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Inflationary initial data for generic spatial topology

Jonathan Morrow-Jones
5191San Simeon Drive, Santa Barbara, California 93111

Donald M. Witt
Department ofPhysics, University ofBritish Columbia, Vancouver, British Columbia, Canada V6T1Z1

{Received 8 March 1993)

Initial data sets for Einstein's equations with a positive cosmological constant which guarantee
inflation to the future are constructed. The construction is local, allowing pieces to be sewn together to
create inflationary initial data with a generic spatial topology. A class of the initial data evolves to have
the de Sitter metric locally, but the resulting spacetime cannot be constructed by performing
identifications on de Sitter spacetime or subsets of de Sitter spacetime. These solutions provide a new
class of spacetimes which can be used to study the global effects of inflation. The space of Kantowski-
Sachs solutions, which is the evolution of another special class of the initial data, is also considered.

PACS number{s): 98.80.Cq, 02.40.Pc, 04.20.Jb

I. BACKGROUND

Observations of our local region of the Universe
present puzzles for cosmology. Although there may be
structure, matter on large scales is not tremendously
clumped together, which gravity tends to do. Also, the
Universe is spatially quite Aat, showing almost no dom-
inant curvature. And it appears to be very old. Perhaps
most perplexing of all, the 3 K background microwave
radiation is exceptionally isotropic. Because of the
"clumping" nature of gravity, standard big band cosmol-
ogy would dictate that the early Universe must have been
remarkably flat, homogeneous, and isotropic.

Inflationary cosmology attempts to resolve these mys-
teries by conjecturing an early phase of the Universe
whose evolution was dominated by a large positive
cosmological constant [I]. The precise mechanism lead-
ing to a temporary effective cosmological constant is as
yet unsettled. Generally, some high-energy symmetry
was spontaneously broken as the Universe was cooling
from expansion. During this time, the symmetry-
breaking field supercooled, yielding an effective positive
cosmological constant.

Whenever this effective cosmological constant arose,
the character of the Einstein equations must have
changed dramatically. Viewed as an initial data problem
in general relativity, the inflation period inherited the
spatial character of the Universe at the time of the phase
transition, no matter how locally curved or convoluted its
topology. Once inherited, Cauchy development of the in-
itial data dictated that the spatial topology could not
change, since time evolution is a diffeomorphism from
one spatial hypersurface to another. For inflationary
cosmology to be appropriate, a large class of initial data
must evolve toward exponential and isotropic expansion,
under the influence of a large, positive cosmological con-
stant. In this paper we consider the cosmological con-
stant as so dominant; other matter terms in the stress-
energy tensor are negligible.

Integration of initial data in general relativity is ham-
pered by the strongly nonlinear nature of its equations.
For pure cosmological constant solutions, Wald was able
to show that all non-type-IX Bianchi cosmologies, and
some type-IX Bianchi cosmologies, inflate and approach
exponential and isotropic expansion [2]. Not all Bianchi
type-IX solutions inllate —in fact, some collapse [3].
There are two other candidates for spatially homogene-
ous cosmologies: Kantowski-Sachs type, and R XH,
where H is the hyperbolic plane (constant negative cur-
vature). The space RXH does not admit any solutions
to the Einstein equations for a positive cosmological con-
stant. However, like Bianchi type IX, some Kantowski-
Sachs spaces inflate, while others collapse —these spaces
will be discussed later in detail.

For inhomogeneous spacetimes, in the presence of
matter, the prospects for proving any particular behavior
of solutions is daunting, to say the least. Nonetheless, at
least one attempt has been made to generalize Wald's
technique to inhomogeneous spacetimes with matter [4].
However, this theorem requires an unphysically motivat-
ed assumption: Nowhere during the evolution of the ini-
tial data can the spatial scalar curvature be greater than
zero. This is a restriction not only upon the initial data,
but also upon its evolution. For example, Bianchi type-
IX spaces admit initial data which have zero spatial sca-
lar curvature and expand isotropically, but nonetheless
halt expansion and collapse [3]. Thus the theorem can
only be applied by integrating the initial data, and that
defeats its usefulness.

An alternative approach to directly integrating
Einstein's equation is to identify "attractor" solutions.
These are solutions toward which initial data evolve,
asymptotically. Attractor solutions in general relativity
are believed to be stationary. Assuming that the initial
data in general relativity evolve to be stationary,
inflationary cosmology requires that there be a unique,
stationary solution, with exponential and isotopic expan-
sion in its future. The statement of this uniqueness is the
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"cosmic no-hair conjecture" [5]. As originally stated, the
conjecture is false, since there exists a solution to the Ein-
stein equations with a positive cosmological constant
which is static and does not expand isotropically —the
Nariai spacetime [6]. This solution presents no problem
for infiation, however, since it is not stable [7] and there-
fore is not an attractor solution. Some rephrasings of the
conjecture have led to proofs assuming properties of the
conformal structure of the spacetime [8]. Unfortunately,
this assumes a global structure the Universe may very
well not possess. Indeed, in this paper, we present initial
data which do inAate, but are not conformally well
behaved, even in their covering space. Nonetheless, re-
cent work shows that the only stable, locally static solu-
tion is a locally de Sitter spacetime and therefore expands
exponentially and isotropically to the future [9].

In the absence of matter, the initial data in general re-
lativity consist of the spatial metric and the extrinsic cur-
vature, which describes the embedding of the spatial hy-
persurface within spacetime. Since general relativity is a
gauge theory, initial data cannot be specified freely, but
rather must satisfy constraint equations. In this paper we
first specify locally spherically symmetric spatial metrics
on generic three-topologies in Sec. II. In Sec. III, we
solve the constraint equations locally to determine the ex-
trinsic curvature, thereby showing that the topologies of
Sec. II admits initial data for the Einstein equations with
a positive cosmological constant. In Sec. IV we prove
that the evolution of locally spherically symmetric initial
data must evolve to be an isometric immersion, or local
embedding, in de Sitter, Schwarzschild —de Sitter, or
Nariai spacetime. We then show that the topologies of
Sec. II admit initial data which evolve to immerse isome-
trically in de Sitter spacetime. Therefore the de Sitter at-
tractor solution exists for spaces with generic spatial to-
pology. As an interesting consequence of our construc-
tion, we create examples of spacetimes which locally have
the de Sitter metric, but which cannot be generated by
making identifications on either all de Sitter spacetime or
a subset of de Sitter spacetime. Finally, in Sec. V we take
a special class of spherically symmetric solutions to the
Einstein equations with a positive cosmological constant:
Kantowski-Sachs spaces. There, we show the entire
space of solutions and interpret each trajectory in phase
space in terms of the well-known Schwarzschild —de Sit-
ter [5] family of solutions and the lesser-known Nariai
solution [6]. By examining this space carefully, we shall
see the evolution of each trajectory: those that inAate,
those that collapse, and those that end on Cauchy hor-
izons.

II. CONSTRUCTION OF LOCALLY
SPHERICALLY SYMMETRIC THREE-SPACES

During inAation, the cosmological constant is very
large and positive compared to other matter sources. As
a first approximation, other matter terms can be con-
sidered negligible compared to the cosmological constant.
Assuming that the only source is a cosmological con-
stant, the Einstein field equations are

R,b
—Ag, b,

where A is the cosmological constant and R,b denotes the
Ricci curvature of the four-metric, g,b.

Since the goal is to describe the evolution of the early
Universe, a notion of time is needed. By defining a global
time t, four-dimensional spacetime is split into three-
dimensional hypersurfaces X and time IR. The global
time is necessary for defining the initial value problem,
which in turn restricts topologies of "globally hyperbol-
ic" spacetimes to split, I =R X X . The spacetime
metric also splits as a consequence of the time slicing of
spac ctime,

grab
— n~ nb +hgb

where n, is the future-directed normal to the hypersur-
face of constant time, X and h, b is the hypersurface
metric. The initial data in general relativity are deter-
mined by fixing the spatial metric h, b and its normal
derivative

K,b
=

—,'S„h,b,

called the extrinsic curvature. The pair (h,b, K,b) cannot
be specified freely on a hypersurface X due to the gauge
constraints of general relativity. We defer further discus-
sion of the extrinsic curvature and the constraints of gen-
eral relativity until the next section.

In this section we show the existence of locally spheri-
cally symmetric three-metrics h, b on three-dimensional
hypersurfaces X with generic three-topology. We show
this by explicit construction. Before proceeding with the
construction, we define precisely what we mean by local
spherical symmetry. Given any Lie group G, a local sym-
metry with respect to this group is defined.

Definition Atensor . field T,b. . . '" ' ' ', on a manifold M
is locally symmetric with respect to G iff'every point in M
has an open neighborhood U such that the following con-
ditions are satisfied: (i) There is a finite set of vectors
fields I/I'] on U which generate a faithful representation
of the Lie algebra of 6; (ii) S& T,b. . . ' '

~ ~ =0 for these
I

vectors.
If the tensor with local symmetry is the metric on the

manifold, then the vectors are local Killing vectors. The
particular symmetry of interest in the present work is a
local spherical symmetry.

Definition Atensor field .T,b. . .
' '

on a manifold M
is locally spherically symmetric iff it is locally symmetric
with respect to SO(3) and the orbits of the vector fields
are two dimensional.

Definition Amanifold M. with metric g,b is considered
locally spherically symmetric if the metric is locally spher-
ically symmetric.

As a natural extension of these definitions, the initial
data are locally spherically symmetric if both h, b and K,b
are locally spherically tensors on the initial hypersurface
X . The above abstract conditions allow' one to construct
local spherical coordinates. Further, the metric and ex-
trinsic curvature will only depend on a radial coordinate.

It follows from the definition that any globally spheri-
cally symmetric space must also be locally spherically
symmetric. In general, the converse is not true. As an
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ds =a [dg +sin P(dQz) ]; (4)

Aat R, with a line element,

ds =a [dg +g (dQz) ];
the hyperbolic plane H, with a line element,

ds =a [dg +sinh g(dQ2) ];
and the handle IR XS, with a line element,

ds =a [dg +(dQz) ] .

(6)

example, take IR with the Euclidean metric. It is global-
ly spherically symmetric. Using three linearly indepen-
d.ent generators of the translational isometry, we identify
the space periodically. The result is a three-torus
T —=S'XS'XS'. Locally, the metric is the same, and
therefore it is locally spherically symmetric, but it is no
longer globally spherically symmetric.

We use "surgery" to construct spaces with local spher-
ical symmetry. The fundamental pieces are the round
three-sphere, with a line element,

f(e)=[1—u. (it —it»l»«0)+u. (0—0 )(0—0»
then the resulting metric represents the sewing of a round
S into a fiat R . We show this pictorially in Fig. 1.

Because we sew with a smooth, nonanalytic function,
the sewing of the sphere into IR has no impact outside
the matching region. We can also sew the handle [metric
in Eq. (7)] into IR or the handle into H, etc. Also, before
sewing the spaces together, we can create quotient spaces
which still admit a locally spherically symmetric metric.
An example of this is the space RP =S I—{+I]. To
preserve the metric, we quotient a space by a discrete
subgroup of its isometrics. As a result, this procedure
can be carried out endlessly —making quotient spaces,
cutting, and sewing —until we obtain something like Fig.
2. Topologically, removing a three-ball from two mani-
folds, followed by sewing the two manifolds together
across the resulting boundaries, is called "the connected
sum" and is denoted ¹ [10]. The construction we have
just given generates locally spherically symmetric metrics
on three-spaces with topologies of

ds =a [dg +f (g)(dQ2) ] . (8)

The overall factor a merely sets the length scale, and the
term (dQz) =d8 +sin 8dg is the round metric on the
unit two-sphere —these are the orbits of the local spheri-
cal symmetry. All these metrics possess symmetries
beyond the local SO(3): The metric given by Eq. (4) has
the isometry group SO(4), the metric given by Eq. (5) has
the isometry group ISO(3), the metric given by Eq. (6) has
the isometry group SO(3,1), and the last metric has the
isometry group R X SO(3).

A generalized form of these metrics can be written

rl, so(4)
¹

~2, So(4) ~k, SO(4)

IR

I 2, ISo(3)

IR¹ I (, Iso(3)

H

~1 SO(3 1) ~2, SO{3, 1) r, so(3, 1)

RXS RXS RXS
1&a 1zR

(10)

For a general f (g), the metric given by Eq. (8) possesses
only an SO(3) isometry.

To sew spaces together while preserving local spherical
symmetry, we remove a three-ball from the sphere, the
hyperbohc plane, or flat space. The boundary of what
remains is topologically S and is an orbit of an SO(3)
isometry. We want a smooth transition from one space
to another while maintaining the general metric form
[Eq. (8)]. Specifically, we need the function f (f) to be
smooth, but not analytic.

We start with the smooth, nonanalytic function

where for the Lie group G, I; & is a discrete subgroup of
6, possibly trivial (containing only the identity).

Having just shown the existence of an infinite number
of examples of three-manifolds that admit a locally spher-
ically symmetric metric, it is natural to wonder how large
the above set compares to the set of all three-manifolds.
In order to understand this more fully, some important
mathematics must be presented.

The work of Thurston [11]on three-manifolds implies
that most three-manifolds admit hyperbolic metrics, i.e.,
a geodesically complete Riemannian metric with constant

0 if $~0,
exp( —1/P ) if itj)0p( )=

Then de6ne

f dx p(x —e)p(e —x)
u, (g) =

J dx p (x e)p(e x)——

The function u, (g) has the property that it is 0 on the in-
terval ( —~, e], it is 1 on the interval —[E,+ m ), and it is
a monotonically increasing C "(R) function on the inter-
val ( —e, e).

Using the function u, (iI'j), we can now sew various
spaces together. If, for the general three-metric of the
form Eq. (8) we take

FIG. 1. Example of three-sphere smoothly sewn into Oat

three-dimensional plane. Sewing preserves local spherical sym-

metry.
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FIG. 2. Example of convoluted initial data hypersurface. Be-
cause sewing is local, local spherical symmetry is preserved.

negative sectional curvature. Topologically, all three-
manifolds which admit a hyperbolic metrics are obtained
from identifying points in R via the action of a discrete
subgroup of SO(3, 1).

In order to understand Thurston's work, the following
background material is needed. First, a knot is the con-
tinuous embedding of a circle in a three-manifold and a
link is a finite number of disjoint knots. Next, one per-
forms Dehn surgery along a link in a manifold by remov-
ing tubular neighborhoods of each knot and then gluing
back the removed solid tori differently. More precisely,
one identifies the boundary of each hole left by identify-
ing it with the boundary of another solid torus via a
homeomorphism of the boundary different from the one
defined by the inclusion of the removed torus in the mani-
fold. Lickorish [19] proved that every closed orientable
three-manifold can be obtained from Dehn surgery on the
three-sphere. More recently, Thurston has proven that
every closed orientable three-manifold is obtainable from
the three-sphere S by Dehn surgery along a restricted
class of links, called hyperbolic links [11]. A link L is a
hyperbolic link if and only if the three-sphere S minus L
admits a hyperbolic metric of finite volume. Further-
more, given any fixed hyperbolic link L, there are an
infinite number of distinct closed three-manifolds ob-
tained from surgeries along L which admit hyperbolic
metrics and only finite number of closed three-manifolds
which do not admit hyperbolic metrics. Hence, given a
fixed hyperbolic link L, most three-manifolds obtained
from Dehn surgery along L admit a hyperbolic metric.
Therefore it follows that most three-manifolds construct-
ed from L have the topology of R /I, where I" is a
discrete subgroup of SO(3, 1). Since all closed three-
manifolds are obtained from Dehn surgeries along hyper-
bolic links, it is fair to conclude that in general most
three-manifolds admit hyperbolic metrics and, more im-
portantly, have the topology IR /I .

Although Thurston's work applies to closed three-
manifolds, one can still count open manifolds which have
compactifications which are manifolds by applying these
results to their compactifications. Combining the above
results with the fact that locally spherically symmetric
metrics exist on connected sums of hyperbolic three-
manifolds, handles, and other three-manifolds, it is fair to
conclude that a locally spherically metric occurs on gen-
eric topologies.

The greater challenge now is to find any extrinsic cur-

vature which satisfies the constraint equations for the ini-
tial data in general relativity, much less locally spherically
symmetric extrinsic curvature. As an example, consider
the case of a zero cosmological constant. Because of the
positive mass theorem [12], there does not exist any
smooth sewing of a nontrivial topological space into Min-
kowski space, which only alters a compact subset of Min-
kowski space. This occurs since the sewing of an non-
trivial space into Minkowski space introduces a mass into
Minkowski space, which impacts the geometry of the
space out to infinity. So solving the constraint equations
for the extrinsic curvature is not a simple matter. We
shall see that the positive cosmological constant allows us
to escape the restrictions of the positive mass theorem for
a zero cosmological constant.

III. CONSTRUCTION OF THE INITIAL DATA

—
—,
' ' 'R ,' (K K'—

b K—,) =——A,

D,K'b —DbK =0,
"'R'„——,

' 'RZ', +[a (K', —h „K)

(12)

KK' +—'h' —K' '&' (K' K—)—]=—&&' (13)

where D, is the covariant derivative with respect to the
hypersurface metric h, b. The first two equations
represent relations between h, b and K'b =h "K,b. These
are the constraint equations for the initial data. Equation
(13) along with the definition of K b evolves the initial
data (h,b, K,„)to form a (unique) spacetime [13]. If Eqs.
(11) and (12) are satisfied on the initial hypersurface, then
the evolution equations guarantee that the constraints
will be obeyed under evolution.

In Sec. II we showed that generic topologies, charac-
terized by the connected sums of Eq. (10), admit locally
spherically symmetric metrics in the form of Eq. (8). We
must now find K'b, which, along with the spatial metric
of Eq. (8), satisfy the constraint Eqs. (11) and (12).
Specifically, we seek a K b which is locally spherically
symmetric. Within the coordinate chart used for Eq. (8),
K'b must be only a function of the coordinate P.

Recall the general locally spherically symmetric metric
of Eq. (8):

ds =a [dg +f (f)(df)2) ] .

This metric has a scalar curvature

Recall that in initial value formulations the spacetime
metric is split:

g b= n nb+h b

where n, is the future-directed normal to the hypersur-
face of constant time X and h, b is the hypersurface
metric. Defining the extrinsic curvature

Kab 2 ~n hab

the Einstein equations for a positive cosmological con-
stant [Eq. (1)] are rewritten
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"'R [f(4)]=, , [ 4f—f" 2(—f')'+2] (14)
Universe, then the initial data must be expanding, which,
in our conventions, corresponds to

a+~ re~ =~a~ . (16)

Combining Eqs. (15) and (16) into Eq. (11),

+ 8 (K~ ) +3(K~ ) =A (17)

where ' 'R [f] is given by Eq. (14).
We solve Eq. (17) for (K~&) with an arbitrary f(g) by

explicitly integrating from an initial g value Po,

f(4o)
f(p)

(&~ )'(q)= —+ (&~ )'(q )
——

f (g ),—, (18)a'f '(g) a'f '(g)

By Eq. (18), the value of (E~&) at g) will be affected by
values of (K~&) and f at go. Such "far-field" effects are
intimately related to the concept of mass. Far-field
effects would obstruct placing locally spherically sym-
metric initial data on spaces with generic topology: The
far-field effects of one sewing region would break local
spherical symmetry for another sewing region. As a re-
sult, choose

'( o)]'—1(«)'(q, )=—+

and so Eq. (18) becomes

(~p )z(~)
& + [f'(4)l' —1

(19)
F2(g)

With Eq. (19), K~& is determined completely in terms of
the local three geometry, f(g).

Substituting Eq. (19) into the constraint given by Eq.
(16),

where f'=df /dP. The constraint in Eq. (12) becomes

(15) Consequently, we generally take the non-negative root
z~ =[(re~ )']'".

Consider sewing the three-sphere [Eq. (4)] into one of
the other locally spherically symmetric metrics, including
another three-sphere. For convenience, let /=0 be the
north pole of the sphere, and so f(P)=sin(f) for
P(g, —e. An interesting case occurs when g) —e) ~/2,
which implies f'(g) —E) (0. Then matching the three-
sphere requires that f(g) go from decreasing to nonde-
creasing, which means that there must be a value of g in
the matching region for which f'(g)=0. This is precise-
ly the location of the narrowest part of the neck in the
matching region, f;„.Demanding that the right side of
Eq. (19) remain non-negative becomes a restriction on the
smallest allowed value off;„:

a&min —+

where the length scale a is given by

(21)

a =3/A . (22)

Smaller necks cannot be used to match the three-sphere
into another locally spherically symmetric space.

In fact, in order to keep the sewings local, whenever
the function f(P) passes through a minimum, it must
satisfy the inequality of Eq. (21). Any smaller necks must
induce far-field effects. This suggests that al/ smaller
necks carry a "mass. " In Sec. V we show this is precisely
the case.

Using the general locally spherically symmetric metric
given by Eq. (8) and the extrinsic curvature given by Eqs.
(19), (15), and (20), we have just constructed locally
spherically symmetric initial data for the topologies of
Eq. (10). These initial data are smooth for the following
reasons: The locally spherically symmetric metrics were
already constructed to be smooth. The expression (19)
can only be singular at f(g) =0; however, that will never
happen in a matching region between the different topo-
logies. Finally, (20) is nonsingular for f '(g)WO. In order
to show that it is nonsingular for f'(g)=0, rewrite it in
the form

re~~= ~, a~~, +ac~, . (20) a (re~ )'+a~ .
2y'Z ~

(23)

The solution is smooth in regions where f (f)WO. If
f (g)~0 (a "cap"), smoothness of (K~&) requires

Also, to keep ' 'R nonsingular when f(g) ~0,

lim ~ finite .
f(@)~o f

We have the freedom to choose either one of two roots
for K~&=+[(K~&) ]' . As usual, if the infiation epoch
was brought about by adiabatic expansion cooling of the

By explicitly differentiating the (IC~&) term in (23) and
using (19), one can check that the f' cancels out and ex-
pression (23) is nonsingular for our choices. Since the ini-
tial data are nonsingular and constructed from algebraic
expressions involving smooth functions and derivatives of
smooth functions, the initial data are smooth. %'e must
now determine what spacetimes evolve from these initial
data.

IV. EVOLUTION OF THE INITIAL DATA

In Secs. II and III, we showed that three-manifolds
with generic topology admit locally spherically sym-
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metric initial data. This high degree of symmetry of our
initial data allows analytical integration into a spacetime.

As a first step toward integrating our initial data for
generic topology, we evolve the initial data for the build-
ing blocks of our construction: the three-sphere [Eq.
(4)], fiat R [Eq. (5)], the hyperbolic plane [Eq. (6)], and
the handle [Eq. (7)]. The "integration" is performed by
showing that our locally spherically symmetric initial
data are induced through an isometric embedding in de
Sitter spacetime. Since a given set of initial data uniquely
evolves into a spacetime, the building blocks must evolve
spacetime metrics which are locally isometric to the de
Sitter metric.

de Sitter spacetime is the Lorentzian version of a
sphere, sometimes called a "pseudosphere" [14]. Given
five-dimensional Minkowski space, with a metric,

ds = —dzp+dz& +dz22+dz3+dz4, (24)

de Sitter spacetime is the four-dimensional manifold
which satisfies

a = —z +z +z +z +z

where a =3/A. The Minkowski metric [Eq. (24)] has
the isometry group ISO(4, 1). de Sitter spacetime inherits
the isometry group SO(4, 1) (ISO(4, 1). Topologically, de
Sitter spacetime is IRXS and is therefore simply con-
nected. de Sitter spacetime is geodesically complete and
has a constant sectional curvature (hence a spaceform).
It is globally hyperbolic, meaning that there exists a hy-
persurface from which the initial data integrate to give
the entire spacetime. Any such hypersurface must be
diffeomorphic to S . For the initial data to evolve into a
geodesically complete spacetime with a constant sectional
curvature, the universal cover of the initial data hyper-
surface must be topologically S, and the universal cover
of the resulting spacetime must be isometric to de Sitter
spacetime [14].

Here we show that our initial data for generic spatial
topology evolve to be locally isometric to de Sitter space-
time. In general, the universal cover of these topologies
will not be diffeomorphic to S, and therefore the initial
data cannot evolve into a geodesically complete space-
time: There will be some time to the past, future, or pos-
sibly both, beyond which the initial data cannot be
evolved. Physically, this does not present a problem. We
are interested in inflationary spacetimes. Times before
the initial data hypersurface predate the inflationary
epoch, in which spacetime evolved according to different
(and as yet unspecified) physics. We will choose expand-
ing initial data, which evolve infinitely far to the future.
As we shall see, these spaces do possess noncrushing
singularities and/or Cauchy horizons to the past.

Consider now the following parametrization of de Sit-
ter spacetime [15]:

zo=a sinh(t/a),
z, =a cosh(t/a)sin(g)sin(8)cos(P),
z2 =a cosh(t/a)sin(g)sin(8)sin(p),

z3 a cosh(t/a)sin(g)cos(8)
z~=a cosh(t/a)cos(g),

creating the de Sitter metric

ds = —dt +a cosh (t/a)[dg +sin (g)(dQ2) ] .

The t= const hypersurfaces are round three-spheres with
a spatial metric [Eq. (4)]. These t= const hypersurfaces
are intersections of de Sitter spacetime [Eq. (25)] with
spacelike planes in Minkowski R, parametrized by

zp cy z]

where c=const and A, is a free parameter. For expanding
three-spheres, choose c &0. The extrinsic curvature of
the hypersurfaces is

=1K,b
= ,'S„h,b—=,'S,h,—&

=—tanh(t/a)h, b,a
which is the extrinsic curvature given by Eqs. (19), (15),
and (20), with a=acosh(t/a) and f(g)=sin(f). Thus
our locally spherically symmetric initial data for the
three-sphere evolve to be locally de Sitter spacetime,
within its domain of dependence.

If we now consider a different parametrization of de
Sitter spacetime,

zo=a si hn(t/a)+ —,'ae'~ g

z, =a c soh(t /a) —
—,'ae'

z2=ae'~ /sin(8)cos(P),

z3 =me'~ g sin(8)sin(P ),
z4=ae' g cos(8),

we obtain the de Sitter metric

2 dt2+ 2 2ila[dy2+$2(dII )2]

The t =const hypersurfaces are flat R 's with a spatial
metric [Eq. (5)]. These t=const hypersurfaces are inter-
sections of de Sitter spacetime [Eq. (25)] with null planes
in Minkowski R, parametrized by

zp c +kg zf

where c=const and k is a free parameter. For expanding
R 's, choose c )0. The extrinsic curvature of the hyper-
surfaces is

+ab ~ah
1

which is the extrinsic curvature given by Eqs. (19), (15),
and (20), with a=ac'~ and f(g)=P. Thus our locally
spherically symmetric initial data for a flat R evolve to
be locally de Sitter spacetime, within its domain of depen-
dence.

Choosing yet another parametrization of de Sitter
spacetime,

zo =a sinh( t /a )cosh( g ),
z, =a scho(t/a),

z2 =a sinh(t /o. )sinh(g)sin(8)cos(p),

z3 =a si h(nt/a)sinh(g)sin(8)sin(P),

z4 =a sinh(t/u)sinh(g)cos(8),
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we obtain the de Sitter metric

ds = —dt +a sinh (t/a)[d1ij +sinh (g)(d02) ] .

The t=const hypersurfaces are hyperbolic planes H with
a spatial metric [Eq. (6)]. These t=const hypersurfaces
are intersections of de Sitter spacetime [Eq. (25)] with
timelike planes in Minkowski R, parametrized by

Zp =A, , Zj =C

where c=const & a and A, is a free parameter. The extrin-
sic curvature of the hypersurfaces is

K,b
=—cath( t /a )h,„,1

which is the extrinsic curvature given by Eqs. (19), (15),
and (20), with a =a sinh(t/a) and f(g) =sinh(g). Thus
our locally spherically symmetric initial data for H
evolve to be locally de Sitter spacetime, within its domain
of dependence.

Finally, considering the parametrization of de Sitter
spacetime,

zo =a sinh( t /a )cosh( f),
z, =a sinh(t/a)sinh(f),

zz =a cosh(t /a)sin(9)cos(P),

z3 =a cosh(t/a)sin(8)sin(P),

z4 =a cosh(t /a)cos(9),

we obtain the de Sitter metric

ds = —dt +a [sinh (t/a)dP +cosh (t/a)(dQ2) ],
(26)

which is a Kantowski-Sachs metric. The t=const hyper-
surfaces are handles RXS with a spatial metric [Eq. (7)],
where the t-constant parameter sinh(t/a) is absorbed in
rescaling P. These t=const hypersurfaces are intersec-
tions of de Sitter spacetime [Eq. (25)] with bent planes in
Minkowski IR, parametrized by

zo=c cosh(A, /c), z, =c sinh(k/c),

where c=const and X is a free parameter. The extrinsic
curvature of the hypersurfaces is

1K~~
=—coth( t /a )h ~~,a
=1

K~~ = —tanh(t /a)h~~,a
1

Kgg =—tanh(t/a)boo,

which is the extrinsic curvature given by Eqs. (19), (15),
and (20), with a =a cosh(t/a) and f (P)=1. Thus our
locally spherically symmetric initial data for handles
evolve to be locally de Sitter spacetime, within its domain
of dependence. The Killing field (8/Bg)' is the restric-
tion of a Lorentz boost field in Minkowski IR to de Sitter
spacetime in regions where it is spacelike. In regions

where the boost Geld is timelike, we get the well-known
static slicing of de Sitter spacetime:

ds = co—s (g)dt +a (d03)

The Kantowski-Sachs slicing of de Sitter spacetime is
analogous to the interior solution of a Schwarzschild
black hole (which is also Kantowski-Sachs type). We will
see this in greater detail in Sec. V.

We have now seen that for the fundamental building
blocks of our initial data sets, the initial data evolve to be
locally de Sitter spacetime, within the domain of depen-
dence of each piece. This, however, says nothing of the
evolution of the matching regions.

In order to discuss the evolution of the initial data in
the matching regions, we need the following result.

Proposition. Let (h,b, K,b) be an initial data set on X
which satisfies the constraints given by Eqs. (11) and (12)
and is locally invariant under the Lie group G. Then the
initial data set evolves into a spacetime such that for
some open neighborhood of X the spacetime metric is lo-
cally invariant under G.

The initial data set on a hypersurface X evolves into a
spacetime with the topology RXX and metric g,b. To
evolve the initial data, we introduce a time function t and
a vector Aow of time t ' such that t 'V, t = 1. The time
Aow need not be normal to the surfaces of constant t. In
general, the time Row will have a projection onto the nor-
mal n' and a projection onto the hypersurface:

t'=An'+iY' .

The metric split [Eq. (2)] becomes

g,b= —2V V, tVbt+h,

A synchronous gauge results from choosing %=1 and
X'=0, in which case the Aow of time is normal to the hy-
persurfaces of constant t. Locally, a synchronous gauge
is always a valid gauge choice for a spacetime. Using the
synchronous gauge, the spacetime metric can be written
as

ds =—dt +h dx'dxj

where the coordinates x' are spatial coordinates.
Let {P&] be the set of Lie algebra generators of the

group G. Using the above slicing of M—=IRXX, each of
the vectors fields P& can be trivially extended to M by re-
quiring that each have no normal component and that
they be time independent. The extensions of the vector
fields {P&] to M will also be denoted by {Pt]. In the
above coordinates, the explicit vectors are
gt (x, t) =(0,$&(x)), where m =0,1,2,3 and i = 1,2,3.
Therefore there is a set of vector fields {P&] on an open
subset of M which generates the Lie algebra of G.

The fiows of the vector fields {Pt] generate a family of
diffeomorphisms {4&] of an open subset of M. Observe
that these diffeomorphisms only act on the spatial coordi-
nates and always map the coordinate t to itself because
the vector fields have vanishing t components. Let h, b(t)
and K,b(t) be the time evolutions of the three-metric and
extrinsic curvature with h,b(0)=h, b and K,b(0)=K,b.
Now 4'th, b(t) and V,K,b(t) are also a solution to the Ein-
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stein equations because of coordinate invariance. Howev-
er, the initial data for both solutions are the same because
I'Ih, b(0) =h,b(0) and 4'IK,b(0) =K,b(0) by construction.
Suppose that, for some t, 0'&h, b(t)&h, b(t) and/or
+IKab( )+Kab(r); then, %~h.b(t) and VIK.b( )

different solution to the initial value problem with the ini-
tial data h, b and E,b. However, this cannot be true be-
cause the initial value problem has a unique evolution.
Therefore +Ih,b(t)=h, b(t) and VIK,b(t)=K,b(t).

The above proof can be applied to any matter sources
coupled to gravity provided that the sources also have
the same local symmetry 6 and have a unique initial
value problem. Also, the proof applies to discrete sym-
metries.

An important corollary of the proposition is that local-
ly spherically symmetric initial data for Eq. (1) evolve, for
some time into the future, to be a locally spherically sym-
metric spacetime. In order to prove this, apply the above
proposition with G=SO(3) and use the fact that the time
fIow generates a diffeomorphism, which means the orbits
of SO(3) do not change dimension under time evolution.

The above results imply that all the locally spherically
symmetric initial data sets constructed must evolve into
locally spherically symmetric spacetimes. Even though
the topologies are very general, the local spacetime
metrics for spacetimes satisfying Eq. (1) with local spheri-
cal symmetry are very restricted. This is demonstrated
by the following theorem which is a generalization of
Birkhoff's theorem.

Theorem (cosmic Birkho+. The only locally spherical-
ly symmetric solutions to Eq. (1) are locally isometric ei-
ther to one of the Schwarzschild —de Sitter family of solu-
tions or Nariai spacetime [6). Further, these solutions
are real analytic within their coordinate charts.

Before discussing the proof the theorem, let us recall
the properties of the Nariai solution. The Nariai space-
time metric is

2ds = — +X (t, r)dr +Y (t, r)(diaz)F (t, r)
(28)

By denoting time derivatives by F, X, and Y and radial
derivatives by F', X', and Y', Eq. (1) becomes

Y' XY' YF'
XY YF

2
1 +2 Y'

3
Y'

+2F XY+FP Y
Y~ X XY XY XY Y

(30)

ds =a [ —dt + —,'cosh (&3t)deaf + —,'(dQ~) ] .

It is the Cartesian product of two-dimensional de Sitter
spacetime and constant round two-spheres with the prod-
uct metric. It is homogeneous with the isometry group
SO(2, 1)X SO(3).

Birkhoff's theorem is usually given for vacuum Ein-
stein equations, I16] but the proof generalizes readily for
cosmological constant [3]. In particular, a spherically
symmetric metric can be written

1 +2F F— +3 —FY Y
Y' Y Y

2 Y'F'
X2

X'
XY

(31)

First, we address the degenerate case, which occurs when
all the S orbits of the SO(3) isometry have the same ra-
dius. With respect to the metric given by Eq. (28),
V, YV'Y =0 implies S orbits of constant radius, which is
equivalent to requiring

Yl

X
=FY . (32)

Equation (32) is then substituted into Eqs. (29) and (30).
These are, in turn, both solved for Y', giving two different
expressions. Consistency implies

1 j2
1Y=

A
(33)

So, finally,

F =X = 1

1 —Ar
(34)

Equations (33) and (34) specify the Nariai solution to Eq.
(1).

When V, YV'Y & 0, surfaces of constant Y are timelike,
and so Y can be used to define a radial coordinate r = Y.
One can find a new t for which Vt Vr =0. Then Eq. (29)
implies X=O. Further, Eq. (31) leads to (F'/F)'=0, and
so, with a proper choice of t, F=O. Therefore the solu-
tion is necessarily static (in this region). Equation (30) be-
comes

r '=Ar
X

which integrates to

2M AX = 1— r
r 3

(35)

which is the Schwarzschild —de Sitter family of solutions,
parametrized by M.

The case of V, YV'Y & 0 is dealt with similarly. There-
fore the only spherically symmetric solutions to Eq. (1)
are Schwarzschild —de Sitter and Nariai spacetimes.
Analyticity follows from the restrictive form of the Ein-
stein equations for spherical symmetric solutions. Be-
cause of analyticity, if somewhere in a coordinate chart a
solution is in the Schwarzschild —de Sitter family with
mass parameter M, then it must remain in the
Schwarzschild —de Sitter family with the same mass pa-
rameter throughout the chart. Similarly, if a solution is
Nariai type somewhere within a chart, then it must be
Nariai type throughout the chart. If the spacetime
is covered by these charts, then it is either every-
where locally Nariai type or everywhere locally
Schwarzschild —de Sitter type with fixed mass parameter
M.
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As we saw in our proposition, our locally spherically
symmetric initial data evolve to be a locally spherically
symmetric spacetime. Using Birkhoff's theorem, we
know the initial data evolve to be everywhere locally
Nariai type or everywhere locally Schwarzschild —de Sit-
ter type with fixed parameter M. For the initial data for
generic spatial topologies, we saw that the building
blocks evolved to be de Sitter spacetime (M =0). There
fore our locally spherically symmetric initial data for gen
eric spatial topology evolve to be everywhere locally de Sit-
ter spacetime.

One might question whether these solutions are merely
unusual slicings of de Sitter spacetime, with
identifications (quotient spaces). If this is true, then the
universal cover of the initial data hypersurface must
isometrically embed globally in de Sitter spacetime as a
spacelike hypersurface. While such embeddings occur
for special cases, they will not occur generically. We
show this by counterexample.

Consider Fig. 3, in which a series of Hat planes are
joined, one to the other, by 1RXS handles. This space is
simply connected, and so it represents its own universal
cover. We show that this space cannot isometrically
embed in de Sitter spacetime.

Each of the Oat 1R planes in Fig. 3 is obtained by inter-
secting a null plane in Minkowski lR with the de Sitter
hyperboloid. If two null planes are parallel, then one
plane lies to the future of the other. Therefore the two
cannot both be part of an everywhere spatial and path-
connected hypersurface. So each of the Oat R planes of
Fig. 3 must represent the intersection of the de Sitter hy-
perboloid with a different null plane, no two of which are
parallel. Of course, in a Hat space, any two nonparallel
planes with codimension 1 must intersect. The question
is whether any two nonparallel null planes have a
nonempty intersection with the de Sitter hyperboloid.

Recall that the de Sitter hyperboloid is isometrically
embedded in Minkowski 1R and is the solution to

= —z +z +z +z +z

where a =3/A. This hyperboloid is invariant under
SO(4, 1). One of the two null planes is given parametrical-
ly:

FIG. 3. Example of locally spherically symmetric initial data
which is simply connected, but does not embed in de Sitter
spacetime.

ZO=C1+A, , z1 =g, (36)

Zo —C2+7, W1Z1+ W2Z2 —V, W 1 + W2 1
2 2= (37)

without loss of generality. There are two cases to consid-
er: wz&0 with

~ wi ~
& 1 or wz =0 with wi = —1.

If wz&0, then

'T=A +C1 C2& Zo =A +C] &

z, =k, ~z, = (1—w, )A, +c, —c~ ~

(1 2 )1/2

(38)

Using Eq. (38) in Eq. (25), we get

1 W1

1+W1

2
W1C1+C2 +z +z

1 W1

2—A + C1C2) 0
1 —w 1

This equation always has a solution for a topological S .
Therefore the two nonparallel null planes have nonempty
intersection in the de Sitter hyperboloid.

When w2=0, then

4

g z, =a +2cicz)0 .
l =2

which again has a solution for a topological S . So any
two nonparallel null planes with ci )0 and cz )0 (neces-
sary for inflation) must have a nonempty intersection
with the de Sitter hyperboloid.

Returning to Fig. 3, recall that no two planes can be
parallel for an initial data surface. But we have just seen
that any two nonparallel planes must have a topological
S intersection. Plane No. 1 intersects plane No. 2 in a
topological S . Plane No. 2 intersects plane No. 3 in a
topological S . But planes Nos. 1 and 3 do not intersect.
Therefore the initial data on the hypersurface represented
by Fig. 3 cannot be induced by a global, isometric embed-
ding in de Sitter spacetime.

We have shown in this section that locally spherically
symmetric initial data for Eq. (1) must evolve to be every-
where locally isometric to Schwarzschild —de Sitter space-
time with a fixed mass parameter M or everywhere local-
ly isometric to Nariai spacetime. In order to avoid far-
field effects from the sewing procedure, we found that the
initial data for generic spatial topologies must evolve to
be everywhere locally isometric to de Sitter spacetime.
Further, we showed that this construction is nontrivial:
The universal cover of the initial data does not generical-
ly embed globally in de Sitter spacetime.

where c, =const and A, is a free parameter. Since we are
interested in expanding solutions, c, )0. The other non-
parallel null plane is given by

4

zo can+7, g w;z; =7, g w; = 1
i=1 i=1

where c2 =const) 0 and ~ is a free parameter. By choos-
ing an element of SO(3) & SO(4, 1) which acts only upon
z2 z3 and z4, we write the second null plane:
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V. SPACE OF KANTOWSKI-SACHS SOLUTIONS

ds =a [dP +f (g)(dQ~)2],

within a coordinate chart. The narrowest neck of a
matching region occurs at a point where f'(g) =0. Here
we concentrate on regions for which f'(g)=0. In such
regions the initial data possess an IR X SO(3) local symme-
try. From Sec. IV we know that the evolution of the ini-
tial data preserves its spatial symmetries within the
domain of dependence of the initial data. Spacetime
metrics with an R X SO(3) isometry are called
Kantowski-Sachs [17] metrics and take the form

ds =a [ dt +b —(t)df +c (t)(dfl2) ], (39)

where we have removed a constant length scale a =3/A.
I

space of Kantowski-Sachs initial data

We have demonstrated that three-surfaces with generic
topology admit initial data which evolve to be every-
where locally de Sitter type, and therefore inAate. How-
ever, when we constructed the initial data for generic
spatial topologies in Sec. III, we found that the narrowest
allowed necks R XS in matching regions are bounded by

afmin —a ~

where the length scale e =3/A. Smaller necks will
create far-field eff'ects away from a matching region. In
this section we show that the far-field efFects are induced
by the smaller necks because they carry "mass. "

Recall that the locally spherically symmetric three-
metric is

The Einstein equations for a positive cosmological con-
stant [Eq. (1)] take the form

r '2
b c c 1

2 — — + — =3— (40)
b c c

(bb )+2(bb ) — b—=3b (41)
dt C

d . . b
(cc )+(cc ) —+ 1 =3c (42)

b

C
2

The first equation is a constraint on the initial data, aris-
ing from Eq. (11). The second two equations evolve the
initial data and come from Eq. (13). Naively, the initial
data on a time surface t=t0 would be (b0, b0, c0, c0),
satisfying Eq. (40). However, Eqs. (40) —(42) are indepen-
dent P=lnb, depending only upon its time derivatives.
This occurs since b0 contains no geometric information,
being absorbable in a rescaling of g in the metric given by
Eq. (39). Therefore the initial data are given by
(b0/b0, c0,c0), subject to the constraint given by Eq. (40).

Now consider the constraint given by Eq. (40). When
dc/dt&0, Eq. (40) can be solved for b/b As a. result,
when dc/dt&0, the space of Kantowski Sachs solu-tions is
given by (c,c). However, when dc/dt =0, Eq. (40) dic-
tates that c = I/&3 —this is the Nariai solution. So
when dc/dt=O, all the dynamical information is con-
tained in b/b We no.w have a picture of the space of
Kantowski-Sachs solutions (Fig. 4). It consists of two
half-planes connected by a point on their boundaries,
where the point is part of a line coming out of the figure:

b dc
, C,b' 'dt

b dc—given by Eq. (40) c)0, and )0 .
dt

b dc
b' 'dt

b dc—given by Eq. (40) c)0, and (0-
dt

b dc
b' 'dt

dcc=l/V3 and =0-
dt

Kantowski-Sachs solutions, like locally spherically
symmetric solutions in general, are restricted by the (cos-
mic) Birkhoff theorem. They must be either Nariai
spacetime or in the Schwarzschild —de Sitter family with
a fixed mass parameter M. Therefore all trajectories in
Fig. 4 can be identified with a Schwarzschild —de Sitter
solution or Nariai solution.

We have already seen that Nariai spacetime is the fixed
point joining the upper half-plane to the lower half-plane.
Moreover, the Nariai fixed point is unstable under
Kantowski-Sachs perturbations [7]. When perturbed,
Nariai spacetime either expands, approaching the
de Sitter trajectory, or it collapses, approaching a
Schwarzschild —de Sitter black hole singularity. The dy-
namics of the Nariai solution are not shown in Fig. 4,
since its evolution occurs along the b/b dimension, com-
ing out of the figure.

In Sec. IV we showed that de Sitter spacetime (M =0)
has a Kantowski-Sachs form

ds = —dt +a [sinh (t/a)dg +cosh (t/a)(dQ2) ] .
In Fig. 4 the de Sitter trajectory appears as the curve that
"crosses" c=O at c =1. Of course, the trajectory does
not actually cross the c =0 axis, since it is not part of the
phase space.

To understand the Kantowski-Sachs form of
Schwarzschild —de Sitter solutions, for arbitrary M, con-
sider the static chart of Schwarzschild —de Sitter [5] solu-
tions:

ds = — 1 ——r—A 2 2M
3 7"

dT+ +r (dQ )
1 —(A/3)r 2M/r—
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2 ''I M/a &0=-%(T) has one positive, real root, (46)

5 ~ i

~ ~

10&M/a & —=%(T) has two positive, real roots,
3&3

(47)

C
0.5 '"

0

05 ar'

M/a = 1

3 3

=.A(T) has one positive, real, double root,

(48)

~ i 1M/a) —=-%(T) has no positive real roots .
3&3

(49)

5 ~ i

-2'

0.5 1.5

FIG. 4. Phase space for space of Kantowski-Sachs solutions.
It consists of two half-planes (upper and lower) joined at the
point of the separatrix. The unstable fixed point is Nariai type.
All other trajectories are Schwarzschild —de Sitter type.

There are values of r for which the rational function
(r —r /a 2M)/r —is not positive for any value of the pa-
rameter M/a. If we take this rational function to be neg-
ative, the coordinate r becomes a time coordinate and the
coordinate t becomes a spatial coordinate. For this case
we write

dT2
ds =EL

T +2M/aT —1

1

+ T+ —1 dg+T(dA)
CL' T

(43)

dc 2 2M
dt aT (44)

The plus sign gives the upper half-plane in Fig. 4, and the
minus sign gives the lower half-plane (the time reversal of
the upper half-plane). The trajectories in Eq. (44) are
characterized by the number of real roots of the rational
function:

%(T)—= T + —1
cxT

(45)

which corresponds to the number of "crossings" of the
c =0 axis. The possible cases are

If we define a new time coordinate

dT
(T +2M/(yT —1) ~

Eq. (43) takes the form of Eq. (39). In Fig. 4 the trajecto-
ry traced out by a Schwarzschild —de Sitter solution is
given parametrically:

1/2

The number of roots is directly related to the number of
event horizons. For the Schwarzschild —de Sitter family
of solutions, there are two kinds of potential event hor-
izons: cosmic, due to the rapid expansion brought about
by A, and black holes, brought about by the mass param-
eter M.

When the mass parameter falls in the range of Eq. (46),
there is only one crossing of the c =0 axis (the cosmic
event horizon). These are the trajectories of region I in
Fig. 4, and it includes de Sitter spacetime (M =0). When
the mass parameter falls in the range of Eq. (47), there
are two crossings of the c =0 axis (both cosmic and black
hole event horizons). These are the trajectories of regions
II and III in Fig. 4. Region II is connected to the cosmic
event horizon, and region III is connected to the black
hole event horizon. When the mass parameter falls in the
range of Eq. (48), there is only one crossing of the c =0
axis. In this case the cosmic and black hole horizons
coincide. This is the trajectory which forms the separa-
trix of Fig. 4, crossing at the Nariai fixed point. This
solution has sometimes been associated with the Nariai
solution, [18] but it is clearly distinct. Unlike the Nariai
solution, it is not homogeneous, and it has no geodesic
completion, since it possesses a crushin~ singularity. Al-
though Fig. 4 shows the M/a = I/3&3 trajectory cross-
ing at the Nariai fixed point, it actually takes an infinite
amount of comoving time, dt =d T /( T +2M /a T—I )'~, to reach the fixed point. The other trajectories of
Fig. 4 reach the c axis within finite comoving time. The
difference for M/a= I/3&3 is the double root in the
definition of the comoving time. Finally, when
M/a) I/3&3, there are no real roots of %(T). In this
case there are no event horizons. In fact, these spaces are
covered by the Kantowski-Sachs charts. They are
represented by region IV of Fig. 4. For c (0 these solu-
tions start at a large size in their past and evolve into
crushing singularities; c )0 is the time reversal.

Other than M/a = 1/3&3, all Schwarzschild —de Sitter
trajectories reach the c =0 axis in finite comoving time.
But we know that the axis is not part of the phase space.
To understand what happens here, we illustrate the situa-
tion for the crossing of the de Sitter trajectory. Figure 5
shows the conformal diagram for de Sitter spacetime.
Recall that de Sitter spacetime inherits an SO(4, 1)
isometry from the Minkowski R . The figure shows the
orbit of a Lorentz boost, SO(1,1) &SO(4, 1). In regions
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FIG. 5. Conformal diagram for de Sitter spacetime. Curves
represent orbits of SQ(1,1) Lorentz boost. Lower triangle and

upper triangle are covered by Kantowski-Sachs metrics.

where it is timelike, it provides a definition for time,
which creates static coordinate charts. In regions where
the Lorentz boost is spacelike, it becomes a spatial
isometry, and we get the Kantowski-Sachs slicing. The
lower Kantowski-Sachs slicing of de Sitter spacetime
(Fig. 5) corresponds to the c (0 part of the de Sitter tra-
jectory in Fig. 4. Likewise, the upper portion of the
Kantowski-Sachs slicing of de Sitter spacetime in Fig. 5
corresponds to the c )0 portion of the de Sitter trajecto-
ry in Fig. 4. Thus, other than M/a= I/3v'3, the cross-
ing of the c=0 axis in Fig. 4 corresponds to a Cauchy
horizon. If the g coordinate is periodically identified, the
solutions are inextendible beyond these Cauchy horizons.

We now see from Fig. 4 that all solutions with c (1
correspond to massive solutions. This is why matching
regions having necks with radii smaller than Eq. (21) al-
ways induced far-field effects. In fact, an interesting ex-
ample of this occurs for sewing a narrow neck af;„(a
into the three-sphere. Not only does the neck introduce
far-field effects away from the matching region, but it in-
duces an extrinsic curvature singularity at the antipodal
point of the three-sphere. Within the constraint of spher-
ical symmetry, the only way to remove the extrinsic cur-
vature singularity is to introduce another "massive" neck
at the antipodal point. This is analogous to trying to put
an electric field monopole on a sphere.

In this section we have seen the space of Kantowski-
Sachs solutions. From Fig. 4 we can see solutions which
expand forever, approaching the de Sitter trajectory,
solutions which collapse in crushing singularities, and
solutions which end on Cauchy horizons. We have also
seen that "small neck" solutions do indeed carry mass,
which explains the far-field effects we saw in Sec. III.

VI. CONCLUSIONS

We have now constructed the locally spherically sym-
metric initial data for the Einstein equations with a posi-

tive cosmological constant [Eq. (I)). By cutting and sew-
ing, we have created locally spherically symmetric initial
data for generic spatial topologies. The main restriction
in constructing the initial data was ensuring that the
matching regions never had a neck with radius smaller
than Eq. (21). Smaller necks in a matching region would
induce far-field effects. We found that this occurs be-
cause smaller necks carry mass. The locally spherically
symmetric initial data evolve into a locally spherically
symmetric spacetime. By suitable generalizations of
BirkhofF's theorem, locally spherically symmetric initial
data must evolve to be everywhere locally
Schwarzschild —de Sitter type with a fixed mass parame-
ter M or everywhere locally Nariai type. For the initial
data on hypersurfaces with generic spatial topology,
there could be no far-field effects from one matching re-
gion without breaking local spherical symmetry for
another matching region. This restriction implied that
locally spherically symmetric initial data on hypersur-
faces with generic spatial topology evolve to be every-
where locally de Sitter type. We showed that despite be-
ing locally de Sitter type, neither these spaces nor their
universal covers embed isometrically in de Sitter type.
Therefore the construction is nontrivial.

Since there is only one geodesically complete and sim-
ply connected spaceform (space of constant curvature),
we know the evolution of the initial data for generic spa-
tial topology must have Cauchy horizons (inextendible in
general) to their past, future, or both. By choosing ex-
panding initial data, we place these horizons in the past.
This is not merely for mathematical convenience. If
infIation was brought about through a change of physics
due to a cooling, expanding universe, then expanding
data are appropriate. Evolving the Einstein equations
[Eq. (I)] backwards in time is meaningless, since the
preinAationary physics would have been different, and
therefore the character of the Einstein equations would
have been different.

If de Sitter spacetime is in fact an attractor solution,
such as seen in Fig. 4 for Kantowski-Sachs spaces, then
we have shown that this attractor solution exists for gen-
eric spatial topologies. This is important for inflation to
be a viable concept. Since classical general relativity
preserves spatial topology through evolution, it is impor-
tant to know that inflation is not excluded from a
Universe on purely topological grounds. Furthermore,
when doing any global calculations involving infIation,
these the generic topologies should be taken into account.
It is not enough to only consider slices of the de Sitter
spacetime with identifications.
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