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We derive a formula for the nonequilibrium entropy of a classical stochastic field in terms of correla-
tion functions of this field. The formalism is then applied to define the entropy of gravitational perturba-
tions (both gravitational waves and density fluctuations). %'e calculate this entropy in a specific cosmo-
logical model (the inflationary Universe) and find that on scales of interest in cosmology the entropy in
both density perturbations and gravitational waves exceeds the entropy of statistical fluctuations of the
microwave background. The nonequilibrium entropy discussed here is a measure of loss of information
about the system. We discuss the origin of the entropy in our cosmological models and compare the
definition of entropy in terms of correlation functions with the microcanonical definition in quantum sta-
tistical mechanics.

PACS number(s): 98.80.Cq, 04.20.Cv, 05.20.Gg

I. INTRODUCTION

The concept of entropy plays an important role in aH
branches of physics. Hence, it is no surprise that entropy
can also be defined in general relativity and cosmology.
The most famous application of entropy in general rela-
tivity is to black holes. Bekenstein's [l] realization that
the area of a black hole behaves like an entropy led to the
discovery of black-hole radiation [2]. Other important
applications of entropy in cosmology relate to the charac-
terization of the initial state of the Universe [3] and to the
study of the post-bounce state in bouncing cosmologies.

Entropy expresses the loss of information about the
system under consideration [4]. Quite a long time ago,
Jaynes [4] argued that entropy expresses the extent of hu-
man ignorance about a system and is therefore an anthro-
pomorphic concept. One can uniquely define entropy
only after having specified the position of the observer
with respect to the system.

Once we accept that entropy measures the loss of infor-
mation about a system, it becomes important to ask
whether there is a natural "coarse graining"; i.e., can it
be uniquely specified which part of the information about
a system is lost? The problem of defining the entropy be-
comes the task of determining the correct coarse grain-
ing.

We wish to address this question in order to define the
entropy of the gravitational field. From a naive point of
view, gravitational instability, which is responsible for
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the formation of structure in the Universe, should lead to
an increasing entropy —in agreement with the second
law of thermodynamics. In the initial state in which the
gravitational field is (almost) uniform, the gravitational
entropy (almost) vanishes. In contrast, the later state of
the gravitational field which results from gravitational in-
stability can be viewed as a particular realization of some
stochastic process producing density perturbations and
gravitational waves. Hence, there should be an associat-
ed entropy which characterizes the naturalness of the oc-
currence of the given distribution or, more quantitatively,
measures the probability of the distribution.

To characterize the measure of a state of gravitational
radiation or density perturbations in a quantitative
manner, we need a well-defined and well-justified notion
of entropy of gravitational perturbations. Since the states
we are interested in are far from thermal equilibrium, our
task will be to define an entropy for nonequilibrium sys-
tems in cosmology.

There already exists a considerable body of work on
the definition of nonequilibrium entropy; in particular, in
the context of cosmology. For example, Smolin [5] de-
rived a formula for the entropy of a "quantum field" state
of gravitational radiation and applied it to estimate the
entropy of some astrophysical sources of gravitational ra-
diation.

In a series of papers, Hu and Pavon [6], Kandrup [7,8],
and Hu and Kandrup [9] have discussed the entropy of
particles produced in an expanding universe. They gave
a definition of entropy based on the single-particle distri-
bution function (density matrix) and showed that this en-

tropy increases in time (if the initial state is free of corre-
lations) as a result of particle production. This definition
of entropy (and, in particular, the role of coarse graining
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and loss of correlations) was further discussed by Habib
and Kandrup [10].

Some interesting speculations about the entropy S of
the gravitational field have been made by Penrose [3] and
Hu [11],who propose that Sg is proportional to the in-
tegral of the Weyl tensor squared C over space. This
definition expresses the expectation that metric fluctua-
tions should give rise to entropy. With this formulation,
Penrose s initial condition criterion [3] C=O for the
Universe is equivalent to the assumption that the
Universe starts in a state of vanishing gravitational entro-
py.

In this paper we use two quite di6'erent approaches to
define the nonequilibrium entropy of cosmological per-
turbations. One of them is based on the microcanonical
ensemble [12] of quantized gravitational perturbations
while the other is a formula for entropy which can be as-
sociated with the stochastic distribution which describes
the state of the classical gravitational field. We show that
these two definitions are in agreement and discuss the
physical meaning of the entropy of gravitational fluctua-
tions. Then, we apply our definitions to estimate the en-
tropy of gravitational waves and linear density inhomo-
geneities produced by infiation [13]. We also indicate
how to apply our methods to other cosmological models,
e.g. , those based on phase transitions [14].

Our analysis is based on the fact that the theory of
gravitational waves and of linearized density perturba-
tions in an expanding universe can be reduced [15] to the
study of a real scalar field in an external classical back-
ground. Hence, we will investigate the more general
question of how to define the entropy of a scalar field in a
nonequilibrium state. We can either study the quantum
theory of this field and use the microcanonical ensemble,
or we can view the classical field as a stochastic process
and determine its entropy.

The paper is organized in the following manner: After
some general comments about nonequilibrium entropy in
Sec. II, we give in Secs. III and IV the quantum and clas-
sical definitions of entropy. In Sec. V we show the
equivalence of the two definitions when applied to situa-
tions when both are applicable. We also demonstrate
that the entropy is a result of coarse graining. In Sec. VI
we briefly review the gauge-invariant theory of cosmolog-
ical perturbations upon which our definition of the entro-
py of the gravitational field is based. For a pedagogical
introduction, the reader is referred to Ref. [16] for an ex-
tensive review of Ref. [15]. Section VII contains the
main applications of our work: the evaluation of the en-
tropy of gravitational waves and density perturbations in
inflationary universe models.

We use units in which A=kz=c=1. Greek indices
run over space-time variables, Latin indices only run over
spatial variables.

II. NGNEQUII. IBRIUM ENTROPY

We will first develop a general definition of entropy for
a system far from thermal equilibrium, based on the mi-
crocanonical ensemble [12]. Let us assume that the state
of some physical system can be completely described by a

PJ =p(J„)b,J„, (3)

and hence from (1) the entropy is

S= —g PJ lnPJ

= —g p (J„)[lnp (J„)]bJ„—g p (J„)ln(b J„)6J„. (4)

This expression has no limit for AJ„~O because of the
diverging second term which in general depends on
[p(J„)]. This term represents the information about the
process of coarse graining.

However, for a simple coarse graining with
hJ, =b.J2 =. . . , the second term in (4) does not depend
on the probability distribution P(J) and can hence be
neglected as some irrelevant additive constant —1nhJ to
the entropy. Note that in a quantum dynamical system,
there is a natural choice b,J=(2m.A')" due to the uncer-
tainty principle. We conclude that in the case of a con-
tinuous probability distribution, the entropy is defined by
coarse graining and depends on the measure in the phase

set of discrete variables J= [I,i,j, . . . ]. If we know that
the system is in a certain state J, then the information
about the state of the system is complete and hence the
entropy should be zero, as follows from the general
definition of entropy in information theory according to
which entropy means the loss of information. If, on the
other hand, we only know the probability distribution I'J
for the system, I'J being the probability to find the system
in state J, then the associated entropy is [4,12]

S=—QPJlnP~ .
J

Now let us assume that we are not interested in or can-
not measure the complete (fine grained) state of the sys-
tem, but only some coarse grained characteristics, e.g. ,
the value of the variable I. The coarse-grained state can
be described by a distribution function I'I, and the associ-
ated entropy is given by the analogue of (1) where we sum
only over the index I. This entropy characterizes the
measure of solutions of the dynamical system which leads
to the particular coarse-grained state.

If the variable J in (1) is continuous, some complica-
tions arise. If X)J is the measure on the space of state,
then a probability density p( J) can be defined by

2)P(J)=p( J)2V,
where XlP(J) is the probability to find the system in the
volume 2)J around the state J. For example, in a system
of n particles with Cartesian coordinates x, , . . . , x„
and momenta p &, . . . ,p„, we would have
J—= (x„.. . , x„,p i, . . . ,p„) and 2)J=Q,".

, ( dx, dp '). In
a system with an infinite number of particles, 2)J becomes
a measure in the space of functionals.

To derive the formula for the entropy of a system with
continuous J starting from Eq. (1), we first divide phase
space into suKciently small cells J&,J2, . . . with volume
elements AJ, , AJ2, . . . . The probability to find the sys-
tem in cell n is
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space of the system. Dropping the second term in (4) and
taking the continuum limit AJ ~0 gives

S=— p Jlnp J J, (5)

From (1) it follows that the corresponding entropy of the
system with definite spectrum [ni j is

S= —g P( ((a)lnP(„!(a)

where 2)J is the functional measure for the variable J.

III. MICROCANONICAL DEFINITION
OF ENTROPY FOR A QUANTIZED FIELD

=lnl = g lnW "rI

taking into account the normalization condition

(9)

(gr —1+nr )!8'
ni!(gi —1)!

(6)

To obtain this expression, note that there are
(n~+gi —1)! ways of dividing nr objects by gi —1 cell
divisions. However, both the particles and the cell
divisions are indistinguishable and hence we must divide
by nr~(gi 1)!

For a system of A' subsystems with spectrum [nz]
(obeying gzni= JV), the phase volume (number of possi-
ble states) will be

Let us return to a system whose phase space is de-
scribed by a set of discrete variables. Furthermore, we
consider the case when the entire system consists of JV
identical subsystems (e.g. , A' photons), each characterized
by a discrete set of variables [I,i,j, . . . j. We assume
that there is some principal quantum number I which is
completely distinguishable; i.e., any two states with
different I can be experimentally distinguished, and that
the other numbers i,j, . . . correspond to different but ex-
perimentally indistinguishable states with the same values
of I. As an example, for a gas of photons in a box we can
take I to be the energy of a photon, and i,j, . . . to corre-
spond to different directions of motion.

The source of entropy in the above setup is the loss of
information coming from the indistinguishability of
states with identical I but different r. ,j, . . . . States la-
beled by I can be assigned a degeneracy g~ which equals
the number of microphysical states with identical quan-
tum number I.

Let us now assume that n~ subsystems have the same
principal quantum number I. For the moment we as-
sume that the spectrum of the system [ni j, i.e., the num-
ber n~ of subsystems with principal quantum number I
(for all r), is fixed. Our goal is to calculate the number of
possible microphysical states with a given spectrum
which are in principle distinguishable. The calculation is
done for systems with Bose statistics, e.g., photons, gravi-
tons, or scalar-type cosmological perturbations.

The problem reduces to calculating the number of pos-
sible and distinguishable ways in which n~ subsystems
can be distributed among gz cells. This number is

gP( !(a)=1 . (10)

where n~ =n~/g~ are the occupation numbers.
All that was assumed in the above considerations is

that the spectrum [ni j is well defined. At no point was

thermodynamic equilibrium invoked. Hence, (11) gives a
formula for the entropy of a statistical system with
definite spectrum which is valid both in and far out of
thermodynamical equilibrium.

The simplest application of this formula for the entro-
py is to a blackbody spectrum of photons with

nk =2/(e~" —1) (12)

with @=1/T and k =
~

k ~. In this case, each photon is a
subsystem. The principal quantum number I is the ener-

gy k, and the other quantum numbers i,j„.. . corre-
spond to the directions of photon propagation. The de-
generacy gk of level I=k is

gk = ( 4m /3 ) Vk dk, (13)

where V is the volume of space. Substituting (12) and (13)
into (11) we obtain the entropy density of the blackbody
background

s =(S/V) —(4ir/3)T (14)

In the above example, the origin of the entropy is the
absence of information about the direction of propaga-
tion of the photons.

If the spectrum [n~ j is not well known, there is an ad-
ditional source of entropy. Let us assume a probability
distribution P( [ni j) for different spectra. Note that even
the total number A' of subsystems need not be fixed. In
this case, the space of all possible states is the direct sum
of states for the different spectra [ni j. The probability to
find the system in a state a with spectrum [nz j is

(n

P(a( ()=P( [ni j )[1/I"( [n~ j )], (15)

If n~ &) 1, then Stirling's formula can be applied to ap-
proximate W in (9). In this case, the entropy becomes

nr

S= g gi [(n~+ 1)ln(ni+ 1)—nzlnn~ ],
I

I (-
(

PrW (7) and [from (1)] the entropy will be

The next step is to assume that all possible states are
equally probable. In this case, the probability for any
state a with the given spectrum [ nz j is

S= —g g P(a(„()lnP(a(„()
(nr) a(nr

= g P([n~ ])lnI ([n; j ) —g P([ni ])lnP([n~ ]),
~ "r ~

(16)
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where g( )
stand for summation over all possible spectra

[nI ]. If the spectrum is completely specified, then
P(Inl I )=1(0)for

S=lnW . (18)

If the black hole is quantized, then W is finite. In fact,
counting the number of spectra of a black hole with fixed
mass gives a formula for the entropy in agreement with
the classical result [17].

Let us return to the discussion of the formula (11) for
the entropy of a quantum system with fixed spectrum. In
the classical limit nI )&1, the equation simplifies to

(19)

In order to apply this formula, the notion of particles
(which is required to be able to determine nl) must be
well defined. However, when considering quantum fields
in some external field (e.g., cosmological perturbations in
an expanding background space-time), the notion of par-
ticles is not always well defined. It is hence desirable to
have a formalism which generalizes the definition of en-
tropy to situations where the number representation is
not well defined.

For large occupation numbers n~, the classical limit
should give a good description of the dynamics of the sys-
tem. It is therefore convenient to derive a formula for
the entropy directly in terms of the classical field. In the
cases when occupation numbers can be defined for this
field, the new definition should reduce to (19).

In the next section, we will give a definition of entropy
of a classical field based on the theory of stochastic pro-
cesses and show that in the region where both definitions
of entropy are applicable they agree.

IV. ENTROPY OF A CLASSICAL FIELD
Formulas (11) and (19) for the entropy of a field are

only applicable if the spectrum of occupation numbers is

nI = nl nl nl

and (16) reduces to (9). In the general case, there are two
contributions to the entropy. The first term in (16) is due
to the absence of information about the nonprincipal
quantum numbers of the system for a fixed spectrum, the
second comes from our ignorance of the precise spec-
trum.

In the case of cosmological perturbations, the distribu-
tion function P( [nl I) for the spectrum is well localized at
a particular spectrum [ nl I and hence

S=lnI (I nI I ) .

However, there are examples where the second term in
(16) gives the main contribution to the entropy. For ex-
ample, in the case of a black hole it is impossible to have
information about the spectrum of the configuration
making up the hole, since this information is hidden
behind the horizon. If W is the number of possible
different spectra for a black hole of fixed mass, and if we
assume that all of' these spectra have equal probability,
then, neglecting the first term in (16), we get

well defined. In order for this to be the case, there must
be a well-defined notion of particles for the field under
consideration.

As will be shown in Sec. VI, the description of cosmo-
logical perturbations and gravitational waves in the
Universe can be reduced to the study of a scalar field
y(x, t) with a time-dependent effective mass [15,16]:

y"—c, by —(z"/z)y=O . (20)

Here, c, is the speed of propagation of perturbations.
For gravitational waves c, =1, whereas for cosmological
perturbations in a universe with hydrodynamical matter
c, is the speed of sound. The time-dependent function z
depends on the system and on the background. For grav-
itational waves z =a, whereas z is a complicated function
of the background parameters in the case of cosmological
perturbations (for details see Ref. [15] and Sec. VI). In
the above equation a prime denotes differentiation with
respect to conformal time g.

The quantization of a scalar field obeying (20) is
equivalent to the quantization of a scalar field in some
external classical field. If z"/z=0 and c, =const&0,
then there is no coupling and the quantum theory for this
field (in particular, the notion of particle) is well defined.
As will be shown in Sec. VI, this applies for both cosmo-
logical perturbations and gravitational waves in a
radiation-dominated universe. However, this is not the
general case. The ratio z" /z can be nonvanishing and c,
may be zero. For example, for cosmological perturba-
tions in a matter-dominated universe c, =0. In this case
the solutions of (20) do not have oscillatory character and
it is not possible to define the notion of particles. Hence
it is not possible to define occupation numbers and Eqs.
(11)and (19) are inapplicable.

However, if the perturbations are sufficiently large, the
scalar field y can be treated classically (in the case when
occupation numbers are defined, the condition for classi-
cality is nl ))1). In order to define a notion of entropy
valid in this case, we address the more general question of
defining the entropy of a classical scalar field with an ac-
tion which is quadratic in field variable and canonical
momentum (see also Ref. [18]).

The source of the entropy is in this case the ignorance
about the exact field configuration. A state of the system
at some time t is specified by the values of the field y(x, t)
and its canonical momentum m(x, t) at all points x in
space. We assume that all we know is the probability dis-
tribution P(y(x), ~r(x)} of the field and its canonical
momentum; i.e., we view qr(x) as a stochastic classical
field.

The above situation is realized in many situations of in-
terest in cosmology. For example, in inflationary
universe models, the amplification of scalar field Auctua-
tions during the period of exponential expansion of the
Universe and the nontrivial transition of quantum Auc-
tuations to classical ones leads to a squeezed state [19,20]
for the scalar field starting from the vacuum state at the
beginning of inflation. The Gaussian random state is
characterized by definite correlation functions
(y( tx)y(y, t)), (n(x, t)ir(y, t)), and (y( tx)m(y, t)),
where ( q ) stands for the ensemble average of the quanti-
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ty q (which coincides with the space average of q for a
spatially homogeneous stochastic process).

If the initial state of the system is Gaussian, and if the
Hamiltonian is quadratic, then time evolution will
preserve the Gaussian character of the state. We will as-
sume, as is the case for linear cosmological perturbations
and gravitational waves, that the state is Gaussian at all
times. Therefore, the probability distribution
P(y(x), ir(x)) can be expressed in terms of the above
two-point correlation functions. Hence, also the entropy
of the system must be expressible in terms of two-point
correlation functions.

In the following, we will derive a general expression for
the entropy of a stochastic Gaussian field in terms of its
two-point correlation functions.

Starting point of the analysis is formula (5) for the en-

tropy in terms of the probability distribution. In our
case, the continuous variable J stands for a point in phase
space. To justify the choice of the measure in (5), we
divide phase space (y, ir) at every point x in space into
units of volume 2M (the smallest volume the fields can be
localized in by the uncertainty principle) and calculate
the probability AP that the fields lie in the bin EJ.

APJ= P coax, ~x yx nx . 21
J

Here, the integration ranges over fields p(x) and ir(x)
which lie in bin AJ and 2)g(x) 2)ir(x) denotes the func-
tional integral measure for a scalar field.

Thus, from the analysis of Sec. II we conclude that
(apart from an irrelevant constant), the entropy of the
stochastic classical field is given by

S=— P yx, nx lnP yx, mx coax m x

nals A'y, 8", and C"y depend only on the difference of
the arguments:

A "~= A(x, y) = A (x—y) = A(y —x) . (27)

The kernel of the operator A ' inverse to A will be
denoted by A„'. This is defined as usual by

A„, 'A'~= f d z A '(x, z)A(z, y)=5 (x—y) .

The Jacobian of this transformation is 1 and hence

(29)

The probability distribution (23) in terms of the new vari-
ables g and ir is

P(g, ir)= exp ——(g A "~gy +ir„I' ~iry)=1 1
(3O)

where

y=Bmy Cxu A 1CU
QU

(31)

Note that the kernel C does not in general vanish since in
general y and m are not statistically independent. A non-
vanishing C reAects a correlation between y and m.

Our goal now is to express the kernels A, 8, and
C" in terms of the two point correlation functions
(qr(x)y(y) &, (ir(x)ir(y) &, and (g&(x)ir(y) &. As a first
step, it is convenient to rewrite the distribution function
P(y, ir) in terms of new variables which are independent:

g =y„+C'~A „'ir, ,
(28)

For a Gaussian state, the probability distribution is

1 1
P(lp, ir) = exp — (tp„A —

Ip +iT„B ir

(22) At this point, the correlation functions can be immediate-

ly expressed in terms of the kernels

(g„g, &
= A.—,',

(32)

+2@,C'~ir )

where the normalization factor 8' determined by

P ym y m=1,

is given by

18'= exp ——y„A "yyy +~„B"y~

(23)

(24) @(J~,J )=fP(g, r)eixp( iJ~P iJ—„ir")2)$—2)ir

and taking second derivatives of it, e.g.,

(33)

(34)

&g„~, &=0.

This can be seen either by direct functional integration,
or by calculating the generating functional (characteristic
functional)

+2tp„C"~ir ) 2)y2)ir . (25)
Substituting g from (28) into (32) and solving the result-

ing set of equations we obtain

Here, we have used the shorthand notation p(x) =y„and
A' = A(x, y), and the Einstein "summation" convention
for repeated indices,

p„A "~=fdx p(x) A (x,y), (26)

is implied. For a homogeneous Gaussian state, the ker-

A,y'=(q, qy &
—(q, ir„&&ir„ir, & '(ir„qr, &,

B„,'=(ir ir, &
—(ir q„&(q„q„& '&q, ir, &,

C„,' = & q „ir, &
—

& ir„ir„&& q „ir, & '& g „|p,& .

(35)

Deriving the above formulas we took into account that
for a spatially homogeneous Gaussian process the corre-



2448 R. BRANDENBERGER, V. MUKHANOV, AND T. PROKOPEC 48

= V5 (0)+in'
1= V5 (0)+ln f exp ——(g„A "~g +~„1 ~„)

L

X2)(2)vr

= V5 (0)+—lndet(A '1 '),
2

(36)

where V is the volume of space. Dropping the irrelevant
constant contributions to the entropy and inserting (32)
and (35) in the above, we get the following expression for
the entropy in terms of correlation functions:

8=—,'lndet(&q q, &&a,m &
—&y vr, &&a,y &)

=
—,
' lndetS ~ . (37)

Thus, the problem of calculating the entropy has been
reduced to the evaluation of a determinant of the opera-
tor

2Y'=N(x —y)= f [&y(x)y(z) & &~(z)~(y) &

—&Ip(x)77(z)&&m(z)qr(y)&]d z .

(38)

This determinant can be calculated by g function regular-
ization (see the Appendix). The result is

detS~ exp Vf d k lnXlk (39)

lation functions depend only on the difference of the ar-
guments.

To calculate the entropy, we substitute (30) into the
general formula (22) using the fact that the Jacobian of
the transformation (28) is unity and obtain

S= — P,~ lnP

knowledge the expression (41) for the entropy in terms of
expectation values is new (the closest is the analysis of
Ref. [10]). What is fundamentally new in our analysis is
the application of nonequilibrium. entropy considerations
to calculate the entropy of gravitational perturbations by
treating them as classical stochastic fields.

V. GENERAL CQMMENTS

In this section we shall focus on two issues: The con-
nection between the two definitions of entropy given in
Secs. III and IV, and a further discussion of the origin of
entropy. To concretize the analysis we consider a quan-
tized free scalar field P(x, rl) with time-dependent
effective mass. The field is assumed to start out in its ini-
tial vacuum state. As is well known, this state evolves
into a squeezed state [19,20]. Such a state is highly excit-
ed in the sense that the expectation value of the number
operator is large.

If the mass is constant at the beginning and at the end,
then the notion of particles is well defined for the in state
and for the out state, and in the corresponding time inter-
vals the field operator y can be expanded either in terms
of in creation and annihilation operators 8 and & or in
terms of the corresponding out operators c+ and c

g(x, il)= f »2 [e'" "u'k" (rj)*8k +e '" "u'k" (rI)ak ]
d k

[ ik x out( )s~ —+ —ik x o~t( )~+ ]
d k

(2~)'"
(42)

where uk" (il) and uk"'(il) are the positive frequency mode
functions in the in and out states, respectively. For the
particular case under consideration, the operators c k and

ck are related to &k and Qi, via a Bogoliubov transfor-
mation

where

d xe ' "2)(x)1

(2'�) (40)

2E +I
ck =ak coshrk —a ~e sinhrk,

+ + +ck = —a i,e sinhrk+a& coshrk .
(43)

is the spectral density of the operator 2)(x)=2)(x—y).
Substituting (39) in (37) we obtain the following expres-
sion for the entropy per unit volume:

s=5/V= f d klnSk

The real functions rk(g) and pk(rj) are called squeeze pa-
rameter and squeeze angle, respectively [21,22]. The ini-
tial state is taken to be the vacuum lo&;„defined by
ak lo&;„=0 for all k.

The expectation value of the number of particles at late
times in the k mode is

= fd'k»(& Igkl'&& l~kl'& —
& lykl'l~kl'&) . &n„& = &0;.Ie+c lo;. & =sinh'rk . (44)

(41)

where we expressed the entropy in terms of the spectral
density of correlation functions and omitted irrelevant
contributions which do not depend on the spectrum of
the scalar field.

Note that the key assumptions in deriving (41) were the
reduction of the problem to that of a free scalar field, and
the choice of a Gaussian initial state. Hence, our formal-
ism is applicable also to the entropy of quantum matter
fields in an expanding universe, a topic which has been
analyzed in detail in past works [6—10]. However, to our —:&q(x, i1)q(y, il) & . (45)

Hence, for large values of the squeeze parameter rk, we
should expect that the quantum field y can with good ac-
curacy be described as a classical field y,&, since if rk &) 1,
the condition & nk & )) 1 to be in the region of applicabili-
ty of the classical limit is satisfied. In this limit, the
correlation functions of the classical field y, ] should coin-
cide with the corresponding expectation values of the
operator y, e.g. ,

&~„(,q)q„(y, q) & = &o,„lq(,~)g(y, ~)lo,„&
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Hence, in the classical limit both of our formulas for the
entropy should be applicable and give the same result. In
the following we show that this is indeed true.

First of all, we need to calculate the correlation func-
tions of y in terms of the squeeze parameters. Taking
into account that at late times (in the out state)

uk"'(i)) —e "", cok =Qk'+m, '„, , (46)

ik (x —y) k

(2m )

X (2sinh rk + 1+sinh2rk cos25k ), (47)

where m, „, is the mass in the out phase and, using (43),
we find the following expressions for the late time corre-
lation functions [23]:

&q(x, q)q(y, q))
3

3
e ik (x —y)

(2~) 2' k

X(2sinh rk+ 1 —
sinh2rkcos25k ),

& vr(x, il)m(y, rI)).

(In the language of Sec. III, the amplitude is the principal
quantum number and the phases are averaged over. ) The
coarse graining leads to decoherence, which is a neces-
sary condition for the quantum to classical transition.
Note that the decohering process picks out the preferred
basis of coherent states in which large occupation num-
bers are the sign of classicality.

The nature of the decohering process (or in other
words of perturbation mentioned above) is a subject of in-
dependent analysis. There are several mechanisms;
which one is realized will depend on the particular sys-
tem under investigation. Interactions with other fields
(which can be viewed as an environment) will induce sto-
chasticity of the phases. Weak self interactions of the
scalar field may also induce large changes in phases. Ap-
proximating the state of the system (e.g., neglecting de-
caying modes in examples in which the mass is constant
at early and late times but changes in between) will have
the same effect.

Returning to our example, let us define the coarse
grained entropy by at first averaging the two point corre-
lation functions (47) over the phases 5k and substituting
the thus obtained "reduced" correlation functions into
(38) to find the reduced operator 2)„d which will be

& q (x, q)~(y, q) )

e
' ~ —( 1 —isinh2rk sin25k ),ik(x — ) ~ - ~

(2n. )

where the angle 5k is

~k( ))=f d )1~k( I) Vk]

Hence, it follows immediately that

f d'z & y(x)y(z) ) & ~(z)~(y) )

e~ 'x i' —[(2sinh rd k . 1

(2~) 4
—sinh 2rkcos 25k]

and

f d z & p(x)m(z) ) & ~(z)p(y) )

(48)

(49)

Q(x —y)= sinh rk(l+sinh rk)e' '*d k

(2ir )
(51)

s= fd'klnnk (53)

for nk »1, in agreement with the result for the entropy
obtained in Sec. III [see (19)].

We conclude that in the cases in which both of our for-
mulas for the entropy from Secs. III and IV are applica-
ble, the results coincide as they should.

Then, according to (41), the classical field definition of en-
tropy gives

s—=f d k lnsinh rk (52)

in the classical limit sinh rk »1. Taking into account
(44) we obtain

e'"'" "'—[(2sinh r +1)d k . 1

(2n. )

slilll 2rkcos 25k ] (50)

Taking into account (45) we can substitute (49) and (50)
into (38) to determine the entropy of the field in the clas-
sical limit. The two terms (49) and (50) evidently cancel
each other, giving vanishing entropy. But this is no
surprise since we started in a pure state whose entropy
must vanish and since the evolution of the system is uni-
tary, thus preserving the entropy. The information about
the final state is complete.

To associate entropy with the final state we must
coarse grain the system, i.e., neglect some information.
Typically, this will be information which is very sensitive
to any kind of perturbation, either of the system or of the
state. In our example, the phases 6k will depend sensi-
tively on a perturbation, whereas the amplitudes will not.

VI. COSMOLOGICAL PERTURBATIONS

Our goal is to apply the definition of nonequilibrium
entropy developed in the previous sections to the gravita-
tional field. Specifically, we will calculate the entropy of
a stochastic background of gravitational waves and of
linearized density perturbations. To set the stage, we
brieAy review the theory of linearized cosmological per-
turbations [24].

We consider linearized perturbations of metric and
matter fields about a homogeneous and isotropic back-
ground cosmological model. There are three types of
Auctuations, scalar, vector, and tensor perturbations,
which are distinguished by their transformation proper-
ties under background space coordinate changes. Vector
modes decay and are irrelevant for cosmology. Hence,
we shall focus on scalar modes (density perturbations)
which couple to density, pressure, and tensor modes
(gravitational waves).
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A. Gravitational waves

Gravitational waves are linearized purely gravitational
fluctuations about a homogeneous and isotropic back-
ground metric g„' '. For simplicity we will consider a spa-
tially Hat universe given by the invariant line element

ds =a (g)(dq —5, .dx'dx~), (54)

g being conformal time and a(g) denoting the scale fac-
tor. The metric perturbation 5g„=a h„ for gravita-
tional waves is transverse and traceless and satisfies

boo =ho. =0.
The action S, for gravitational waves can be obtained

by expanding the Einstein action

1 fg~ d4 I2 SmG
(55)

to second order in the perturbation variables, with the re-
sult

Ss, = z f d x a (hkh;" —hk, h;", ),
24I

(56)

where the derivative with respect to g is denoted by a
prime. Varying this action yields the following equation
of motion for h ':

I

h' +2 h'- —Ah'=0 .j g J j (57)

In order to reduce the study of gravitational waves to
the analysis of a single scalar field, we expand h' in a
Fourier series [15]:

Although it may at a first glance seem that both densi-

ty perturbations and gravitational waves are described by
several independent fields, the analysis can in both cases
be reduced to the theory of a single scalar field [15,16];
and hence the formalism developed in previous sections
to determine the entropy of a nonequilibrium dynamical
system becomes applicable.

use the general definitions of entropy developed in Secs.
III and IV to define the entropy in gravitational radia-
tion. This will be done in Sec. VII.

B. Density perturbations

The theory of linearized density perturbations can also
be reduced to the analysis of a single scalar field [25].
However, the reduction process is more complicated than
in the case of gravitational waves.

Density perturbations are scalar-type metric Auctua-
tions which couple to energy density and pressure. At
first sight, the most general scalar type metric perturba-
tion 5g„(x,rI) can be expressed in terms of four free
functions. However, two of these functions describe pure
gauge modes [26], i.e., inhomogeneities which correspond
to a change of the background space-time coordinates.
The easiest and most physical way to avoid gauge ar-
tifacts is to adopt a manifestly gauge invariant formalism
[26] (for a pedagogical introduction see Ref. [16], for a
comprehensive review see Ref. [15]). In this approach,
scalar-type metric perturbations are characterized by two
functions which are, via the linearized Einstein equations,
coupled to matter inhomogeneities. The two gauge-
invariant functions N(x, g) and 0'(x, g) can easily be
identified by transforming to longitudinal gauge (the sys-
tem of coordinates in which 5g, is diagonal):

2+ 0
0 2%5 (61)

lj

For scalar matter and for an ideal gas, 4=0 as a conse-
quence of the i' Einstein equation (for these forms of
matter 5T,, -5,, ).

At this point, the description of density perturbations
has been reduced to prescribing a gauge-invariant com-
bination v of matter perturbation and metric fluctuations
in terxns of which the action for perturbations can be ex-
pressed in the form [27]

d kh'. (x,g) = f e'"'"6'(k)a 'uk(il), (58)
S„=— dx U' —c U, v 5'+ v

z
(62)

in terms of which the action (56) becomes

Ss, =—f d x q) —p;p;+ q)
1 4

'

2 Q
(60)

This action coincides with the action of a free scalar field
with time-dependent mass m (m = —a "/a) in fiat space-
time.

Based on the above equivalence between the gravita-
tional radiation field and the scalar field y(x, g), we can

where 6'(k) is the polarization tensor of a gravitationalj
wave with wave vector k. The mode functions uk(g) can
be used to define a scalar field y,

t 1/2

y(x, g) =
z f,e'"'"[GJ'(k)6~(k)]'~ u„(q),

121 (2m )

(59)

where c, =1 for scalar field matter and c, =p/p for ideal
gas matter. The variable z(g) is a combination of
background-dependent factors. For a perfect Quid and
for a scalar field as matter,

z =ap' /%c, , p=& —~', (63)

1/2 P

Ae= ——3 P u

JVC
(64)

(valid for both scalar field and hydrodynamical matter).
In conclusion, we have been able to reduce the action

where &=a'/a.
All gauge-invariant variables (such as 4) can be ex-

pressed in terms of the variable U via the Einstein equa-
tions. For example, the metric potential N which charac-
terizes the amplitude of metric perturbations in longitudi-
nal gauge [see (61)] is expressed in terms of u in the fol-
lowing manner:
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VII. ENTROPY
OF COSMOLOGICAL PERTURBATIONS

In the previous section we demonstrated that the ac-
tion for both gravitational waves and for density pertur-
bations can be reduced to the action of a free scalar field.
Hence the formalism of Secs. III and IV can be used to
define the nonequilibrium entropy of the gravitational
field.

In order to use the quantum definition of entropy of
Sec. III we need a well-defined notion of particles. For
gravitational waves described by the action (60) and in
the special case when a"=0 (which is realized in the ra-
diation dominated period when a (g)-g) the mass term
in (60) vanishes, and hence the notion of particles is well
defined and the particle number remains constant. In
contrast, during an inflationary period a(g) = —I/(Hg),
and this leads to a negative time-dependent effective
square mass m = —a "/a in (60) which is

m = —2/rI (65)

Because of this time dependent mass, there will be in this
case particle production and corresponding increase in
entropy. Focusing on modes with comoving wave nurn-
ber k, the time dependent mass induces an effective po-
tential

for scalar metric perturbations to that of a free scalar
field with mass m = —z"/z. However, in contrast with
the case of gravitational perturbations, the spatial gra-
dient term has a prefactor c, . In the radiation-dominated
period of the evolution of the Universe this term implies
that density perturbations propagate with the speed of
sound c, = I /&3. In the matter-dominated period, c, =0.
This has important consequences for our ability to define
the notion of "particle number" of a given field
configuration for different equations state.

ation, an additional amplification takes place during the
matter dominated epoch. However, we emphasize that
although the magnitude of the "potential" entropy is set
by the inflationary phase, in order to get any nonvanish-
ing entropy there needs to be a loss of correlations due to
some coarse graining (see Sec. V).

The precise nature of the decohering process for gravi-
tational waves and density perturbations is a separate to-
pic of investigation. For some ideas on how decoherence
arises we refer the reader to Ref. [29]. However,
decoherence may not be complete. In particular, in Ref.
[30] it is pointed out that phase correlations between k
and —k modes are preserved for wavelengths which are
comparable to the Hubble radius. As long as modes with
different ~k~ decohere, the computations described below
are unchanged.

The situation for density perturbations is similar. Dur-
ing the period of radiation domination, it follows from
(63) that z"=0. Hence, as in the case of gravitational
waves, the notion of particles is well defined, the particle
number is time independent, and hence the entropy per
mode remains constant. During inflation, it follows from
(63) that z"/z =a "/a =2/g, and that, therefore, as for
gravitational waves, particle creation for modes with
wavelengths larger than the sound horizon H ' occurs,
which leads to an increase in the occupation number of
each mode. The analysis of density perturbations is more
complex in the matter-dominated period since c, =0.
Hence no occupation number can be defined. In this case
we must use the classical framework of Sec. IV in order
to define the entropy.

In the following, we will first calculate the entropy per
mode of gravitational waves and density perturbations
which were produced during inflation in a cosmological
model in which the Universe is radiation dominated at
late times and argue that the result for the more realistic
case is the same.

2 2 (66)
A. Gravitational radiation

Hence, the increase in particle number is significant on
scales which satisfy

k (—/2/g= v'2Ha, (67)

which (up to a factor of &2) is exactly the condition for
the wavelength k 'a to be larger than the Hubble radius
H . Similarly, in the rnatter dominated period when
a(q)-q there is a nonvanishing effective potential. In
terms of g the potential takes precisely the form (65).
Hence, (66) and (67) also apply in this case.

In the following, we shall evaluate the entropy for the
spectrum of gravitational waves produced in an

inflationary universe. From the previous discussion, we
see that the magnitude of the entropy is generated by
"parametric amplification" [28] of the number of gravi-
tons in each mode which occurs during inflation on scales
larger than the Hubble radius. On scales which enter the
Hubble radius after t, , the time of equal rnatter and radi-

To estimate the entropy of gravitational radiation pro-
duced during inAation, it is convenient to express the ex-
pectation value (n~) of the number operator in each
mode k (or, correspondingly, the squeeze parameter rk ) in
terms of the spectral density of the two-point correlation
function of the metric h~'. Since this spectrum ~5"(k)~
was calculated in the particular models of interest to us in
Ref. [31],we can then use these results to estimate the en-
tropy via formulas (52) or (53) (the result will be the same
since on the scales of interest nI, )& 1).

We can only justify the appearance of entropy for per-
turbations on scales smaller than the Hubble radius, since
the mode functions do not oscillate on larger scales.
Hence, when calculating the entropy in gravitational ra-
diation at some late time, we will only consider scales
smaller than the Hubble radius at that time.

Combining (58) and (59) with the standard mode ex-
pansion of the quantum operator g associated with y, we
obtain the following result for the operator 6':
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g'i(x ~) (612)1/212 —1 k
—1/2 J [e

—ik.xtiout(~)+c —+eittxtiout(Q)c+ ]
d k

(2~)3/2 [Gm(k)gn (k)]1/2 (68)

with r =(r) and k =
~k~ and where ~0;„& is the initial vac-

uum state defined by a1, ~0;„&=0. On the other hand,
this two-point function can be evaluated in terms of occu-
pation numbers using (68):

&o~f,'(x, ~)f&(x+r, q) ~0&

2 "" "k'(2&n &+1)
2~ o k kr

(70)

where ck and c & are creation and annihilation operators,
respectively, of particles with comoving wave vector k at
some late time and u1',"'(g)=e'"" for perturbations on
scales smaller than the Hubble radius (kr) » 1).

The spectrum 5h (k) of gravitational radiation is
defined in terms of the two-point function of 6~ by

&0;.I&j(x,q)&J(x+r, g)10;.&
= J,

"

(69)

where we took into account that & 0;„~ck+ck ~0;„& =
& nk &.

Comparing (69) and (70) yields

2&n„&+1=
61 (k/a )

(71)

Equation (71) can be applied to calculate the entropy of
gravitational radiation in any cosmological model. Given
the spectrum 5i, (k), the occupation numbers & ni, & are
determined for each mode by (71), and the entropy per
mode follows from (53).

To be specific, we evaluate the entropy in an
inflationary universe. The spectrum of gravitational radi-
ation originating in quantum fluctuations during the
phase of exponential expansion has been calculated many
times [31] (for an explicit derivation using the notation of
this paper see Ref. [15]). The result is

(tok), to (k (t11 z

(r, k) 'z,,'", z,'/2r, '(k &t, 'z,,'/4(r, /r )
'" (72)

where to is the present time and tz corresponds to the end of inflation. z, is the redshift at the time of equal matter
and radiation. The top line corresponds to scales which enter the Hubble radius after teq the bottom to those which
enter during the period of radiation domination. Hence, from Eq. (71)

(tok) ~ tp &k &to zeq

(tok ) zoq )zeq to & k & ro zoq (to/tit )
(73)

H being the Hubble expansion rate during the period of
inflation.

Choosing H =10' GeV, a value for which fluctuations
from inflation have the right order of magnitude to seed
galaxies [32], and comparing the entropy sk per mode on
galactic scales k ' —10 Mpc, we conclude from (73) that SCMB = (4~/3) To (76)

tions produced by infiation are much larger than the
Poisson noise in the background fields.

However, the total entropy density for the gravitation-
al background is smaller than that of the CMB for which

sk —100 ln10 . (74) From (53) it follows that the entropy density in gravita-
tional radiation is

Formula (74) can also be interpreted as giving the en-
tropy in a volume V=k of gravitational waves with
wave number of the order k. This quantity can be com-
pared with the statistical fluctuations of the entropy of
the cosmic microwave background (CMB). These Auc-
tuations hscMB(k) scale as

S,= (41r/3)k, ,

where k, is determined by

n( k)=1 .

From (73) it follows that

(77)

(78)

kscMii ( k ) ( k I r ) (75)
k, t, 'z„' '-(r, /r )'" (79)

where A.
&

is the characteristic wavelength of the CMB.
Hence, for large k ' (such as the scales mentioned
above), the entropy in gravitational waves exceeds that in
the statistical fluctuations of the CMB. This reQects the
result that on cosmological distance scales the Auctua-

and hence

Sow —(H/mp, ) To . (80)

Comparing (77) and (80) we see that the total entropy
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density in gravitational waves is suppressed compared to
the entropy of the CMB by a factor (H/mpi) . Never-
theless, as seen above, on large length scales, gravitation-
al radiation dominates over the fluctuations of the entro-
py of the CMB.

B. Density perturbations

The approach for calculating the entropy of density
perturbations follows what was done above for gravita-
tional waves. The starting point is the expansion of the
operator g associated with the scalar field U of (62) (which
contains all the information about density perturbations)
in terms of late time creation and annihilation operators
cI,

+ and CI, , respectively:

f(x, il) = —f, [e'" *UP"'(q)c„1 0 k

c, WO we obtain [15]
1/2

pi /2
N(x, i))= — l4, a

QI 'g Cg +8 QI 'g CI
d k

(83)

with

zQg-
k c, z

(84)

As was done previously in the case of gravitational
waves, the next step is to derive the relation between the
spectrum 5~(k) of density perturbations

+e "vI,'"'('rj)ct,+ ] . (81) (0;„~4(o,il)4(r, q)~0;„)=j""„""„""~S~(k)~' (85)

To simplify the consideration and to justify the notion
of entropy, we will estimate the entropy on scales smaller
than the Hubble radius at late times, assuming that in
this late time interval the Universe is radiation dominat-
ed. In this case, the notion of particles is unambiguous
since the mode functions UI, (rI) take the form

Ui, (il) =(1/i/co)e' " (82)

with co=c,k =k/i/3.
Using the relation (64) between the gauge-invariant rel-

ativistic potential 4 and the scalar field U valid when

&0;„~c(o,il)c (r, il)~0,„&

3 d k=—l2 (2( ni, ) + 1)ui,"ui, e'"'
4 a (2ir)

(86)

Making use of (82) and (84), and evaluating z during the
period of radiation domination, we obtain

and the occupation number (ni, ) defined with respect to
the creation and annihilation operators introduced in
(81). Using (83) it follows that

&O,„~c(O,g)e(r, g)~0,„)= I' -'a-' I dk k-'" (2(n„&+1)k-' 1+
kr (87)

Comparing (85) and (87) yields

2 2 k2(n )+1= (k ) (a ) Ini — 'g a rl

x JS,(k)i', (88)

V(y)= —,'m qP . (89)

In this case, the spectrum of density perturbations im-
mediately after inflation on scales which are larger than
the Hubble radius is given by [15]

which expresses the occupation numbers in terms of the
spectrum of the relativistic potential for density perturba-
tions.

The entropy for density perturbations can now be
determined by combining (88) and (53). To be specific,
we evaluate the entropy per mode in a model of chaotic
inflation [33] with potential

I

To obtain the late time spectrum, the decay of the ampli-
tude of 4 on scales inside the Hubble radius must be tak-
en into account. Assuming that the Universe is radiation
dominated after inflation we obtain [15]

(91)Im ln
v'2

3~ ~y

for kg ) 1 at time I,o.
inserting (91) into (88) yields the following result for

kq»1:

2(nI, )+1—(mto) ln
ky

Up to the logarithmic factor, this result agrees with the
corresponding result (73) for gravitational waves.

For m —10' GeV (the upper bound on m from con-
straints on the anisotropy of the CMB) we hence obtain
the same entropy density per mode:

i5qi= 1m ln
~/2

3
(90) s& —100 ln10 . (93)

where A, z is the characteristic wavelength of the CMB.
%'e conclude that the entropy per mode of density per-

turbations on large scales (A, ))A, ), in particular, on
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scales of galaxies, clusters and large-scale structure,
exceeds the statistical fluctuations of the entropy of the
CMB. This supports the important role of the entropy of
the gravitational field in the galaxy formation process.

The quantum approach of calculating the entropy of
density perturbations breaks down during the matter
dominated era. However, based on the considerations of
Sec. V, it is easy to extend the analysis.

As discussed in Sec. IV, the classical definition (41) can
easily be applied during the epoch of matter domination.
The results obtained above will not change significantly.
However, there are some interesting questions concerning
coarse graining and time dependence of the entropy in a
matter dominated universe which we shall consider else-
where.

Formulas (71) and (88) can be used to calculate the en-
tropy of gravitational waves and density perturbations in
any cosmological model in which the spectra 5h(k) and
5+,(k) are known. In particular, the entropy of the gravi-
tational field in topological defect models of structure for-
mation [14] can easily be determined.

VIII. CONCLUSIONS

We have presented two general definitions of nonequili-
brium entropy and applied them to calculate the entropy
in gravitational perturbations and to give a measure of
the entropy of linear density fluctuations and gravitation-
al waves in a Friedmann universe.

Our first definition of entropy is based on the micro-
canonical ensemble and is applicable to systems with
well-defined occupation numbers. The origin of the en-
tropy is coarse graining: ignoring correlations in the
form of information about quantum numbers other than
the principal quantum number which is usually taken to
be the energy.

The second definition of entropy applies to any sto-
chastic classical field and expresses the entropy in terms
of two-point correlation functions. The physical origin of
entropy in this case is also due to coarse graining. We
have shown that the entropy of scalar fields in an expand-
ing universe satisfies the second law of thermodynamics.
Any increase in entropy during Hamiltonian evolution is
a consequence of coarse graining.

We have used the gauge-invariant theory of cosmologi-
cal perturbations to give a consistent and unified
definition of entropy of cosmological perturbations. On
scales of galaxies and larger, this entropy is larger than
the statistical Auctuations in the entropy of CMB pho-
tons on these scales. Hence, this entropy is important for
structure formation in the Universe. However, the total
entropy in density perturbations and in gravitational
waves is smaller than the total entropy of the CMB.

It is our hope that the methods presented here can be
used in many different situations. In particular, they
might allow a definition of entropy of density perturba-
tions beyond linear theory.
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f(t)( x) f(t)

2P f"=f d'y 2)(x y)f"(y—)=a;5»f" (A 1)

This set of operators includes any operator with positive
spectral density:

2)(k)= f d z e ' 'X)(z), (A2)

which has support in a finite volume V, i.e., 2)(z)=0 if
zE V.

The g function associated with such an operator is

g&(s)= g 1

i ai
(A3)

where the sum extends over all nonzero eigenvalues. It
follows that

d gz, (s)
g~(0) =

ds x=0
= —g lna;e

= —ln +a, (A4)

and hence

(A5)

Thus, the calculation of the determinant of 2) has been
reduced to the evaluation of g&(0).

Let us now introduce the heat kernel G(x, y, r) associ-
ated with 2):

G(x, y, r)=pe ' f"f" (A6)

which in the case under consideration depends only on
I—y and ~ and satisfies the equation

f2)(x—z)G(z —y)d'z=— I3G(x —y, r)
a~

(A7)

APPENDIX: CALCULATION
OF THE DETERMINANT OF 2)(x —y ) =2)"

The determinant of the operator 2)(x—y) =2P» arising
in (38) can be calculated using the g-function method
[34]. More generally, consider an operator 2P» with a
discrete set of positive real eigenvalues a; and eigenfunc-
tions

For stimulating discussions we thank Andy Albrecht,
Leonid Grishchuk, Jim Hartle, Tony Houghton, Bei-Lok

with the boundary condition

G(x —y, 0) =5(x—y), (A8)
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g&(s)= f drr' ' f d x G(xxr) .
1 s o

(A9)

Thus, in order to compute detS we need to solve Eq.
(A7) for G(x, y, r) given the boundary condition (AS). It
is convenient to work in Fourier space where Eq. (A7)
takes the form

a consequence of the completeness of the set of eigenfunc-
tions. It is easy to check by explicit integration that

where

G(k, r)= fG(z, r)e' *d'z .

As a result we obtain the following solution of (A7):

G(x —y, r)= f d3kex(k)~eik(x —y)

Substituting (A13) into (A9) one finds

Vf d 3k —s)ns(k)

(A12)

(A13)

(A14)

2)(k)G(k, r) = — ( G(k, r) )
a7

with the boundary condition

(A 10) and, correspondingly,

detS=exp Vf lnS(k)d k (A15)

G(k, O) =1, (Al 1) where Vis the volume of the support of 2).
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