitational waves on the CMBR
anisotropy will always be enhanced on larger angular
scales in the models considered here.

Qn the other hand, it is possible for the scalar spec-
trum to decrease with wavelength. By writing

dAs dAs
dA, dP dA,

and employing Eqs. (3.7) and (3.9), one finds that a neces-
sary and sufhcient condition for scalar modes to be de-
creasing in amplitude with increasing wavelength is [17]
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2H' 1 H"
H 2 H

(3.17)
48 48

K K 0

In terms of the slow-ro11 parameters, this can be written
as 2e(q. As e is positive by definition, this condition is
not easy to satisfy, particularly in the late stages of
inAation where e must increase towards unity. A neces-
sary, but not sufficient, condition for Eq. (3.17) to hold is
that the potential be convex, V" &0. Therefore, if the
field is located near a local maximum of the potential, as
in natural inflation [25], for example, the amplitude will
always increase with A, .

In conclusion, it is clear that any scale dependence for
the spectrum of gravitational waves is possible in princi-
ple, subject to condition (3.16). Secondly, the most useful
parameter mathematically in the reconstruction process
is AG(A, ), because once this is known the potential can be
derived in a rather straightforward manner.

IV. RECONSTRUCTING THE FULL POTENTIAL

Before proceeding to analyze the possibilities for ob-
taining the spectra observationally, we shall first illustrate
some examples in reconstruction in order to demonstrate
the techniques. We shall examine four cases of increasing
complexity. These four cases will reconstruct to familiar
potentials.

=12' ~a
K

(4.2)

the diff'erential equation for AG(k) would give

AG (A, )=a [P+ln(A, /Xo)] '+C, (4.3)

where C is arbitrary. Fixing AG(AO) =af3' fixes C =0,
and reconstruction would proceed exactly as before.
Other choices of C would lead to different potentials,
with different predictions for AG.

Now let us consider a slightly more general tensor
mode spectrum:

AG =a[p+ln(k/Ao)]~

with y=const, again with AG(A, ) ((As(A, ). The
difFerential equation for dAG(A, )/dA, gives

Exactly as expected, the potential is of the form
V(P)=p P, with p =12m a /ir . Thus, we have suc-
cessfully reconstructed the potential.

We began with the assumption that AG(A, ) is known.
If we had started with the assumption that the scalar
spectrum is known and of the form

A~(A, ) =&2a[P+ ln(A, /ko )],

A (A, )=(a/&y)[P+ln(A/A, )]' i'+"~ (4 4)

A. Polynomial potentials

Let us first reconstruct the p P chaotic potential mod-
el worked out in Sec. II. We will then generalize the re-
sults for construction of polynomial potentials.

Recall that using the slow-roll approximation for the
potential V(P) =p P we found perturbation spectra

AG(A, ) =a[/3+in(A/Ao)]'~

and As(A, )=&ZAG(A, )/a with a =~ p, /12~, P=45. 5,
and A.0=1 Mpc. We must keep in mind that these solu-
tions were obtained in the slow-roll approximation. Since
the slow-roll approximation implies that AG (& A&, we
must reconstruct using Eqs. (3.15).

First, let us reconstruct assuming that observations
provide two pieces of information: AG(A. ) is of the form

AG(A, ) =a[p+in(k/Ao)]'

and AG(A, ) ((As(A, ). Then the diff'erential equation for
dAG(A, )/dA, in Eq. (3.15) can be used to yield a unique
scalar spectrum, As(A, ) =&2 AG(A, )/a, as anticipated
from the calculation in Sec. II. [Of course, Az(A, ) could
be found without the assumption that AG(A, ) ((As(A, ),
but it would be diff'erent. ]

Now that we know both AG(A, ) and As(A, ), we can find
P(A. ) from the second equation in Eq. (3.15):

The solution for P(A, ) is the same as Eq. (4.1) with
~—+i~/&2y. Using this in the reconstruction of the po-
tential gives

48 48
(4.5)

AG(A, ) =a[P+1n(A, /Ao)],

As(A, ) =a[P+ln(A, /Ao)]
(4.6)

B. Harrison-Zel'dovich potentials

Let us now look at potentials which give rise to the
Harrison-Zel'dovich spectrum, As (X)=a+ =const. Such
spectra are actually rather unlikely; most inAationary
models exhibit a decrease in amplitude with decreasing
scale which is significant now given the accuracy of ob-
servations.

We start reconstruction by considering the differential
equation relating AG and As [Eq. (3.11)],

dAG(A, )

AG(k) dA,

AG(A, )

a~ —AG(A, )
(4.7)

An often studied case is @=1, which reconstructs to
V(P) =A/ with scalar and tensor perturbations

P+ln(k/A, o)=~ P /4 . (4.1)

Finally, we can use the last equation in the slow-roll
reconstruction procedure to give

ln
0

2as 1

AG(A, )

which has the solution

AG(A, )
ln

A ~20 Ag0
. (4.8)
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In general, there is no closed-form expression for AG(A, ).
We can reconstruct the potential in two steps. Since

As is a constant, we can find AG in terms of P by Eq.
(3.14):

C. Exponential potentials

Generalizing away from the Rat scalar spectrum, the
simplest (and possibly most likely) case is where the am-
plitudes have a simple power-law dependence:

AG2(P) =2a~/a. $ (4.9) Aq(A, ) =aq(A, /Ao), v&0, (4.11)

Now we can substitute this into the equation for V in Eq.
(3.12) to give

1

(p/p)'
(4.10)

TABLE I. Possible behaviors for spectra in several
inAationary models.

Scalar
spectrum

Nearly Oat
spectrum

Tilted
spectrum

Small gravitational
wave contribution

Polynomial
potentials

Hyperbolic
potential

Large gravitational
wave contribution

Harrison-Zel'dovich
potential

Exponential
potentials

where P = i/2/a. .
It should be emphasized that this is the only inAaton

potential which leads to an exactly scale-invariant spec-
trum of scalar density fluctuations. It arises as a special
case of "intermediate" infiation [26], where the scale fac-
tor expands as a ~ exp(t/) with 0 &f & 1; the above po-
tential corresponds to choosing f =

—,'. In contrast, the
spectrum of gravitational waves is not scale invariant. It
is generally true that inflation cannot lead to scalar and
tensor perturbation spectra that are both constant in A. .
It is interesting to note that potentials of this form arise
when supersymmetry is spontaneously broken [27].

We can reinterpret these results in terms of the slow-
roll parameters. It is clear that to obtain a Oat spectrum
we require 2e =q, but e and q are not determined sepa-
rately. There are some interesting limiting cases. If we
allow az to tend to infinity, this corresponds to e tending
to zero. In this limit the potential becomes fIat, with its
constant value being that which gives the desired gravita-
tional wave amplitude. As a& is reduced from infinity, e
increases away from 0 preserving 2e= g. Once e becomes
big enough, there will be slow-ro11 corrections which des-
troy the Aatness of the spectrum. It is interesting to note
that although slow-roll automatically guarantees a spec-
trum which is close to Oat, it is perfectly possible for a
spectrum close to flatness to arise when the slow-roll con-
ditions are not well obeyed.

These potentials, which exhibit little tilt but which can
have substantial gravitational waves, are also of interest
in that they complete a square of possible behavior in
diA'erent infIationary models, as shown in Table I.
Indeed, such a model performs well on most large-scale
structure data with the exception of intermediate-scale
galaxy clustering data.

where az is a constant. The recent measurements from
COBE [1] alone provide the constraint —0.3 & v&0. 2 at
the 1-0. level. Incorporating specific choices of dark
matter and including clustering data allows one to do
better; for instance, in a cold dark matter (CDM) model
it has been shown [28] that v & 0. 15 at 95% confidence in
models with no gravitational waves, and v&0.08 (again
95% confidence) in power-law infiation which does have
significant gravitational wave production.

A G(A, ) satisfies the differential equation Eq. (3.11):

dAG(A, )

AG(A, ) dA,

AG(A, )

a~(A, /20) —AG(A, )
(4.12)

Obtaining the general form for AG(k) is difficult. How-
ever, there are some specific solutions which are of in-
terest in that they relate to known examples of
infiationary potentials. One obvious solution to Eq. (4.12)
is AG(A, )=as(klko)', with

as &&0 .
V

1+v (4.13)

Note that in this simple case, AG/A+=a /az, a con-
stant independent of scale, but that as V~0 the magni-
tude of the tensor contribution reduces significantly. We
can simply integrate Eq. (3.13) to obtain

1/2

P(A, )=+ — ln i/v +v .2 ' 2
2 ~0

(4.14)

Substituting this expression into Eq. (3.12) gives the final
result

with

I'(P) = Vo exp(+PIP),

16m a3 2

v+1 ' v+1

1/2

(4.15)

(4.16)

Thus we see that a power-law behavior for the ampli-
tude of the scalar and tensor modes is obtained from an
exponential potential, and is therefore consistent with
power-law models of infiation [10].

It is interesting to note that this result for P coincides
with the exact result for power-law inflation, whereas if
slow-roll were strictly applied one would get P '=I~.i/2v,
being the above to lowest order in v. Thus our hybrid of
general equations of motion but slow-roll spectrum
definitions certainly overs improved results over the usu-
al slow-roll method in this case.

Note that as v —++ oo the relative slope of the poten-
tial, as determined by e, becomes independent of v. The
limit a(v= ~ ) =i/2i~ corresponds to the Milne universe
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a (t) ~ t and represents the limiting solution for inflation
to occur. As v is increased in Eq. (4.15) the only real
effect is to increase the height of the potential through
the Vo term.

Rather than the equal power behavior, consider the
more general example

As(A. ) =as(A, /Ao)', AG(A, ) =aG(A, /Ao), (4.17)

where az and aG are constants. It is trivial to show that
these spectra are solutions to Eq. (3.11) or the differential
equation in Eq. (3.15) only if o =v. Thus, observation of
spectra that are exact power laws with different powers
would rule out the class of inflationary models we consid-
er as the source of the perturbations.

D. Hyperbolic potentials

cosh (p/2p), p& 0,
V(p)= Vo

'
. 2

— ' (4.23)

with VO=48m. asv/a lPl.
Note that for P/P&)1, V(P) ~exp( P/—P) for both

choices of the sign of P. Large values of P cross the Hub-
ble radius late in inAation and correspond to small A, .
Notice from Eq. (4.19) that AG~A, as A, ~O. We have
already reconstructed the potential that results from this
AG(A, ) as

V(PIP) ~ exp( —P/P),
which agrees with the definition of P given in Eq. (4.16)
when v « l. (The assumption that AG « Az is
equivalent to this condition. )

We can also expand Eq. (4.23) for small P:

Let us return to the differential equation for AG(A, ) in
Eq. (4.12), but in the AG(A, ) « Az(A, ) limit. The equa-
tion becomes

1 —(Pl/) /4+ .
Vo

'

4(y/y)
—2+

P&0,
P&0, (4.24)

dAG AG

as

2v

(4.18)

This equation has general solution in terms of an undeter-
mined constant P:

(A, /A, o)
AG(A, ) =asv

1+P(A, /ko)
(4.19)

V[/(A, )]=(48~ /ir )AG(A, ) . (4.20)

Now we must find P(A, ) and invert.
The integral expression for P(A. ) from Eq. (3.15) is

(4.21)

with a plus sign for positive P and minus sign for negative
p. The constant p is the same as that of the previous sub-
section (in the slow-roll approximation), P

' =vv'2v.
The solutions to the integral are

—2 are csch [&P( A, /A 0) ], P)0,
—2 arcsech[&lpl(A, /Ao) ], p & 0 .

(4.22)

These expressions are easily inverted to give A, (P), and
the potential reconstructs to

We will see that different functional forms for the poten-
tial reconstruct depending upon the sign of P. Of course,
P can be determined by measurement of AG on any one
scale. As P—+0 we recover the power-law spectra for
AG(A, ) and Az(A. ) with equal power-law slopes. This
case was just considered above. For small scales,
lpl(A, /Ao) "«1, we also recover the above case of equal
power-law slopes for either choice of the sign of P. For
p) 0 we can take the limit of large scales, p(A, /Ao) ))1,
in which case AG(A, ) asymptotically approaches a con-
stant.

Recall that in the AG « Az reconstruction procedure,
Eq. (3.15) gives

The positive p case is also an approximation to a poten-
tial of the form V(P) ~ 1+cos(PIP) as studied in a type
of model called natural inflation [25].

The purpose of the above reconstruction exercises is to
demonstrate how the reconstruction process proceeds.
We have reconstructed several popular inAationary po-
tentials from knowledge of either the scalar or tensor per-
turbation spectrum. Before turning to the prospectus for
actually determining 3& and 3& from observational
data, in the next section we discuss a "perturbative" ap-
proach in the reconstruction of the potential.

V. RECONSTRUCTING A PIECE
GF THE POTENTIAL

The reconstruction program descr bed in the previous
section is quite ambitious, as it depends upon knowledge
of the functional forms of AG(A, ) and/or Az(A, ) over a
range of k. In this section we will outline a less ambi-
tious, but more realistic program. We will assume that
we have information only about the scalar and tensor
spectra (and their first and second derivatives) at a single
scale A,o, and see what we can learn about the potential.
This "perturbative" approach to reconstruction may be
useful in the very near future [23].

If we know AG(Ao) and Az(Ao) at some length scale Ao

(which left the Hubble radius during inflation when the
value of the scalar field was Po), we can use Eqs. (3.9) and
(3.13) to find that

In practice, observing the derivatives at a single point may be
just as dificult as measuring the shape over a range of scales,
though one might hope for adequate information to be obtained
from a significantly smaller range of scales (and with more free-
dom to coarse grain), perhaps even those accessible from a sin-

gle experiment.
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As(~0) —Ag() 0)=+
k dP &=&0 v'2 As(kp) Ag(kp)

d Ag(A, ) 1 Ag(&0)

dk i"=io &0 As(kp) —Ag(kp)

(5.1)

Using Eqs. (5.1) and (5.2) we can find the first derivative
of the potential:

,(~ )
dV(P)

dP

V($0) immediately follows from Ag(ko) and As(kp):

Ag(k, p)
V($0) = 3 Ag(kp)— (5.2)

Ag(ko) Ag(kp)=+ 7 n—o —(5—
np )v'2z' As(&0) As2(A0)

(5.5)

~ith the approximation that Ag(kp) «As(kp), the ex-
pression simplifies to

This expression also simplifies in the Ag(A, 0) «As(&0)
limit:

V($0) = Ag(lp) 1+0 Ag(kp)

As(zo)
(5.3) Ag(&0) Ag(lo)

V'(P, )=+, (7—n, ) 1+0
2~' As ~0) '

A,'(Xp)

dAs(A, )

As(k) dX
1 n

O

1 np

2kp
(5.4)

Further reconstruction of the potential requires more
than simply knowledge of the amplitudes of the scalar
and tensor perturbations at A,p; we must know the first
derivative, or the spectral index of the scalar spectrum at

Xp

(5.6)

Repeated diA'erentiation of this expression with respect
to P enables one to derive the higher derivatives. In prin-
ciple, the potential can then be expanded as a Taylor
series about the point $0. The full expression for the
second derivative is

Ag(kp)
7 n ——(5 n) — [A (A, ) —A (A, )]p 0 A2(~ )

s 0 G 0
s p

+ [ As(kp) —Ag(kp)]

rr AG(~ ) AG(A0) 1 no—
V"($0)= 3Ag(kp) 7—np —(5 n)o—

A (A, ) A (A, )

Ag(xo) Ag(xp)1+
&

Apnp 2(5 np)
As(ko) As(lp) As(kp) —Ag(kp)

Ag(kp)+(5—no)(1 np)—
As(ko)

(5.7)

where n 0 —=dnp/dko. If one makes the approximation that Ag(ko) «As(ko), it follows that this expression simplifies
considerably:

V"($0)=
~ ~ [4(np —4) Ag(kp) —(1 np)(7 —np)As(A0)—] 1+0 +0 (5.8)

Note that (1 np) is in princ—iple of the same order as

We hope that observations will soon be of a sufficient
standard to measure Ag(ko), As(ko), and no at a Particu-
lar point. One may then be able to establish whether the
potential is convex or concave with the use of Eq. (5.8).
The potential is convex in any model where the scalar
spectrum decreases with increasing wavelength. Note
though that this is only sufficient, not necessary. Indeed,
most popular models such as polynomial and exponential
potentials are convex yet still feature a spectrum increas-
ing with increasing wavelength. In models where the ten-
sor contribution is negligible, the only important parame-
ter is the sign of 1 —n p, since n p & 7 is already ruled out

by observation.
Another quantity of interest that may soon be deter-

mined observationally is the dimensionful parameter
V($0)/~ V'($0)~. This is determined by the relative am-
plitudes of the scalar and tensor fluctuations at a given
scale via Eq. (3.5). In this sense, such a quantity yields
information regarding a mass scale at which these pro-
cesses are occurring during inflation. In the case of poly-
nomial potentials it uniquely determines $0. For ex-
ponential and hyperbolic examples, however, it measures
the steepness of the potentials as given by P.

Although the value of $0 is undetermined because of
the inherent freedom to shift P by a constant, some infor-
mation of the range of P covered by observations of the
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spectra on scales between A,o and A, , can be recovered. We
can start with Eq. (3.13), the reconstruction equation for
P(A, ) and find

(5.9)

where P, =P(A, , ). Then, we can then use a simple tra-
pezoidal integration rule to find P&

—
Po in terms of the

spectra at Xo and I,

VI. DETERMIMNG THE PRIMEVAL SPECTRUM

Conventionally, one chooses a particular theory,
assesses the spectrum it predicts and attempts a compar-
ison between its predictions and the observed Universe.
For our purposes here, one must be more ambitious and
execute this procedure in reverse order, proceeding from
the observations to the primeval spectrum, and then to
the underlying infIationary theory. As well as covering
the current observational position, we intend to survey
the possibilities inherent in future experiments, both pro-
posed and conjectural, in determining the primeval spec-
trum. ' In keeping with our inflationary motivation, we
assume throughout that we have a universe of critical
density.

The range of scales of interest stretches from the
present horizon scale, 6000h ' Mpc, down to about
1h ' Mpc, the scale which contains roughly enough
matter to form a typical galaxy. " On the microwave
sky, an angle of 8 (for small enough 8) samples linear
scales of 100h '(8/I') Mpc. ' For purposes of discus-
sion, it is convenient to split this range into three
separate regions. Let us begin with the largest, and work
down.

A. Large scales (6000h ' Mpc ~ -200h ' Mpc

These scales entered the horizon after decoupling of
the microwave background, and have not been affected
by physical processes other than gravity. The perturba-
tions are small, and have retained their primeval form,
making them very interesting for reconstruction.

Without doubt the most important form of observation
on large scales for the near future is large-angle mi-
crowave background anisotropies. Scales of a couple of
degrees or more fall into our definition of large scales.
Such measurements are of the purest form available-
anisotropy experiments directly measure the gravitation-
al potential at different parts of the sky, on scales where
the spectrum retains it primeval form. Such measure-
ments are also of interest in that the tensor modes may

AT oo

(x, 8, (b)= g g a, (x)I" (8,$),
1=2 m= —1

(6.1)

where 8 and P are the usual spherical polars, x is the ob-
server position, and a& =( —1) a&* . In the expan-
sion, the unobservable monopole term has been removed.
The dipole term has also been completely subtracted; the
intrinsic dipole on the sky cannot be separated from that
induced by our peculiar velocity relative to the comoving
frame, though it is easy to show that for adiabatic pertur-
bations it will be negligible compared to it.

With Gaussian statistics for the density perturbations,
the coeKcients a, (x) are Gaussian distributed stochastic
random variables of position, with a zero mean and rota-
tionally invariant variance depending only on I:

(a, (x)) =0, ( a, (x)l ) =X, . (6.2)

It is crucial to note that a single observer such as our-
selves sees a single realization from the probability distri-
bution for the a1 . The observed multipoles as measured
from a single point are defined as

(6.3)

contribute. Tensor modes do not participate in structure
formation and most measurements we shall discuss are
oblivious to them. Further, tensor modes inside the hor-
izon redshift away relative to matter, and so tensor
modes also fail to participate in small-angle microwave
background anisotropies.

Nevertheless, these large-scale measurements still ex-
hibit one crucial and ultimately uncircumventable
problem —the cosmic variance. On the largest scales, the
number of statistically independent sample measurements
that can be made is small. Given that the underlying
inAationary fluctuations are stochastic, one obtains only a
limited set of realizations from the complete probability
distribution function. Such a subset may insu%ciently
specify the underlying distribution, which is the quantity
predicted by an inflationary model, for our purposes.
The cosmic variance is an important matter of principle,
being a source of uncertainty which remains even if per-
fectly accurate experiments could be carried out. At any
stage in the history of the Universe, it is impossible to ac-
curately specify the properties (most significantly the
variance, which is what the spectrum specifies assuming
Gaussian statistics) of the probability distribution func-
tion pertaining to perturbations on scales close to that of
observable Universe.

On large angular scales, the most convenient tool for
studying microwave background anisotropies is the ex-
pansion into spherical harmonics. Following closely the
formalism of Scaramella and Vittorio [30j, we write

OFor an extensive review of large-scale structure studies, see
the papers of Efstathiou [29] and Liddle and Lyth [28).

The present density of the Universe is

po=3HO 8~6 =2.8h ' X 10"Mo(h ' Mpc) ', where Mo is
the solar mass.

The surface of last scattering is located some 200h ' Mpc
inside the horizon distance.

and indeed the temperature autocorrelation function can
be written in terms of these:

C(a)—: (8&, P&) (82,$2) = Q QI P&(cosa),AT ET

(6.4)
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(Q,') =(1j47r)(21+1)X', . (6.S)

A given model predicts values for the averaged quanti-
ties (Q' ). On large angular scales, corresponding to the
lowest harmonics, only the Sachs-Wolfe e6'ect operates.
One has two terms corresponding to the scalar and tensor
modes —we denote these contributions by square brack-
ets. The scalar term is given by the integral

8 2

r'[S]= f"" ' ~'T'(k)
2 0 k Q~ m2

(6.6)

where j& is a spherical Bessel function and the transfer
function T(k) is normalized to one on large scales. The
equivalent expression for the tensor modes is a rather
complicated multiple integral which usually must be cal-
culated numerically [14,25,20]. Under some cir-
cumstances [20] there is a helpful approximation which is
that the ratio X'[S]jXI[T] is independent of l and given
by

Xt[S]
&'[ Tl

2 ~s'

m G

(6.7)

For many purposes this is a perfectly adequate expres-
sion, but for true reconstruction of the inAaton potential,
one must of course use the exact integral expression.

On the sky, one does not observe such contribution to
the multipoles separately. As unco rrelated stochastic
variables, the expectations add in quadrature to give

X( =X'[S1]+X'[IT] . (6.g)

For reconstruction purposes, there are two obstruc-
tions of principle. These are the following.

(i) Even if one could measure the XI exactly, the last
scattering surface being closed means one obtains only a
discrete set of information —a finite number of the XI
covering some effective range of scales. ' There will thus
be an uncountably infinite set of possible spectra which
predict exactly the same set of Xi.

(ii) One cannot measure the X, exactly. What one can
measure is a single realization, the QI. As a sum of 2l+1
Gaussian random variables, Q' has a probabihty distribu-
tion which is a g distribution with 2l + 1 degrees of free-
dom, goal+ &

~ The variance of this distribution is given by

Var[Q' ]= [2j(2l+1)](Q~ ) (6.9)

though one should remember that the distribution is not
symmetric. Each Q' is a single realization from that dis-
tribution, when we really want to know the mean. From
a single observer point, there is no way of obtaining that

'3The Ith multipole is often taken as corresponding roughly to
a scale ki -—lHo/2 Mpc ' = lh /6000 Mpc

where the average is over all directions on a single ob-
server sky separated by an angle a, and P&(cosa) is a
Legendre polynomial. The expectation for the QI, aver-
aged over all observer positions, is just
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FIG. 2. Multipoles up to l =30, roughly corresponding to
the complete range of large scales. The solid line represents the
ensemble averaged (Q') (multiplied by l) for a Hat (n =1) spec-
trum of scalar density perturbations with AG(A. ) && A&{X), nor-
malized to X&=1. The three dashed lines represent difFerent
randomly chosen realizations of this distribution. Observations
can only supply one such line, giving little clue to the ensemble
average quantity that infiation supplies the form of. For com-
parison, the dash-dotted line shows the result of a scalar spec-
trum with n =0.8, again with Az(A, ) « Az(A, ) (such a combina-
tion would arise from an appropriate inverted harmonic oscilla-
tor potential). Note that the normalization of this line is arbi-
trary (shown here with X~= 1), and were it moved up it could
match an observed distribution across much of the range. More
significantly, it is easy to note that any detailed information in
the spectrum such a speaks or troughs can be swamped com-
pletely by the cosmic variance.

mean, and one can only draw statistical conclusions
based on what can be measured. Thus, a larger set of
spectra, which gives di6'erent sets of Xl, can still give sta-
tistically indistinguishable sets of Q~'. The variance falls
with increasing I but is significant right across the range
of large scales. This is illustrated in Fig. 2.

Finally, it should be mentioned that measurements of
the polarization of the CMBR on large scales may allow
a separate determination of the gravitational wave spec-
trum to be made [31]. Such an efkct is potentially detect-
able if gravitational waves dominate the COBE result and
the polarization is of the order of 10%, for example. If
the waves only contribute 10% of the COBE signal, for
example, then only 10% of 10% is polarized, which
significantly reduces the overall e6'ect. Unfortunately,
reconstruction of the potential must await a positive
detection of such an effect, so we will not discuss it fur-
ther.

Observations other than microwave background aniso-
tropies appear confined to the long-term future. Even
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such an ambitious project as the Sloan Digital Sky Survey
(SDSS) [32] can only reach out to perhaps 500h ' Mpc,
which can only touch the lower end of our specified large
scales. However, in order to specify the fluctuations ac-
curately, one needs many statistically independent re-
gions (100 seems an optimistic lower estimate) which
means that the SDSS may not specify the spectrum with
sufhcient accuracy above perhaps 100k ' Mpc.

A further crucial issue is that the SDSS will measure
the galaxy distribution power spectrum, not the mass dis-
tribution power spectrum that is our infIationary predic-
tion. In modern work it is taken almost complete1y for
granted that these are not the same, and it seems likely
too that a bias parameter (relating the two by a multipli-
cative constant) which remains scale independent over a
wide range of scales may be hopelessly unrealistic. Con-
sequently, converting from the galaxy power spectrum
back to that of the matter may require a detailed
knowledge of the process of galaxy formation and the en-
vironmental factors around distance galaxies. As we shall
discuss in the following subsection, it seems likely that
peculiar velocity data may be rather more informative
than the statistics of the galaxy distribution.

B. Intermediate scales (-200h ' Mpc ~8h ' Mpc)

It is on intermediate scales that determination of the
primeval spectrum is most promising, though sadly these
scales only encompass about three e-foldings. Here a
range of promising observations are available, particular-
ly towards the small end of the range of scales. In terms
of technical difhculties in interpreting measurements, a
trade-off has been made compared to large scales; on the
plus side, the cosmic variance is a much less important
player as far more independent samples are available,
while on the minus side the spectrum has been severely
affected by physical processes and thus has moved a step
away from its primeval form. ' A theoretical calculation
of these effects requires a detailed understanding of the
matter content of the Universe, and is normally specified
via a "transfer function, "which measures the decrease in
density contrast at a given scale relative to the value it
would have had its evolution been that given by linear
theory in a pressureless matter-dominated universe.

l. Intermediate-scale
microwave background anisotropies

In the absence of reionization, the relevant angular
scales are from about 2' down to about 5 arcmin. (Should
reionization occur, a lot of the information on these
scales could be erased or amended in difBcult to calculate

ways. ) Several experiments are active in this range, in-
cluding the South Pole and Millimeter-wave Anisotropy
Experiment (MAX) experiments. However, these ground
and balloon-based experiments may be unable to give re-
sults with the statistical quality we would require due to
the small sky coverage which is typically involved.

Unlike the large-scale anisotropy, one cannot write
down a simple expression for the intermediate-scale an-
isotropies, even if it is assumed that one has already in-
corporated the effect of dark matter on the growth of per-
turbations via a transfer function. The reason is due to
the complexity of the operating physical processes. A
case in point is the expected anisotropy (specified by X&,
but now for larger l) in the CDM model (n = 1), as calcu-
lated in detail by Bond and Efstathiou [33], where the
temperature autocorrelation function exhibits peaks due
to such effects as Thomson scattering from moving elec-
trons.

In their calculation, both the primeval spectrum and
the form of the dark matter are assumed. For recon-
struction purposes, it seems that a good knowledge of the
form of dark matter is a prerequisite in order that these
processes can be calculated at all. Of course, given the
number of active and proposed dark matter search exper-
iments, one should be optimistic that this information
will be obtained in the not too distant future. However,
even with this information, the complexity of the calcula-
tion makes it hard to conceive of a way of inverting it
should a good experimental knowledge of the X&

(l K[30,750]) be obtained. Once again, it is much easier
to compare a given theory with observation than to ex-
tract a theory from observation.

One of the interesting applications of these results
might be in combination with the large-scale measure-
ments. The peak on intermediate scales is due only to
processes affecting the scalar modes, whereas we have
pointed out that the large-scale Sachs-Wolfe effect is a
combination of scalar and tensor modes. On large scales,
one cannot immediately discover the relative normaliza-
tions of the two contributions. However, if the dark
matter is sufticiently well understood, the height of the
peak in the intermediate regime gives this information.
Should it prove that the tensors do play a significant role,
then this would be a very interesting result as it immedi-
ately excludes slow-roll potentials for the regime corre-
sponding to the largest scales. Should the tensors prove
negligible, then, although the conclusions are less
dramatic, one has an easier inversion problem on 1arge
scales as one can concentrate solely on scalar modes.

2. Galaxy clustering in the optical and infrared

4In the distant future, when the horizon size is vastly greater
than at the present, there will be a range of scales above 200k
Mpc where the cosmic variance remains small and the spectrum
retains it primeval form. Such a region would be an ideal place
to carry out reconstruction, but unfortunately does not exist at
the present epoch.

a. Redshift surveys in the optical. Over the last decade,
enormous leaps have been made in our understanding of
the distribution of galaxies in the Universe from various
redshift surveys. For example, the ongoing Center for
Astrophysics (CfA) survey [34] aims to form a complete
catalogue of galaxy redshifts out to around 100h ' Mpc.
Other surveys of optical galaxies, often trading incom-
pleteness for greater survey depth, are also in progress.
In the medium term the Sloan Digital Sky Survey [32]
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aims to find the redshifts of one million galaxies, occupy-
ing one quarter of the sky, with an overall depth of
SOOh ' Mpc and completeness out to 100h ' Mpc.

The redshifts of galaxies are relatively easy (though
time consuming) to measure and interpret, and so provide
one of the more observationally simple means of deter-
mining the distribution of matter in the Universe. The
main technical problem is to correct the distribution for
redshift distortions (which gives rise to the famous
"fingers of God" effect). However, the distribution of
galaxies, specified by the galaxy power spectrum (or
correlation function) is two steps away from telling us
about the primeval mass spectrum. First, we have already
discussed that the primeval spectrum on intermediate
scales has been distorted by a combination of matter dy-
namics and amendments to the perturbation growth rate
when the Universe is not completely matter dominated.
If we know what the dark matter is, then this need not be
a serious problem. Second, galaxies need not trace mass,
and in modern cosmology it is almost always taken for
granted that they do not. This makes the process of get-
ting from the galaxy power spectrum to the mass power
spectrum extremely nontrivial. Models such as biased
CDM rely on the notion of a scale-independent ratio be-
tween the two, but this too can only be an approximation
to reality. In recent work, some researchers have em-
phasized the possible influence of environmental e6'ects
on galaxy formation (for instance, a nearby quasar might
inhibit galaxy formation [35]), and indeed it has been
demonstrated that only very modest eftects are required
in order to profoundly aff'ect the shapes of measured
quantities such as the galaxy angular correlation function
[36].

Despite this, attempts have been made to reconstruct
the power spectrum from various surveys. In particular,
this has been done for the CfA survey [37] and for the
Southern Sky Redshift Survey [38]. These reconstruc-
tions remain very noisy, especially at both large scales
(poor sampling) and small scales (shot noise and redshift
distortions), and at present the best one could do would
be to try and fit simple functional forms such as power
laws or parametrized power spectra to them. Even then,
the constraints one would get on the slope of, for exam-
ple, a tilted CDM spectrum are very weak indeed. How-
ever, these reconstructions go along with the usual claim
that standard CDM is excluded at high confidence due to
inadequate large-scale clustering, without providing any
particular constraints on the choice of methods of resolv-
ing this conflict.

Nevertheless, with larger sampling volumes such as
those which the SDSS will possess, one should be able to
get a good determination of the galaxy power spectrum
across a reasonable range of scales, perhaps
10h '-100h ' Mpc.

b. Redshift surveys in the infrared Arival to reds.hifts
of optical galaxies is those of infrared galaxies, based on
galaxy positions catalogued by the Infrared Astronomical
Satellite (IRAS) project in the mid-eighties. The aim here
is to sparse sample these galaxies and redshift the subset.
This is being done by two groups, giving rise to the
QDOT survey [39] and the 1.2 Jansky survey [40]. Tak-

3. Peculiar velocity flotvs

Potentially the most important measurements in large-
scale structure are those of the peculiar velocity field. Be-
cause all matter participates gravitationally, peculiar ve-
locities directly sample the mass spectrum, not the galaxy
spectrum. Were one to know the peculiar velocity field,
this information is therefore as close to the primeval
spectrum as is microwave background information.
Indeed, in the linear regime the spectrum of the modulus
U of the velocity' is just given by

2

P„(k)= As(k)T (k) .
25m k m2

(6.10)

Perhaps the most exciting recent development in pecu-
liar velocity observations is the development of the PO-
TENT method by Bertschinger and co-workers [42]. Us-
ing only the assumption that the velocity can be written
as the divergence of a scalar (in gravitational instability

'5The spectrum is defined as P„=V(k /2' )( ~6, ~ ), with V
being the volume over which the Fourier components 6U(k) are
defined.

ing advantage of the preexisting database of galaxy posi-
tions has allowed these surveys to achieve great depth
with even sampling and reach some interesting con-
clusions.

The main obstacle to comparison with optical surveys
is due to the selection method. Infrared galaxies are gen-
erally young, and appear to possess a distribution notably
less clustered than their optically selected counterparts.
They are thus usually attributed their own bias parameter
which difI'ers from the optical bias. The mechanics of
proceeding to the power spectrum are basically the same
as for optical galaxies. The most interesting and relevant
results here are obtained in combination with peculiar ve-
locity information, as discussed below.

c. Projected catalogues. As well as redshift surveys,
one also has surveys which plot the positions of galaxies
on the celestial sphere. At present the most dramatic is
the APM survey [41], encompassing several million
galaxies. The measured quantity is the projected counter-
part of the correlation function, the angular correlation
function usually denoted w(0), where 8 is the angular
separation. Though arguments remain as to the presence
of systematics, in principle, one has accurate determina-
tions of the galaxy angular correlation function. The first
aim is to reconstruct the full three-dimensional correla-
tion function from this (proceeding then to the galaxy
power spectrum). Unfortunately, present methods of car-
rying out this inversion [based on inverting Limber's
equation which gives tv(9) from g(r)] have proven to be
very unstable, and a satisfactory recovery of the full
correlation function has not been achieved.

In its preliminary galaxy identification stage, the SDSS
will provide a huge projected catalogue on which further
work can be carried out.
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theories in the linear regime this is naturally associated
with the peculiar gravitational potential), they demon-
strate that the radial velocity towards and/or away from
our galaxy (which is all that can be measured by the
methods available) can be used to reconstruct the scalar,
which can then be used to obtain the full three-
dimensional velocity field. This has been shown to work
very well in simulated data sets, where one mimics obser-
vations and then can compare the reconstruction from
those measurements with the original data set. So far,
the noisiness and sparseness of available real radial veloc-
ity data has meant that attempts to reconstruct the fields
in the neighborhood of our galaxy have not yet met with
great success; however, once better and more extensive
observational data are obtained one can expect this
method to yield excellent results.

At present, POTENT appears at its most powerful in
combination with a substantial redshift survey such as
the IRAS/QDOT survey. As POTENT supplies infor-
mation as to the density field and the redshift survey to
the galaxy distribution, the two in combination can be
used in an attempt to measure quantities such as the bias
parameters and the density parameter Qo of the Universe.
Reconstructions of the power spectrum have also been at-
tempted [43]. At present, the error bars (due to cosmic
variance because of small sampling volume, due to the
sparseness of the data in some regions of the sky and due
to iterative instabilities) are large enough that a broad
range of spectra (including standard CDM) are compati-
ble with the reconstructed present-day spectrum.

With larger data sets and technical developments in
the theoretical analysis tools, POTENT (and indeed ve-
locity data in general) appears to be a very powerful
means of investigating the present-day power spectrum.
To that, one need only add a knowledge of the dark
matter to obtain the primeval spectrum and thence to the
inAaton potential. Although likely to be limited to the
range of scales specified at the lower end by the onset of
the nonlinear regime and at the upper end by the range of
feasible experimental measurements of the radial peculiar
velocity, it seems that velocity data provide the most
promising means of reconstructing a segment of the
inAaton potential.

C. Small scales (8h ' Mpc —+ lh ' Mpc)

It is worth saying immediately that this promises to be
the least useful range of scales. For many choices of dark
matter, including the standard hot dark matter scenario,
perturbation s on these scales are almost completely
erased by dark matter free-streaming to leave no informa-
tion as to the primeval spectrum. Only if the dark rnatter
is primarily cold does it seem likely that any useful infor-
mation can be obtained.

There are several types of measurement which can be
made, such as the two-point galaxy correlation function.
However, the strong nonlinearity of the density distribu-
tion on these scales erases information about the original
linear-regime structure, and the requirement of X-body
simulations [44] (or at least the Zel'dovich approximation
and variants [45]) to make theoretical predictions makes

this an unpromising avenue for reconstruction even
should nature have chosen to leave significant spectral
power on these scales. There exist very small-scale
(arcsec-arcmin) microwave background anisotropy mea-
surements [46], though these are susceptible to a number
of line of sight effects, and further the anisotropies are
suppressed (exponentially) on short scales because the
finite thickness (about 7h ' Mpc) of the last scattering
surface comes into play.

Up to now, the most useful constraints on small scales
have come from the pairwise velocity dispersion [47] (the
dispersion of line-of-sight velocities between galaxies).
These are sensitive to the normalization of the spectrum
at small scales, though unfortunately susceptible to
power feeding down from higher scales as well. There
are certainly noteworthy constraints —for instance, it is
generally accepted that unbiassed standard CDM gen-
erates excessively large dispersions. However, the calcu-
lations required involve X-body simulations and because
a wide range of wavelengths contribute, obtaining
knowledge of any structure in the power spectrum on
these scales is likely to prove impossible, even if the am-
plitude can be determined to reasonable accuracy.

VII. DISCUSSION AND CONCLUSIONS

To date, the traditional approach in cosmology has
been to take a set of theoretical predictions for the struc-
ture of our Universe and compare them directly with
what is observed. The aim is to reduce to a minimum the
space of possible theories consistent with observations.
Unfortunately, such an analysis can only deduce which
theories are unsuitable and is unlikely to select uniquely
the correct one. An alternative and more ambitious pro-
gram is to use the observations to reconstruct the theory.
Within the context of the inflationary universe, for exam-
ple, such an approach is justified when one considers the
prize on offer —the form of the inAaton potential. The
purpose of the present work has been to illustrate how
such a reconstruction of the potential is possible in prin-
ciple.

There are two steps to any reconstruction procedure.
In practice, the observational information may not be in
a form which allows a direct comparison with the
theoretical predictions to be made. It is therefore neces-
sary to first convert the data into the quantity predicted
and only then can the second step of reconstructing the
potential be completed. As was shown in Sec. VI, this is
especially true in the inflationary universe and presents a
number of fundamental difhculties with the procedure.

In Sec. III, however, we successfully completed the
second step of the process by deriving the correspon-
dences between the tensor and scalar Auctuation spectra
and the potential. This extended the analysis of Ref. [7]
and a number of examples were presented in Sec. IV.

In a true reconstruction one should make no assump-
tions concerning the form of the potential. In particular,
the assumptions of slow-roll, which are essentially condi-
tions on the llatness of V(P), should be avoided. The for-
malism used places no restrictions on the inAaton field
dynamics, but does assume the slow-roll expressions for
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the perturbation spectra still apply. From a computation-
al point of view, it follows that reconstruction is unambi-
guous once the tensor spectrum is known. Unfortunate-
ly, however, it is this quantity which is the most dificult
to determine observationally. The only observational
effect of primordial gravitational waves appears to be
their inhuence on large-scale CMBR anisotropies. We
conclude that the most promising method of determining
the tensor spectrum is to combine the large-scale CMBR
results with intermediate scale data from peculiar veloci-
ties and CMBR anisotropies. The latter require a
knowledge of the dark matter component, but are in-
dependent of any bias in the galaxy distribution. They
determine the scalar spectrum, whereas the former de-
pends on both the scalar and tensor modes. A simple
subtraction, therefore, yields the tensor spectrum.

Equation (3.11) will allow a test of the inflationary
paradigm to be made if a separate determination of the
tensor spectrum on large scales can be made. A separate
determination of AG on large angular scales coupled with
COBE [1],Tenerife [48], and the Princeton-MIT balloon
[49] would lead to Az. This could then be compared
with the theoretical prediction derived from Eq. (3.11). If
a discrepancy was found, it would suggest that one or
more of the initial assumptions, such as the background
space-time being Hat, using a single, minimally coupled
scalar field or Einstein gravity, were incorrect. On the
other hand, in the absence of any discrepancy, this result
could be used with a combination of CMBR measure-
ments around 2', velocity and galaxy clustering data, and
compared with the theoretical predictions for different
dark matter models. This would lead to limits on the
form of dark matter present in the Universe.

We note that reconstruction is still possible if the grav-
itational waves are not significant, although one must
then deal with the integration constant which arises in
the solution of Eq. (3.11) and can affect the functional
form of the potential.

Although we have been somewhat pessimistic about
the near-term prospects for reconstructing the functional

no=0. 9, no=0 . (7.1)

If we would have this information, we can follow the per-
turbative procedure outlined in Sec. V and reconstruct in-
formation about the potential in the vicinity of some
point tt o:

V(go) =(2X 10' GeV)

+ V'(Po) =(3X 10' GeV)

V"(Po)=(5X10"GeV)

(7.2)

By taking some appropriate ratios one may find mass
scales for the potential. In this way cosmology might be
first to get a "piece of the action" of GUT-scale physics.
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form of the potential, we are optimistic regarding the
near-term possibility of' obtaining some knowledge about
the potential. To illustrate the promise of our method,
let us assume that within a few years that a combination
of CMBR measurements give us some information about
the scalar and tensor amplitudes at a particular length
scale A,o (corresponding to an angular scale Oo).

An example is that we might in the near future have in
hand the following:

As(AO) = 1 X 10, AG(Ao) =2 X 10
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