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We analyze the sensitivity of a network of interferometer gravitational-wave detectors to the
gravitational-wave stochastic background, and derive the dependence of this sensitivity on the ori-

entations of the detector arms. We build on and extend the recent work of Christensen, but our
conclusion for the optimal choice of orientations of a pair of detectors divers from his. For a pair
of detectors (such as LIGO) that subtends an angle at the center of the Earth of ( 70, we find

that the optimal configuration is for each detector to have its arms make an angle of 45' (modulo
90') with the arc of the great circle that joins them. For detectors that are farther separatede, ach
detector should instead have one arm aligned with this arc. We show that the broadband sensitivity
to the stochastic background of a detector pair which are 3000 km apart is essentially determined

by their relative rotation. Their average rotation with respect to the arc joining them is unimpor-
tant. We also describe in detail the optimal data-analysis algorithm for searching for the stochastic
background with a detector network, which is implicit in earlier work of Michelson. The LIGO pair
of detectors will be separated by 3000 km. The minimum detectable stochastic energy density for
these detectors with their currently planned orientations is 3+0 greater than what it would be if
the orientations were optimal, and 4 times what it would be if their separation were & a few kilo-

meters. (The detectors are chosen to be far apart so that their sources of noise will be uncorrelated,
and in order to improve the angular resolution of the determinations of positions of burst sources. )

PACS number(s): 04.30.+x, 04.80.+z, 95.55.Ym, 98.80.Es

I. INTRODUCTION AND SUMMARY

A. Background and motivation

Construction will begin soon on the American Laser
Interferometer Gravitational Wave Observatory (LIGO)
[1], and on its French-Italian counterpart, VIRGO [2].
Early in the next century there will likely be in operation
a worldwide network of detectors, with sites in America,
Europe, and possibly Japan and Australia [3]. It is im-
portant at this stage for physicists to look ahead and
identify the types of science that the community might
focus on using this network when it reaches a mature
stage, perhaps a decade after the first gravitational waves
are detected. One of the reasons for doing so is that
some properties and parameters of the network, which
ultimately will constrain what it can accomplish in the
future, are being finalized today. The orientation of the
detector arms is one example.

One of the long term aims of this detector network
will be to place upper limits on (or perhaps detect) the
energy density of a stochastic background (SB) of gravi-
tational waves. This background would be analogous to
the relic 3 K electromagnetic background, except that
its spectrum is not expected. to be thermal. The spec-
trum is usually characterized by a quantity Os(f) which
is the gravitational-wave energy density per unit loga-
rithmic frequency, divided by the critical energy density

p to close the Universe:

dE
ds d(1 f)

(1 1)

Some possible sources of a SB include (i) random super-
position of many weak signals from binary-star systems

[4], (ii) decaying cosmic strings [5] and first-order phase
transitions [6] in the early Universe, and (iii) parametric
amplification of quantum mechanical zero-point fIuctu-
ations in the metric tensor during inflation [7—9]. See
Refs. [10—12] for reviews. The predicted wave strengths
from all of these stochastic sources are highly uncertain,
reHecting our relative ignorance of the relevant physics
and/or astrophysics. Hence, detecting or placing upper
limits on the SB can bring us valuable information, par-
ticularly about the very early Universe.

Relic gravitational waves produced during infl. ation are
particularly interesting, because, as Grischuk has shown

[13], the energy spectrum for these waves contains a
unique imprint of the time evolution of the Universe's
scale factor a(t). We now discuss what is known about
the magnitude of the contribution to Os(f) from these
waves, at frequencies relevant to LIGO and/or VIRGO.
The predictions for Og from cosmological models are not
very firm: they can vary between 1 and 10 or less.
However, observational upper bounds on Og(f) in vari-
ous frequency bands give interesting constraints on the
models [8]. In turn these constraints can be used, within
the context of particular inflation models, to place upper
bounds on the contribution of relic gravitons to the value
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of Oz(f) in LIGO wave band, see, e.g. , Ref. [14]. The
strongest such upper bound comes from matching the
normalization of the scalar and tensor fluctuations pro-
duced during inflation to the recent Cosmic Background
Explorer (COBE) measurement of the microwave back-
ground anisotropy [9, 15]. The result of this matching is
somewhat discouraging: standard exponential inflation
models predict that Og(f) & 3 x 10 at the 95% confi-
dence level [9], far too small to be detected [cf. Eq. (6.6)
below]. While it is far from certain that exponential in-
flation is correct, it seems unlikely that the expansion
during the inflationary era was so much faster than expo-
nential as to tilt the gravitational wave spectrum enough
to give a detectable signal at high, LIGO frequencies. It
is also possible, of course, that the observed microwave
anisotropy was caused by physical processes of structure
formation other than inflation.

Despite these pessimistic prospects for the detection
of relic gravitons by LIGO and/or VIRGO, it is certainly
possible that there will be a detectable signal from other
sources such as cosmic strings [5]. Hence, it is important
to determine how the detector arm orientations, which
will not be changeable in the future, affect the sensitivity
of the detector network to the SB. To do so is the first of
the two principal purposes of this paper. This issue was
first considered by Michelson [16], and has been exten-
sively discussecl by Christensen [12, 17]. Essentially we
build on and extend slightly their analyses. Our conclu-
sions are also slightly different from those of Christensen.

The second principal purpose of this paper is to spell
out the optimal data-processing procedure for searching
for the SB with a network of detectors. The algorithm
for two detectors is implicit in Michelson [16] (and is in-

correctly treated in Ref. [17]); we give a more detailed
description and a generalization to a network of detec-
tors, taking into account the possible effect of correlated
sources of noise. We now turn to a description of our
results and an explanation of how they relate to earlier
work.

B. Detection of the stochastic background

The effect of the SB on a gravitational-wave detec-
tor is essentially to produce a small contribution to the
random, Gaussian noise in its output. For one detector
this contribution will be swamped by the detector's own
sources of noise, unless the SB strength is implausibly
large (Og 10; see Sec. II). For two detectors which
have no common sources of noise, however, the only con-
tribution to the correlated Buctuations in the detector
outputs will be the SB. By cross correlating the outputs
of the detectors, the SB can in principle be measured. If
one had identical, LIGO-type detectors at the same site,
oriented in same way so that they respond in exactly the
same way to the SB, and with levels of intrinsic noise cor-
responding to the "advanced detectors" of Ref. [1], then
cross correlating would give a sensitivity to O~ of the or-
der of 10 in the frequency band 10Hz + f + 1000Hz
[»]

For a pair of separated, nonaligned detectors, two new
physical effects complicate the analysis [12, 16, 17]. First,
if the detectors are not aligned the same way, they will

respond to different polarization components of the SB.
Orthogonal polarization components of the SB are ex-
pected to be statistically independent, and so the cross
correlation will be reduced. Second. , for each mode there
will be a time lag between exciting the first detector
and the second detector, and hence phase lags in the
cross correlation. For the LIGO detectors separated by

3000 km and having maximum sensitivity at a fre-
quency of f 70Hz, a typical phase lag will be of order
unity. Hence, there will be some destructive interference
between parts of the cross correlation that are due to
modes which propagate in different directions. Thus we
expect a reduction in the sensitivity of the detector pair
to the SB.

To analyze this reduction, it is necessary to (i) deter-
mine how to optimally process the output from the de-
tectors, and (ii) find the signal-to-noise ratio (SNR) that
results from this method of filtering. We also want to
(iii) determine how the optimal SNR depends on the de-
tector orientations, and (iv) find those orientations that
maximize the SNR. Steps (i) and (ii) were analyzed in
Refs. [16,17]. They found that, when optimal signal pro-
cessing is used, the square of the signal-to-noise ratio for
a broadband measurement of the SB is [18]

S' /4Gp. l 2r¹ ( 5vrcz )
d

~g(f)'&(f)'
f6+ (f)2

(1.2)

C. ER'ect of detector orientations

Our results are as follows. Call ~7q the angle between
the bisector of the arms of the first detector and the arc
of the great circle that joins the detectors, and similarly
define o2 for the second detector. Let 8 = (oi —o2)/2
and A = (oi + o2)/2, so that b describes the relative ro-

Here 7" is the duration of the measurement, and S (f)
is the spectral noise density in either detector. The key
quantity appearing in this equation is the dimensionless
function p(f), which we call the overlap reduction junc
tion. It characterizes the reduction in sensitivity to the
SB of the detector pair at frequency f that is due to their
separation and nonoptimal orientations, and its value is
unity for coincident, aligned detectors. In Refs. [16, 17] a
formula for the overlap reduction function was derived,
which expresses it as an integral over all solid angles of
the complex phase lag between the detectors, weighted
by combinations of the detector beam pattern functions
[cf. Eq. (2.13) below]. Christensen [12, 17] numerically
calculated this function for various detector configura-
tions and discussed some of its properties. However its
dependence on the detector orientations was not appar-
ent.

In this paper we derive an analytic formula for the
overlap reduction function. Using this formula we are
able to carry through steps (iii) and (iv) outlined above.
We also determine how good are the choices that have
been made for the orientations of the detectors in LIGO,
VIRGO, and GEO (an as-yet-unfunded British/German
Collaboration); i.e. , we determine how their sensitivity
to the SB compares to the sensitivity they would have if
they were optimally oriented.
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(1.3)
where the quantities A, B, and C are independent of
b and L, and A and C are positive. There are thus
two possibilities for the optimum detector orientation,
depending on the sign of B: (I) cos(4b) = —cos(4A) =
+1, corresponding to each detector having an arm along
the line joining them, and (II) cos(4h) = cos(4A) = +I,
corresponding to each detector arm being at an angle of
45' (mod 90') to this line. In Fig. 1 we plot the SNR for
both of these choices of orientation, as a function of the
angle P subtended between the detectors at the center of
the earth. Configuration II is optimal for P 70', while
configuration I is optimal for detectors which are further
apart. Figure 1 shows that detectors which are close
together are the most sensitive; the sensitivity of LIGO
is roughly 25% of what it would be if its detectors were
coincident. It also shows that detectors whose planes are
roughly perpendicular (P 90') have poor sensitivity,
as we would expect.

0. 1

I i i & t I

50 100 150

FIG. 1. The broadband signal-to-noise ratio for a pair of
detectors as a function of the angle P subtended between them
at the center of the Earth, normalized to unity for coincident
detectors. Curve I corresponds to each detector having an arm
along the arc of the great circle that joins them, and curve
II corresponds to each one having an arm at 45 to this arc.
The optimal configuration is II for P + 70' (except very close
to P = 0), and I for larger values of P. The point l:/2 and
the two points marked 2/V show the expected sensitivities of
the LIGO detector pair and of both LIGO-VIRGO detector
pairs, with their current orientations. The point V/g shows
the sensitivity the detector pair VIRGO-GEO would have if
the orientations were chosen optimally for the stochastic back-
ground (which will probably not be the case, since optimiza-
tion for the stochastic background implies sensitivity to only
one of the waves' two polarizations, and a corresponding loss
of information when studying nonstochastic waves).

tation of the detector pair, and 4 describes their average
rotation with respect to the line joining them. Then in
Sec. V below we show that the optimum SNR (1.2) is
given by

S2 = A cos (4h) + 2B cos(48) cos(4A) + Ccos (4A),

We also show in Sec. V that the narrow-band sensitiv-
ity of the detector pair near a given frequency f, which is
proportional to ~p(f) ~, is also always optimized at either
configuration I or II. For example, at very low frequen-
cies, ~p(f) ~

becomes essentially the overlap of the polar-
ization tensors of the two detectors [cf. Eq. (B5) below
with p2(0) = ps(0) = 0], which is maximized in configu-
ration I. This low frequency limit was previously derived
by Christensen [17]. Motivated by this, he suggested that
configuration I was always the best orientation to choose.
Figure 1 shows that, though this is not true for some val-
ues of the separation angle P, the amount lost by choosing
I rather than II is never more than a few percent in SNR.

We now discuss the orientations that have been chosen
for the detector systems that are under construction or
that have been proposed. The relative rotation angle b
for a pair of detectors essentially determines whether the
detectors respond to difFerent polarization components,
or to the same polarization component, of the gravita-
tional wave field. The advantage in responding to dif-
ferent components (28 45 ) is that more information
can be extracted from incoming burst signals. On the
other hand, if the detectors respond to the same compo-
nent (8 0') then the detection signal to noise thresh-
old is reduced, i.e. , the fact that the same wave form is
seen in both detectors means that one can be more confi-
dent that a candidate event is not due to detector noise.
These considerations guided the choices of the presently
planned values of 8 for the detector pairs LIGO-I IGO
(there will be two LIGO detectors) and VIRGO-GEO,
which are 8 0 and 2b —45', respectively [19).

Within the context of these constraints, a key issue
that we wanted to understand was the following: given
the above values of b, how much does the broadband
sensitivity of the detector pair depend on L, i.e. , by how
much can the SNR be reduced if 4 is chosen arbitrarily
instead of being optimally chosen? The answer we ob-
tain (Secs. IV and V below) is that for relatively close
detectors with P + 30, the dependence on A is very
weak; but the dependence is strong for detectors on dif-
ferent continents. Hence for LIGO's parallel detectors,
the sensitivity will be close to optimal irrespective of the
value of L; the present choice of A = 28.2 implies that
the SNR for LIGO is 97% of the sensitivity at opti-
mal orientation. The VIRGO-GEO orthogonal detector
pair, however, will have a SNR of less than 10 times
the optimal value, irrespective of the value of 4, if 2b
is chosen to be 45' (as is planned, so as to optimize the
information obtainable from burst sources).

Finally, we estimate the 90% upper confidence limit
that can be placed on Ag(f) by the so-called "advanced
detectors" in LIGO [1], in a broadband measurement us-
ing one-third. of a year integration time, to be 5 x 10
in the frequency band 20Hz & f + 70Hz [cf. Eq. (6.5)
below]. This is a little worse than earlier estimates which
assume that the detectors are coincident and aligned [10,
11].

D. Organization of this paper

The layout of this paper is as follows. In Sec. II we
define the cross correlation matrix for a network of de-
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tectors and give the formula for the contribution to this
quantity from the SB. In Sec. III we describe the gen-
eral optimal data-processing strategy, the justification of
which is given in Appendix A. In this appendix we also
derive the generalization of the signal-to-noise formula
for optimal signal processing (1.2), to a network of' more
than two detectors, but more importantly to a network
that has more than one interferometer per site: we show
how to take into account the effect of correlated noise in
detectors at the same site by introducing the concept of
the effective spectral noise density of a detector site. In
Appendix B we derive the formula for the overlap reduc-
tion function, and we describe some of its properties in
Sec. IV.

Next, in Sec. V, we show how to optimize the orienta-
tions of a pair of detectors, both for narrow-band and for
broadband measurements of the SB. Section VI describes
the implications of our results for the I IGO, VIRGO, and
GEO detector facilities. Finally in Sec. VII we summa-
rize our main results.

We use units throughout in which the speed of light c
and Newton's gravitational constant G are unity.

II. DETECTOR CROSS CORRELATION MATRIX

dr e' ' Cb(r) b. (2.3)

This is a positive definite Hermitian matri~ which satis-
fies the equations

The effect of a stochastic background on a detector
network will be essentially to produce statistical corre-
lations between the outputs of the various detectors. A
key result which we will need is an expression for these
correlations in terms of the spectrum Os(f) of the gravi-
tational background. This was erst given by Christensen
[12, 17], although it is implicit in the work of Michelson
[16]. We briefly describe the derivation in this section,
and we lay the foundations for our analysis of Appendix
A and Sec. III.

A detector network with % detectors will have outputs

h. (t) = h s"'(t)+ n. (t)+ s.(t), (2.1)

for 1 & a & ¹ Here 6 is the strain amplitude that we

read out from the ath detector; it consists of an intrinsic
detector noise n, a contribution from the SB 8, and
possibly a contribution h,"g" from nonstochastic gravi-
tational waves (bursts and periodic waves). The noise n
and the SB induced strain 8 are independent random
processes, which we assume to be Gaussian and station-
ary.

The detector correlations can be described by the cor-
relation matrix

Cb(v-)nb = (hn(t+ )rh( b))t—(hn(t+ r)) (hb(t))) (2.2)

where angular brackets mean an ensemble average or a
time average. The Fourier transform of the correlation
matrix, multiplied by two, is the power spectral density
matrix:

for any functions vf (t). Here tildes denote Fourier trans-
forms, according to the convention that

e '~'h(t)dt.

Since the random processes n (t) and s (t) are uncorre-
lated, the spectral density matrix of the detector outputs
is just the sum of those for the detector noise and for the
background:

Sb(f) = S-(f) + S (f). (2.6)

To derive an expression for S,(f), two key ingredients
are needed. The first is a mode expansion for the metric
perturbation for an isotropic, stationary SB. Expressed
in frequency space, this is

lh, , (x, f) = d2fI ) ~
(f) 2~i fn ~ A, n

A=+, x

(2.7)

for f ) 0, and l lh, ~(x, f) = ~sBlh, i(x, f)* fo—r f ( 0.
Here the tensors e ' are the usual transverse traceless
polarization tensors, normalized according to e, ' e,. '

28A~, and I d 0 denotes the integral over solid angles
parametrized by the unit vector n. The coeKcients 8A
are random processes which satisfy [20]

(sA, (f) sa, (f')' ) = &AB ~ (n, xn)

x 8(f —f') '
As(f) (2 8)

aIld

(sA „(f)s~ (f') ) = 0, (2 9)

for f, f' ) 0 [21]. Here 8 (n, xn) is the b function on the
unit sphere.

The second ingredient is the expression for the re-
sponse of the ath detector to the background. This is

s (t) = d: l lh(x, t), (2.10)

where w is the position of the detector, the colon denotes
a double contraction, and d is a symmetric tensor that
characterizes the detector's orientation (its polarization
tensor). If the arms of the detector are in the directions
of the unit vectors l and xn, then d = (l 1 —xn xn)/2
[22]. From Eqs. (2.7) and (2.10) we obtain that

s (f) = ) d O„E (n) sA „e2'~"'".
,

A

(2.11)

where I" (n)—:d:e ' are the detector beam pattern
functions. Inserting this response function into an equa-
tion analogous to Eq. (2.4), and using Eqs. (2.8) and
(2.9), we obtain

(h-(f)hb(f')*) = ~(f —f')~b(f).—b, (2 4) (2.12)
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where [2S]

5
W-b(f) = 8' d 0 (F+F+ + F"F )

x exp [2vrifn (x —xb)]. (2.1s) S,(f) b Sb(f) b for a g 6 (s.2)

compensated for [17]. When correlated noise is unimpor-
tant, then the off-diagonal elements of S (f) will be very
small, so that

The functions p b are the overlap reduction functions
discussed in Sec. I. It can be seen that their value is unity
for coincident, aligned detectors. Below when considering
a single pair of detectors we shall write p b(f) simply as

III. THE OPTIMAL PROCESSING STRATEGY

In this section we describe the optimal method for fil-
tering the detector outputs when searching for the SB.
We discuss the two-detector case in Sec. IIIA; the filter-
ing method in this subsection is implicit in the formulas
of Ref. [16]. A detailed proof that the method is opti-
mal is given in Appendix A. In Sec. III B we discuss the
e8'ects of correlated sources of noise, and explain why cor-
relation measurements between detectors at widely sep-
arated sites yield much better upper bounds on Ag(f)
than correlation measurements between detectors at one
site. Next we describe the modifications to the filtering
method necessitated by correlated noise, in Sec. III C.

A. General description

To measure the stochastic background one really needs
to measure the spectral density matrix of the detector
outputs Sp„(f).Now there is no way in principle to sep-
arate out the portions of Sb(f) due to detector noise
S (f), and due to the SB S,(f). If we had only one
detector, we could only conclude that S, (f) & Sb (f ) .
From Eq. (2.12) and using p (f) = 1, this would give
an upper bound on O~ of

Here 6 = gfSb(f), which is projected to be & 10
for I IGO, even at an advanced stage [1]. The quantity
675 is the Hubble constant scaled to the value of 75 km
sec Mpc

It is unlikely that Og will be as large as the value in
Eq. (S.l). However, if it does happen that Bg + 10
in the LIGO wave band, then the S¹induced noise may
dominate over the other sources of detector noise at some
frequencies, and may ultimately constrain the amount of
information that we can extract from burst gravitational
waves. In this paper we shall from now on assume that
O~ is small, and restrict attention to measurements made
using two or more detectors.

With two or more detectors, one takes advantage of
the fact that the sources of noise in each detector will
be independent. This will be the case for detectors at
widely separated sites, because sources of noise that are
correlated between the detectors on time scales of the or-
der of the light travel time between them are expected
to be insignificant, or if not they can be monitored and

For coincident, aligned detectors the next step is sim-
ply to integrate IIi(t) against II2(t), see, e.g. , Ref. [10].
For noncoincident detectors, however, a difFerent strat-
egy is necessary. One first constructs the correlation with
time delay w,

Y(r) =
7"-j2

(s 4)

where w is the observation time, typically of the order of
1 yr. Then one calculates the weighted average

dr L(r) Y (r), (s.5)

where vi is the light travel time between the detectors,
and L(r) is a weighting function which must be carefully
chosen for each detector pair in order to maximize the
sensitivity. Roughly speaking, this smearing of the cross
correlation compensates in some measure for the phase
lags between the detectors which were discussed in Sec. I.
The quantity Y will then have a truncated Gaussian dis-
tribution (i.e. , Gaussian but restricted to positive values)
with signal to noise ratio given by Eq. (1.2) [18].

In fact the sliding delay function L(w) is just the
Fourier transform of the overlap reduction f'unction [see
Eqs. (A50) and (A51)]. In Appendix B we give an ana-
lytic formula for L(7), and we show in Fig. 2 the sliding
delay function that will need to be used for the LIGO
pair of detectors.

In order of magnitude, the 90% confidence upper limit
that can be placed on Og by cross correlating between
the detectors is [10]

gmax
v 7.5f (s.6)

Here Bo 10 is the upper bound (S.l) obtainable from
one detector, and 6f is the bandwidth of the measure-
ment. [If no bandpass filtering of the data is carried out,
A f will be roughly the width of the peak of the func-
tion 1/(f S ); and if filtering with a bandwidth Af is
used, then the domain of integration in Eq. (1.2) must
be suitably restricted. ]

By measuring these components we can gain informa-
tion about the SB. One does this by cross correlating the
two output streams [10]. One takes each detector output
h (t), a = 1, 2, and constructs, using an optimizing lin-

ear filter K(t), the quantity H (f) = K(f)h (f). The
purpose of this filter is essentially to suppress the signal
at those frequencies at which the detector noise is strong,
and it is given by [cf. Eq. (A51) below]

1
K(f) =
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0,6

I
f

I be negative (or complex). A complex value of S„(f)b

corresponds physically to sources of noise that excite
two detectors with a certain preferred phase lag between
them.

In Appendix A, we derive the 90% confidence upper
limit that one can place on A~ in a bandwidth Zf using
intrasite correlations, which generalizes Eq. (3.6). If we
define the noise correlation coefBcients by

0.4 (3.8)

0.2

—0.01 0
sec

0.01

then the result depends on (i) the measured value C of
C (determined from Sg), and (ii) the assumed a priori
maximum value C „of~C~. In order of magnitude we
find [cf. Eqs. (A36) and (A40) below]

FIG. 2. The "sliding delay function" I (r) for the LIGO
pair of interferometers. To maximize the broadband sensitiv-
ity to the stochastic background, the cross correlation with
a time delay 7 between the detector pair must be integrated
against this function; see text.

B. EfFects of correlated noise

Up to this point we have assumed that the intrinsic de-
tector noise is uncorrelated between different detectors,
i.e. , that the matrix S (f) is diagonal. We now relax this
assumption and consider the effects of correlated noise. It
is planned for LIGO and VIRGO to ultimately have two
or three detectors per detector site, perhaps optimized
for different types of gravitational wave sources. Thus,
there will be two possible types of correlation measure-
ments: intrasite measurements at one site, and intersite
measurements between detectors at different sites. As
previously mentioned, it seems very unlikely that there
will be any significant correlated noise in intersite mea-
surements, and so it will only be important for intrasite
measurements.

'tA'e now consider what information can be extracted
from intrasite correlations. This issue has been previ-
ously discussed by Christensen [17], who indicates that
intrasite upper bounds on the SB will be competitive
with those from intersite measurements. As we now dis-
cuss, we disagree with this conclusion. The quantity we
can measure is the sum S (f) + S,(f), the two terms of
which are in principle indistinguishable [24]. Hence, we
can draw inferences about S,(f) only if we have some in-
formation about the correlated noise. The most obvious
such a priori information is the fact that S is a positive
Hermitian matrix. It follows that if we measure the total
power spectral density matrix to be Sh, then S, ( Sh.
However, this only tells us that Qg ) 10 s [cf. Eq. (3.1)
above], since the inequality applies to the total matrix,
and the off-diagonal elements are small compared to the
diagonal elements. In particular, it is not true without
further assumptions that

(3.7)

(as is implicitly assumed in Ref. [17]), since S„(f) b may

10 "=Op C+ +C2 (3.9)

Since there will be various unknown sources of weak cor-
related noise, it is not appropriate to choose a very small
value of C „.Hence, the upper bound (3.9) will be much
worse than the bound (3.6) obtained from intersite cor-
relations.

We also consider the assumption that the correlated
detector noise always excites different detectors in phase,
but can be arbitrarily large in magnitude, so that

S„(f)b ) 0 for n g b (3.10)

In this case intrasite correlation measurements cannot
be used to detect the SB, but can only be used to place
upper bounds on its magnitude. The resulting upper
limit [cf. Eq. (A38)] is given by Eq. (3.9) with C
0. Thus, the intersite correlations will still give better
bounds unless the actual amount of correlated noise in
the detectors satisfies

(3.11)

which is 10 for a year-long measurement with a
bandwidth of 50Hz. Since it is not clear that either
of the conditions (3.10) or (3.11) will be appropriate, we
henceforth consider only intersite correlations.

C. Filtering intersite correlation measurements

In Appendix A we show how to optimally filter the
intersite data when there is a detector network with sev-
eral interferometers per detector site. In this case the
detector noise matrix S (f) will have a block diagonal
form, with each block corresponding to a site. Let S~ be
the subblock corresponding to the 4th site. The strat-
egy is essentially to measure the off-diagonal blocks of
Sh, (f) (i.e. , the intersite correlations), and to use these
to obtain information about the SB. The resulting SNR
squared is then given [cf. Eq. (A52) below] by a simple
generalization of Eq. (1.2):
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S' (4p, l
N' 5 57r

d
~ (f)' - »~(f)'..;S."'(f)S."'(f)

(3.12)

P

Here the sum is over the pairs of sites, and p~~ is the
overlap reduction function for any detector at site A
together with any detector at site B. The quantities
S&' (f), which we call the eff'ective site spectral noise
densities for correlations between sites, are given by

S„'"(f)= ) (S„-'),
ab

(3.i3) FIG. 3. The angles oq, o2, Pz, and t32 formed by a pair of
interferometric detectors and the line L which joins them.

S„''(f) = NS„(f)+
~

i —
N I S„'(f) (3.i4)

where N is the number of detectors. This formula shows
that the use of N detectors instead of a single detector
at one site reduces that sites effective noise density by
a factor of 1/N, if the detectors noise sources are in-
dependent (S' = 0). If the noise sources are strongly
correlated, however, so that S' = S, then there is no
significant reduction in the effective noise.

They will be real since the matrices S~ are Hermitian.
In the case where the off-diagonal elements of S~ are all
equal to S' (f), and the common value of the diagonal
elements is S (f), then we obtain that

'y(f) = cos(48)Oi(n, P) + cos(44)02(n, P), (4.1)

where the functions O~ and 02 are

Hq(~, P) = cos (l /2)gq(~) (4.2)

In general the overlap reduction function as given in
Eq. (2.13) will depend on all of the variables Pj, P2, b, A,
y, and on the phase lag n = 2vr fd between the detectors,
where f is the frequency. Now for terrestrial detectors
y = vr/2 and Pq ——Pq (= P say), which is also the angle
subtended at the center of the Earth by the detector pair.
For this case we derive in Appendix B the formula

IV. THE OVERLAP REDUCTION FUNCTION

In the preceding sections we have seen that for a pair of
interferometric detectors, the overlap reduction function
p(f) characterizes the dependence on the detector sep-
aration and orientations of both the correlation matrix
(2.12), and the broadband sensitivity to the SB (1.2).
We now give an analytic formula for this function and
discuss some of its properties.

A. The general formula for p(f)

We first define the variables which describe the ori-
entations and separation of a pair of detectors. Let I
be the line joining the two detectors and Pq (P2) be the
plane formed by the arms of the first (second) detector;
see Fig. 3. The variables we will use are (i) the distance
d between the detectors, (ii) the acute angle Pq between
L and Pz, (iii) the angle crq between the projection of
L onto P~ and the bisector of the two arms of the first
detector, (iv) the corresponding angles P2 and o2, and
(v) the angle y between L and and the intersection of Pq
and P2. The directions (clockwise or anticlockwise) in
which oq and o.2 are chosen to be positive are unimpor-
tant, as long as the conventions for 0~ and for 02 coincide
as Pq, P2 ~ 0. Let h—:(o q

—o2)/2 and A = (o.z + cr2)/2.
In Sec. I we have called these the relative rotation and
total rotation angles, respectively, since for Pq ——P2 ——0,
the angle b is half of the relative rotation of the detectors
while 4 measures the average rotation with respect to
the line joining them [25].

02(n, P) = cos (P/2)g2(n) + gs(n)
—sin'(P/2) [g2(o.) + g, (n)] . (4.3)

B. Some special cases

To understand the behavior of p(f) as a function of
8, 6, and P, it is useful to consider some limiting cases.
For coplanar, coincident detectors, d = P = 0, and using

The functions g~ (o.) are given in Eqs. (Bll), (B12), and
(B13) of Appendix B, and are all linear combinations of
the functions sin(cx)/o. and cos(a.)/n where 1 ( n ( 5.

Several properties of the overlap reduction function
p( f), which were discovered by Christensen and others
from numerical calculations[12, 16, 17], can be read off
the formula (4.1). First, there will always be frequen-
cies f for which p(f) vanishes, and correspondingly near
which the narrow-band sensitivity of the detector pair to
the SB is very poor. For detectors that are less than a
few thousand kilometers apart, the first null frequency
is at fq (70Hz)(3000 km/d), irrespective of the de-
tector orientations (see below). Second, the reduction
function falls off like 1/f when n )) 1, or equivalently
when f )) fq Hence the 9.0% confidence limit that we
can place on Bg(f) scales like 1/(fd) for large d. How-
ever for detectors which are 3000 km apart, the phase
lag o; is of order unity for typical detector frequencies,
and hence the variation of the sensitivity with distance
is more complex than simply scaling like 1/d (see Sec. VI
below and also Fig. 1 above).
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gi(0) = 1 and gz(0) = gs(0) = 0 we find that p = cos(4b).
This is just what we would expect physically. Consider,
for instance, detectors which are rotated with respect
to one another by 45 . Vertically incident gravitational
waves will couple to the two detectors via polarization
components that are orthogonal and hence statistically
independent; thus these waves give no contribution to the
cross correlation. Waves which are incident from non-
vertical directions do give rise to correlations between
the detectors, but when we average over all incident di-
rections the total correlation vanishes [26]. It is also clear
from rotational symmetry that there should be no depen-
dence on the total rotation angle A.

Now suppose that the detectors are still coincident but
no longer coplanar, so that P g 0. Equivalently, suppose
the detectors are separated by a distance d but evaluate
p(f) at frequencies f (( 1/d. The result is

p(f) = cos (P/2) cos(4b) —sin (P/2) cos(4A). (4.4)

This equation agrees with Eq. (3.9) of Ref. [17]after mak-
ing an appropriate change of variables. As we would ex-
pect, the dependence on A is small when P is small; it is
smaller than the dependence on the relative rotation an-
gle 6' by a factor of tan4(p/2) ( 3 x 10 for the planned
I IGO detectors; see below).

A third limiting case is when P = 0 but d & 1/f, so
that the detectors are coplanar but effectively separated.
In this case,

pr f) = cos(4b)gi(cr) + cos(4A) (g, (n) + gs(n)) . (4.5)

Plots of the functions gi(n) and gz(n) +gs(n) are shown
in Fig. 4. We see that for n ( 4, the cos(48) term dom-
inates, just as above for coincident detectors for small
P. When the phase lag cr is large, the functions in
Eq. (4.5) can be approximated as go(n) —5 sinn/(16n)
and gz(n) + gs(n) = —gII(n), so we obtain

5 sin o.
p(f) = — sin(2cri) sin(2o'2).

8o.
(4.6)

What is happening physically here is that the cross corre-
lation is dominated by modes whose propagation vectors
are nearly parallel to the line joining the detectors. This
can be seen by applying a stationary phase argument to
the integral (2.13). Hence it is reasonable that the over-
lap reduction function should have separate factors for
each detector that depend on how they are oriented with
respect to the line joining the detectors. In this case the
dependence of the overlap reduction function p on the
total rotation angle L is strong.

In summary, the dependence on the relative rotation
angle b will dominate over the dependence on the to-
tal rotation angle A unless two conditions are satisfied:
(i) P & z-/4, and (ii) n & 1, i.e. , d & c/f„, where
f 100Hz is a typical frequency at which the detec-
tor is sensitive. In reality of course P and d are not
independent; they are related by

d = 2 sin(P/2)r~, (4.7)

V. OPTIMIZATION OF DETECTOR
ORIENTATIONS

where r~ is the radius of the Earth. Because of the coin-
cidence that the quantity f r~/c is of order unity, condi-
tions (i) and (ii) above become satisfied at approximately
the same value of P.

For a pair of terrestrial detectors, as P and d are
increased from zero, the following three effects occur:
(i) p(f) decreases because d is increasing, as discussed
above; (ii) p(f) decreases because P is increasing. From
Eq. (4.4) we see that the maximum over all orientations
of the value of p(0) is 1 —sin P/2. Hence the effect of
increasing P contributes typically a factor of at most 1/2
to the decrease in p(f). (iii) The dependence of p(f) on
4 increases to become as strong as the dependence on b.

0.6

I I I I I I I I I I I I I I I I I I I

0 5 10 15
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We now turn to the issue of how to optimize the orien-
tations of a single pair of detectors so as to detect or mea-
sure the SB. We assume that the detector's noise curves
are the same, so that S (f) = S (f)r,r, = S (f). We
consider separately the cases of maximizing the narrow-
band sensitivity to the SB in the vicinity of some fre-
quency f, and of maximizing the overall broadband sen-
sitivity.

Now if we rotate a detector through 90, then its polar-
ization tensor d [cf. Eq. (2.10)] will have its sign flipped.
Hence ~p(f)~ is a periodic function of both of the angles
oi, o i (or b, A ) with period 90'. In the following discus-
sion, all values of these angles and all equations involving
them should be treated modulo 90 .

FIG. 4. For coplanar detectors the overlap reduc-
tion function is of the form p(f) = cos(4b)gi(a) +
cos(4&) [g2(o) + g3(n)], where 6 and A are the relative and
total rotation angles, and n is the phase lag between the de-
tectors at frequency f; see text. Here we plot the functions
gi (cr) and g2 (o) + g3 (o) .

A. Narrow-band sensitivity

From Eq. (1.2) we see that the 90% confidence limit
that we can place on Og(f) in a small interval of fre-
quency of width A f centered about f, using a measure-
ment of duration w, is [18]
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~" '(f &f) =
li4~-y l~(f) I

d»&f (5.1)

o,
I
+ lo,

At low frequencies (n = 2~fd && 1) this is approximately

2v4
7Z(f m0) =

l
1+

1 —2v2 p

where v = sin(P/2). Thus for small values of P we have
7Z(f ~ 0) —1, and whether configuration I or II is chosen
is relatively unimportant.

At high frequencies (n )) 1), however, we find that
7Z(f) asymptotes to a constant 7Z independent of fre-
quency, where

(5.3)

2

4 v'+ 1) (5.4)

which can be quite small. [7Z —0.2 for the LIGO de-
tectors; see below. ] Hence the choice of A will have a
large effect on the high frequency sensitivity to the SB,
especially for detectors which are close together for which
v is small.

To minimize this we need to maximize the quantity
lp(f) l. From Eq. (4.1) it follows that the maximum value
over all orientations of lp(f) l

is l8i(f)
l
+ l02(f) l.

Now if the signs of Oq and 02 are difFerent, then this
maximum will be achieved at oi ——o2 —45 (i.e. , either
b = 45, A = 0' or b = O', A = 45'). This corre-
sponds to each detector having one arm parallel to the
line which joins them. We will call this type of orienta-
tion configuration I. This will be the optimal orientation
at zero frequency, since 8i(f = 0) = cos (P/2) ) 0, and
8z(f = 0) = —sin (P/2) & 0. It will also be optimal
at high frequencies (fd )) 1), since from Eqs. (4.1) and
(Bll)—(B14) we see that 8i(n) ——82(n) for n )) 1.

If, on the other hand, the signs of Hq and 02 are the
same, then we see from Eq. (4.1) that lp(f) l

will be max-
imized at cri ——o2 ——0 (i.e. , either b = 4 = 0' or
b = K = 45 ). In this case, which we will call configu-
ration II, each detector arm makes an angle of 45' (mod
90 ) to the line joining the detectors. This will be op-
timal, e.g. , for 10Hz & f & 40Hz when P = 29' (the
LIGO value; see below).

Now suppose that the detector pair is in either config-
uration I or configuration II. Then for some frequencies
the orientations will be optimal, while for some other
frequencies they will not be. It is useful to calculate, for
a given frequency f, the factor 7Z(f) by which lp(f) l

is
reduced if the wrong configuration out of I and II is cho-
sen. Note that choosing between I and II is equivalent to
fixing the relative rotation angle b to be zero, and then
choosing 4 to be either 0 or 45 . Hence 'R measures the
sensitivity of p(f) to the total rotation angle 4 when the
detectors are parallel. From Eq. (4.1), we obtain

broad range of frequencies, e.g. , from 20Hz to 70Hz.
Hence it is more important to optimize the overall broad-
band response (1.2) of the pair of detectors than to opti-
mize the narrow-band sensitivity at some frequency. We
now determine how to do this if we assume that the spec-
trum Og(f) is approximately constant over the relevant
frequency range —the so-called "Zel'dovich spectrum. "

By inserting Eq. (4.1) into Eq. (1.2), we find that the
SNR squared after optimal filtering is

S2 = A(P) cos (4b) + 2B(P) cos(4b) cos(4A)

where

+C(P) cos (4A), (5 5)

VI. IMPLICATIONS FOR LIGO AND VIRGO

The planned LIGO detectors in Hanford, Washington
and Livingston, Louisiana will have P = 27.2, b = 44.9
and 6 = 28.2 (the last two mod 90') [27]. A graph of
p(f) for this configuration is shown in Fig. 5. In Fig. 6 we
show what the functions Oi and 02 look like at the value
P = 27.2 appropriate for LIGO. For any possible LIGO
orientations, p(f) will be a linear combination of these
two functions as in Eq. (4.1). From Fig. 6 we can see that
there will be a zero of p(f) at f 70Hz, whose position

I I
(

I I I I
(

I I I I

[

~ I I

0.2—

—0.2

—0.6

4p, 028i8z
B(P)=l '

l
2 dfq5~) 0 fsS2 (5.6)

and A. and C are given by similar formulas with Oq02
replaced by Oz and 02, respectively. Note that A, B, and
C depend on P in two distinct ways, since from Eq. (4.7),

8i 2(f) = 8i 2[n = 4' fr~ sin(P/2), P]. (5.7)

The explicit formula (5.5) makes it easy to determine
how to optimally orient the detectors at a fixed value
of P, and also how the SNR at the optimal orientation
varies with P. The SNR (5.5) is maximized at

l
cos(4b)

l

=
l
cos(2A)l = 1, and the optimum orientations are just

configurations I and II again, applying when B ( 0 and
B ) 0, respectively.

B. Broadband sensitivity 0 50 100 150
(Hz)

200
I t I I I I I ] I I I I I I

250

It is quite likely that the SB will be so weak that it
will only be detectable (if at all) by integrating over a

FIG. 5. The overlap reduction function for the LIGO de-
tectors using their currently planned orientations.
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FIG. 6. For any orientation angles b, A of the LIGO
detectors, the overlap reduction function will be given in
terms of two functions of frequency Oi(f) and 02(f) by
p(f) = cos(48)Oi(f)+cos(4&)02(f). Here we show the func-
tions Or(f) and 02(f).

is relatively insensitive to the orientations chosen.
The noise power spectral density in the LIGO detectors

after some years of operation might be roughly

S (f) = max [S (f/f ),S (f/f ) (6.1)

including contributions due to seismic noise, thermal
noise, photon shot noise, and residual gas noise, among
others. By contrast, the typical value S' of the ofI'-

diagonal elements of the spectral density matrix will be
approximately a sum of terms that are due to sources
of noise which are strongly correlated between difI'erent
interferometers at the same site:

(~ ~seismic + ~gas- (6.3)

Since S„;,;, + Ss, « S when f + 10Hz for the ad-
vanced detectors of Ref. [1], we find from Eq. (3.13) that
to a good approximation for LIGO,

(6 4)

Here the sum is over the difI'erent detectors, and a = 1

where S = 10 Hz and f = 70 Hz. For frequencies
less than 10Hz the noise will be e8'ectively in'. nite.
Equation (6.1) is a crude analytic fit to the noise curve
estimate for the "advanced detectors" given by the LIGO
team in Ref. [1]. A more detailed model of the noise is
unnecessary because of the uncertainty as to what the
actual noise levels might be.

We now estimate what the e8'ective site noise level
S [cf. Eq. (3.14)] might be if, after an upgrade of the
LIGO facility, there are eventually two or three interfer-
ometers at each site, as is planned. The noise spectral
density S„(f) in each detector will be a sum of the form
[1, 10]

Srr = Sseismic + Sthermal + Sshot + Sgas + '
I ( ' )

corresponds to the primary, broadband interferometer
with noise curve (6.1). Now the second and/or third de-
tectors at each site will most likely be specialized ones
such as dual-recycled detectors [29], which have high
sensitivity only in some narrow frequency band. Thus
in the relevant frequency band of 20Hz & f & 70Hz
[cf. Fig. 9 below], it is likely that S (f) = S (f)ii.
If, instead, three identical broadband detectors are op-
erated at each site (which is unlikely initially), then
S(' )(f) —S„(f)ii/3, and the 90'%%uo confidence upper
limit estimated below should be divided by 3.

If we now make the plausible assumption that the SB
has approximately constant Og(f) over the above wave
band, then by inserting Eq. (6.1) into Eq. (3.12) we can
calculate the 90% confidence upper limit that we can
place on Og. Using the planned LIGO positions and ori-
entations we thus obtain

(&)g(go%)
g

~(f)'
o fsS(e )(f)2

) —I

10' )
(6.5)

where 675 is the Hubble constant scaled to the value 75
km sec i Mpc i, r" is the observation time, the prefix (B)
indicates broadband, and N = S /10 Hz . Note
that this is the upper bound obtained from intersite cross
correlations, since as argued in Sec. III B, it will not help
much to include the information from intrasite correla-
tions.

This bound (6.5) is a reasonably conservative estimate
of what the LIGO sensitivity might be when the advanced
detectors are operating. However the ultimate noise lev-
els are largely unknown. This is because the experimen-
tal techniques and technology, which are presently some-
what far from the advanced level, will be steadily im-

proving. To obtain an upper limit to ( ~Og
' we take

S (f) Ss,(f), which is a source of correlated noise
that cannot be changed once the beam tube is built. Us-
ing Ssa, —2.2 x 10 so Hz [28] gives as a rather firm
upper limit for the LIGO sensitivity

—1/2
)0( ') & 2 x 10 Nh76

i ~

. (6.6)
l 107sec)

We now consider how ( ~Og would change if we(9o%)

were to vary the angles P, 8, and A. The integral (5.6)
is positive for P = 27.2 with the noise power spectral
density (6.1). Hence the optimal configuration of the de-
tectors is configuration II, i.e. , at b = A = 0 or 45 .
However LIGO already has b = 45 (corresponding to
parallel detectors because oi —cr2 ——2b = 90 ). Also, as
we have discussed in Sec. IV, the dependence of p( f) on 4
is very weak for f & 100Hz and at P = 27', see Eq. (4.1)
and Fig. 6. Because of these two facts the expected LIGO
sensitivity at its planned configuration of b = 44.9 and

28.2 is only 3% less than the optimal sensi-
tivity which would be attained at b = A = 45 . This
follows from Eq. (5.5) where we find that B/A = 0.045
and C/A = 7.8 x 10
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The European VIRGO and GEO detectors, however,
are currently planned to have 2b = 0~ —o2 —45'. Such
a configuration will allow VIRGO and GEO to extract
information &om both polarization components of burst
and periodic gravitational waves, but will severely reduce
the sensitivity to the SB. For these detectors P = 9.75',
and we find from Eq. (5.6) that H/A = 4.0 x 10 4 and
C/A = 1.7x 10 . In Fig. 7 we plot the broadband signal-
to-noise ratio (5.5) as a function of h (assuming that A
is optimally chosen); it can be seen that at b = 45
the sensitivity to the SB is reduced by about 3 orders of
magnitude. An intermediate choice of b 40 would give
a broadband sensitivity to the SB comparable to that of
LIGO, while still allowing the detectors to access two
polarization components of the gravitational-wave field
that are largely independent.

The total rotation angle L is unimportant for the
broadband sensitivity to the SB in the case of detec-
tors which are sufficiently close to each other [but not
unimportant for the narrow-band sensitivity, cf. Eq. (5.4)
above]. However, for detectors which are on separate con-
tinents, 4 will become important. For example in Fig. 8
we show the functions Oi (f) and 02 (f) for P = 79.5',
the value appropriate for one of the two LIGO-VIRGO
cross correlations. Since 02 is typically large compared
to O~ in this case, varying L will have a large effect on
the sensitivity. This is confirmed by Eq. (5.5), where we
find B/A = —0.22 and C/A = 18.3.

Next we consider how the broadband sensitivity to the
SB varies with the angle P, assuming that the orienta-
tions are optimally chosen. Recall (cf. Sec. V) that this
means either configuration I or II is chosen. In Fig. 1 we
plot the SNR (5.5) as a function of P, for both configu-
rations I and II, again assuming the noise curve (6.1). It
can be seen that the sensitivity falls off rapidly when the
detectors become more than a few thousand kilometers
apart. The sensitivity for the LIGO separation is already
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a factor of 4 worse than that for coincident detectors.
Hence if there is ultimately a worldwide network of de-
tectors in America, Europe, Japan, and Australia, only
the cross correlations between proximate detector pairs
like LIGO-LIGO or VIRGO-GEO will be important.

The various conclusions that we have drawn are rela-
tively insensitive to the the detailed properties of the de-
tector noise curve (6.1) that we have assumed (except for
the value of the minimum frequency). This is because the

I I I I
I

I I I t

FIG. 8. The functions Oi(f) and 02(f) appropriate for
the LIGO detector in Hanford, Washington together with the
VIRGO detector in Pisa, Italy. The fact that 02(f) is large
compared to Oi(f) for most frequencies implies that the sen-
sitivity of the detector pair to the SB depends strongly in this
case on the total rotation angle A of the two detectors with
respect to the line joining them; see text.
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FIG. 7. The broadband signal-to-noise ratio for the
VIRGO-GEO detector pair as a function of the relative rota-
tion angle h, assuming (i) that the total rotation angle A is
optimally chosen, and (ii) the advanced detector noise curve of
Ref. [1I. The normalization is to unity for coincident, aligned
detectors.

FIG. 9. A plot of the quantity f S (f) with arbitrary
normalization as a function of frequency. It is this quantity
that must be integrated against the square of the overlap re-
duction function to determine the broadband response of a
detector pair to the stochastic background, when one assumes
a constant, Harrison-Zel'dovich spectrum; see Eq. (1.2). It is
clear that the highest sensitivity is limited to a narrow band
of frequency between 20 Hz and 70 Hz.
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integral (1.2) is dominated by contributions in the nar-
row frequency band 20 Hz & f & 70 Hz; see Fig. 9. At
these frequencies thermal noise dominates over photon
shot noise [1], so using sophisticated optical configura-
tions of the interferometer such as dual recycling [29] to
reduce the shot noise will not help much. It thus will be
important for the detectors to have good low frequency
sensitivity for the purposes of placing upper limits on the
SB.

VII. CONCLUSION

To place upper bounds on the strength of the gravita-
tional stochastic background, or perhaps to detect it, is
but one of the aims of LIGO and other detector systems.
Moreover, this background may well be very weak com-
pared to waves from astrophysical sources; consider by
analogy the weakness of the electromagnetic stochastic
background in the visible region of the spectrum. How-
ever, these waves if detected would be amongst the most
interesting that the detectors would see.

The sensitivity to these waves is therefore just one of
various factors that need to be taken into account when
choosing the fixed orientations of interferometric detec-
tors. Nevertheless, in order to be able to make a wise
choice, it is important to know the e8'ect for the sensi-
tivity of choosing this or that orientation. One of the
main results of this paper is the simple expression (B5)
describing this dependence. In particular, for frequencies
such that the phase lag between the detectors is & 1, the
sensitivity is determined solely by the overlap of the po-
larization tensors of the two detectors. At higher frequen-
cies the direction of the vector which joins the detectors
also becomes important.

We also determine the orientation of a pair of interfer-
ometers that will optimize the sensitivity of the pair to
the SB, and show that the orientations which have been
chosen for the LIGQ detectors are close to optimal.
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APPENDIX A: STATISTICAL FOUNDATIONS

1. Overview

In this appendix we justify the method of optimal fil-
tering described in Sec. III and the resulting signal-to-
noise ratio (3.12). We do this by deriving the probability
distribution for the spectrum Og given the detectors' out-

put h(t), p[Og~h(t)].
First we transform from a continuous to a discrete de-

scription of the measured data. In the body of this pa-
per we have treated the output of the detector network
as a continuous vector random process h(t). However, a
real, discrete measurement will be of a finite duration w,

and will contain frequencies only up to some maximum
frequency determined by the time resolution of the sam-
pling. In other words the output of the detectors will
consist of the numbers h ~

= h (t~ = t,i,i + jA) for
1 & a & ng and 0 & j & N, where nd is the number of
detectors, t,q, q is the starting time, and A is the time
resolution, of the order of 10 sec. The number of sarn-
ples per interferometer is N = 7" /A. We denote by X
the vector of numbers 6 ~. , which we assume to have a
multivariate Gaussian distribution with some variance-
covariance matrix Z . This matrix is essentially the cor-
relation matrix (2.2):

Z', b,
——Ch(t, —t, ) i, . (A1)

However if we take a finite Fourier transform, which
amounts to making a change of basis in the space of
vectors X, then Z' corresponds instead to the spectral
density matrix (2.3).

Now from Eq. (2.6), we have Z' = Z' + Z', (A), where
the contribution Z', from the SB depends on the spec-
trum B~(f) as in Eq. (2.12). [Because of the finite fre-
quency resolution of order 1/7, we represent the func-
tion Bg(f) as a finite vector A. ] What we want to do is
extract information about A from a measurement of X.

There are two general approaches to t,he task of quanti-
fying the information obtained, in situations of this sort.
First, one can in principle compute the probability distri-
bution function (PDF) for A given the measurement X,
p(A~X). This PDF then contains complete information
about the measurement. However, the calculation of the
PDF p(A~X) is frequently diKcult in practice; and so one
has to resort to instead calculating estimators (statistics)
A(X) which are functions of X, chosen so that the PDF
for their values given some value of A, p(A~A), is peaked
near 0 = A. There are standard criteria for choosing
such estimators, see, for example, Refs. [30, 31].

Now suppose that, instead of one measurement of X,
we have n measurements Xj, . . . , X . A standard sta-
tistical result is that in the Cramer-Frechet-Rao limit of
n —i oo [31,32], the two approaches discussed above yield
the same unique result. More precisely, the PDF p(A ~X~ )
becomes a Gaussian centered at Aivii, (X~), where AML
is the so-called maximum likelihood estimator of A. The
variance-covariance matrix Z~ of this probability dis-
tribution depends on the Xz only through AMi, (X~),
Zii = Zri(AMi, ). Conversely, the PDF p(AML~A) of the
estimator AMI, given some value of A becomes a Gaus-
sian centered at A with width Zii(A). Thus the two
probability distributions, which are conceptually very
diferent objects, become electively the same, and all
one really needs to calculate is the variance-covariance
matrix Z ii (A ) .

However, this simplifying Cramer-Frechet-Rao (CFR)
limit does not apply in a straightforward manner to the
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calculation of p(AIX) for measurements of the SB; there
are a number of subtleties and differences from the usual
situations discussed in Refs. [31,32]. First, we have only
one measurement of X instead of a large number n of
measurements. Nevertheless, something like a "large
number of measurements limit" does apply, which we
discuss further below. Second, one needs to address the
issue of distinguishing between the contributions to Z'
from the detector noise and from the SB, since both are
unknown a priori. Third, the CFR limit only applies
to the extent that our a priori knowledge of the vari-
ables being measured is unimportant. However, our a
priori knowledge about the correlated detector noise in
intrasite correlations i8 important in the calculation of
p(AIX), and consequently this PDF is not approximately
Gaussian [cf. Eqs. (A21) and (A33) below].

To resolve these complications, we now derive from
first principles an approximate expression for p(AIX).
We also identify the conditions under which the approx-
imations we make are valid, and show that they will all
be satisfied in the LIGO and/or VIRGO context. We
assume throughout that the efI'ect of the SB on the de-
tectors is small compared to the detectors intrinsic noise,
so that from Eq. (3.1), As(f) « 10

2. Calculation of p(AIX)

We start by considering the frequency resolution of the
measurement of Ag (f). In a finite measurement of length
r there are roughly K = r/4 independent frequencies f~,
and we get what amounts to one measurement of each
Bz ——Os(fi) Now if r. is doubled, we double the number
of measurements, but we also double the number of vari-
ables measured. Clearly, the Cramer-Frechet-Rao limit
of repeated measurements of the same variables cannot
be attained in this context without further assumptions.
Below we shall argue that in the LIGO and/or VIRGO
context, to a good approximation,

Cb(r) = 0 for r )r„ (A2)

where 0 is the step function. Let Sh ——S& + S& be
the corresponding decomposition in frequency space, so
that Sb&(f) is Sb(f) averaged over frequency scales of
the order of 1/r, . Then from Eq. (2.6) there will be two
contributions to Sb+(f):

for some correlation time r, « r [33]. In this case
the unknown quantities to be measured are Cb(jA) for
0 & j & n = r, /A, or equivalently Sb(f) at n difFerent
frequencies; and the number of measurements of each of
these variables is K/n = r/r, )) 1.

In order to explain Eq. (A2), we fix a value of r„and
decompose Cb(r) into

Cb(r) = Cb(r) O(r. —Irl) + Cb(r) O(lrl —r.) (A3)

also be small for this value of w„except near isolated
frequencies corresponding to high-Q resonances [34], the
efFect of which can be neglected.

We now calculate the PDF for 0 using Baye's rule;
by virtue of the condition (A2), something like the CFR
limit will apply. Let Z = X (3 X, which is the maxi-
mum likelihood estimator of Z'. This is an Nng x Nng
matrix, where ng is the number of detectors. Similarly
the matrices Z' and Z', are of dimension Kn~, and are
given by formulas analogous to (Al). However because
of condition (A2) the independent variables in Z' can be
formed into a smaller matrix Z, which is given by

] ~start+7

&b(r).b = =
T'

dth (t+r)hb(t), (A6)

which is defined for I7 I
& 7' . The estimator Cp, is the

quantity that will be measured; it is a sufFicient statistic
for A, and moreover its discrete counterpart Z(X) is the
maximum likelihood estimator of Z.

The joint PDF for Z and Z, given X is

p(Z„,Z. IX) oc p( )(Z„)p( ) (Z. ) exp ——A'(Z')

(A7)

where

A'(Z') = lndet Z' + Z': Z' (As)

and p„and p, are the PDF's that represent our a(o) (o)

priori knowledge. Prom the distribution (A7) we obtain
the PDF p(AIX) for A given X by integrating over Z

p(A IX) = A' dZ„p(Z„,Z, (A) IX),

where A' is a normalization constant.
The above formulas involve primed, And x And matri-

ces. We now express them in terms of the corresponding,
unprimed, nng x nnp matrices, by using the fact that all
the matrices will be approximately diagonal in frequency
space. That is, they will be approximately diagonal in
the indices i, j after a finite Fourier transform change
of basis, but not in the indices a, b. For example, on a
suitable basis,

(Z ) lbjna~I J ~ (fI)abn~ (A10)

Z, b, = &b[( —j)&] b

for 0 & i, j & n = r /A. Note that since Cb( —r)
Cb(r), the matrix Z contains only nn2 independent
variables. We define the matrices Z, Z„and Z analo-
gously in terms of C (r), C, (7), and the estimator

S:(f)= S. (f) + S.(f) (A4)
where fI = I/r for 1 & I & n It is straightforwa. rd to
verify using Eqs. (A2) and (A6) that [35]

The first term here will be small if As(f) is smooth over
frequency scales 1/7, [cf. Eq. (2.12)], which will be
the case for currently conceived of SB sources when 7

100 sec, for example. The second term in Eq. (A4) will

A'(Z') = k A(Z), (A11)

where A: = r/r = N/n is the effective number of mea-
surements, and
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A(Z) = ln det Z + Z: Z (A12)

For example, the second term in A'(Z') can be written
as

df tr Sh(f) Si, (f) (A13)

Here we have used Eq. (2.5), switched into the time do-
main, used Eq. (A6), and switched back [35]. The result
is just kZ: Z, and the first term in Eq. (AS) trans-
forms analogously.

Now Eqs. (A7), (A9), (All), and (A12) together yield
a formal expression for p(A~X). To proceed further we
need to invoke some approximations. The first of these is
the quadratic approximation: we expand the likelihood
function (412) to give

A(Z) =lndet Z+ nnd

+—tr Z ' 8Z Z ' hZ +O(8Z'),
2

(A14)

will be concentrated in the region Q where the quadratic
approximation (A14) is valid, so that the normaliza-
tion of the PDF (A15) can be calculated correctly us-
ing Eq. (A14). If we let Ai, . . . , A be the eigenvalues of
Z Z —1, then, up to an additive constant,

A(Z) = —$ ln(1+ A, ) +
2 2

(A16)

From this formula it can be seen that the quadratic
regime Q is given by max~ ~A~

~

( s where s is some small
number. If we demand that the total probability in Q
be 1 —b for some b && 1, and assume that the a priori
distribution p is not sharply peaked, then we And the
condition

where 8'Z = Z —Z = Z„+Z. (A) —Z. Clearly this
approximation will be good only for certain values of
Z and of A; we discuss below the implications of this
restriction. First we derive the conditions under which
most of the probability of the PDF,

k
p(Z

~
X) oc exp ——A(Z)

2

0
10-6 (A18)

For example, if the SB is just barely detectable, then
10 . We similarly define in order of magnitude the

small parameter r by

Zo- ~ZD, (A19)

which we expect to be of the order of Ss,(f)/S (f)
10 or smaller if A~ ( 10; see Eq. (6.3).

In the expression (A14) for the likelihood function, to
leading order in e we can replace the factors of Z by
(Zll), so that the cross terms between 8Z+ and SZII
vanish. Note that to this order (Z )II = (Zll) i. Hence,
the PDF (A7) splits into a product of two factors which
incorporate the measured intersite and the intrasite cor-
relations. The a priori PDF for the detector noise in
Eq. (A7) can be written as

(A20)

This condition will be just barely satisfied for, e.g, c =
b = 0.01, w = 10 sec, 7- = 100sec, and L = 10 sec,
which are values that are appropriate for LIGO and/or
VIRGO. Now if 0 (& 10, then the intgeral over Z in
Eq. (A9) will be dominated by contributions from the re-
gion Q, and so the approximation is valid. For 0 10
the exact probability p(A

~
X) is very small, and so the

quadratic approximation will still give a qualitatively cor-
rect result. In particular, the normalization of the PDF
p(A

~
X) resulting from Eq. (A14) will be approximately

correct.
The next approximation involves consideration of the

relative magnitudes of various components of the mea-
sured autocorrelation matrix Z [cf. Eq. (A6) above]. We
introduce the following notation: for any matrix A, A~I

denotes the matrix consisting of the diagonal subblocks
(in the indices a, 6) of A corresponding to intrasite cor-
relations, and A = A —A~~ consists of the o8'-diagonal
subblocks. We also define A to be the matrix of diago-
nal elements (in the indices a, 6) of A and A = All —A
Thus, the estimator Z decomposes into Z + Z + Z
where Z contains the detector noises Ch(r), Z con-
tains the measured intrasite correlations, and Z the
measured intersite correlations. Now we expect the con-
tribution of correlated. detector noise to Z to be very
small, cf. the discussion in Sec. IIIC above. Hence from
Eq. (3.1), Z~ s Z, where

% ) —(Inn+
i in&i) . (A17)

since we expect Z —0. Using Eqs. (A7), (A9), (All),
(A14), and (A20) we obtain

pc(&):— (ZII )

k- - 2
x exp tr —— Z~~

—' UZI~
4

where A'i is a normalization constant. Here

(A22)

I

is a function representing the information from intrasite
correlations, and gZII = Z„+Z, (~) II —Zll.

Now if c )) r as estimated above, then most of the in-
formation we obtain from the SB will come from the in-
tersite correlation measurements. In this case the factor
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po(A) in Eq. (A21) can be approximated to be constant
[see Eq. (A33) below]. We discuss the implications of the
resulting PDF for data processing in Sec. A4. However
it may turn out that z & z, which from Eqs. (A18) and
(Alg) will be the case if Og & 10 . Even if Ag « 10
it may happen that the correlation coefBcient between
diBerent detectors for residual gas noise in the beam tube
will be small compared to unity, so that in the notation
of Eq. (6.3), S' &( Ss, and again s & e. Alternatively, it
may be possible to detect and take account of bursts of
outgassing from the beam tube walls. More detailed dis-
cussions of the possible magnitude of intrasite correlated
noise can be found in Ref. [17]. Because of the possibility
that c & e, we now derive an approximate expression for
pO(n).

3. Information from int rasit e correlations

is slowly varying, we can approximately carry out the
integral over N. From Eqs. (A22), (A25), and (A26), the
result is

po(A) = Ap dC p, „(C)
f k

xexp( tr —— C+G —C

(A27)

where A'2 is a constant. This expression is actually only
a good approximation when ~C~ && 1, but the integral
(A27) is dominated by values of C close to C —GO which
is g( 1.

Now the behavior of the function (A27) depends
strongly on our a priori information about the corre-
lation matrix C. As in Eq. (A10), this matrix will be
approximately diagonal on a frequency basis:

To evaluate the expression (A22) we first make a
change of variables. Let C be the matrix of correlation
coeKcients

CaI, bJ ~IJ CabI&

where, from Eq. (A24),

(A28)

C —(ZD) 1/2 . ZO (ZD) 1/2

and similarly define matrices N and G by replacing Z
in Eq. (A23) by Z„and Z, (A)ll, respectively. Also let

(ZD) —1/2 ZO (ZD) —1/2 (A24)

tr (N+a —1) + (N'~'. t' N'~'+a —t')

(A26)

Using the relations k » 1, C s &( 1, C Os jl0
1, and ~C~

& 1, and assuming that the PDF p„;„(Z„)

We assume that the volume element in Eq. (A22) can be
written as

p ll(ZII) dZII oc p„;„(Z„)p, „(C)dNdC. (A25)

To leading order in 8 the cross term between bZ and
SZo in the argument of the exponential in Eq. (A22)
vanishes, and so it becomes proportional to

~-(fI) b

Q~ (fI) ~ (fI)bb
(A29)

Since Sb(f) is positive definite, we have ]CabII & 1. More-
over, the variables C bI will be real whenever

(n (t+ r) nb(t)) = (n (t) nb(t + 7.)) (A30)

for all t and 7, and thus in particular they will be real
if there are no sources of noise that preferentially excite
one detector later than another one. If we assume that
such sources of noise are negligible, then by inserting into
Eq. (A27) the PDF,

p, „(C)= h (Im C) p,' „(ReC), (A31)

we obtain an equation again of the form (A27), but where
C and C are now understood to be real. (A factor of
exp[ —ktr(ImC) /4] is absorbed into JV2.)

Next we assume that our a priori information about
the correlation coeKcients C br is of the form C

CabI & C „,so that we can take [36]

p, „(C)dC=
h 4 ~

I=1 a(b
O(C C bI) O(C bI C ' ) dC bI (A32)

where 0 is the step function. Using Eqs. (A27) and (A32) and the replacement tr + 2 pI 1 [cf. Eq. (A13)], gives

where

~ 4 I 4 h

I=1 a(b
erf C~~~ A: — abi —erf' C

I

then we find from Eq. (3.1) that

tt tt=tk(t' tt —G tt).
If we define Sb(f) to be twice the Fourier transform of
the estimator (A6) as in Eq. (2.3), and put

4p A;

Pa bI— 0 bI —01
~h(fI) ~h(fi)bb

~abI ~I )

~i
(A36)

5&f' - Ofl.bI = ~ (fb).Ib
4p

(A35) where 01 = Og(fI).
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We now discuss the content of Eqs. (A33)—(A36). If
we make no assumption about the amount of correlated
noise present, and so take C;„=—1 and C „=1, then
we see using k —10 that pc(O) is roughly constant
for 0 & OI & 10 . Thus we obtain little information.
More information about the correlated noise needs to be
input in order to constrain the strength of the SB. One
assumption which may be valid is that

~-(f)-b & o (A37)

p~(n) ~ 1——erf( —P br)
~ 4 I

I=1 a&b

(A38)

Essentially this PDF gives an upper bound on each
fir = ~s(fr) of flz, m~~ = min, b fl~br, ~high is of the
order of 10 Z if O~ + 10 . As already mentioned,
this upper bound will be much worse than that obtained
from intersite correlations, unless the dimensionless cor-
relation coeKcient e is & 10 . Moreover, the bound is
only obtained by making the specific assumptions (A30)
and (A37) about sources of correlated noise at one site.
For these reasons, in the following subsection on d.ata
analysis we consider only intersite correlations and take
pc (A) = const.

We now show in more detail that very little informa-
tion about the SB is obtained if the assumptions (A30)
and (A37) are dropped. As a simple model, we consider
the opposite extreme of assuming equal probability for all
relative phases in the contributions to the outputs of dif-
ferent detectors from correlated sources of noise. Thus,
we take the a priori PDF to be of the form [36]

p, „(C)dC=
I 4 h

I=1 A&b

x exp —, d(Re C~br) d(Im C~bz),2C2

(A39)

where C~ ~ is the a priori maximum correlation. Then
from Eq. (A27) we obtain

which can be enforced by setting C;„=0 in Eq. (A32).
Equation (A37) will hold if there are no sources of noise
n(t) which contribute an amount +n(t) to the output
of one detector, and an amount —n(t) to the output of
another. As example of such a source of noise could be a
mode of vibration of a suspension system that couples in
a suitable way the vibrations of mirrors in two diferent
interferometers. It may be a valid assumption that all
such sources of noise will be negligible. In this case we

can use in Eq. (A33) the values C,„=0 and C „=1.
(The value chosen for C

„

is unimportant as long as

C „&)1/i/k. ) Then from Eq. (A36) we see that /~br &&

C „vk as 0 « 10, and so, to a good approximation,

1+ kC2
oI = 10

k
(A41)

This is roughly the minimum detectable value of Og that
can be detected in a bandwidth of 1/r, . Thus, the
function (A40) is qualitatively similar to the PDF (A42)
obtained from intersite correlations, with the simple
change that the minimum detectable value of Og in any
frequency band is increased by a factor of gl + k C2

If we take C to be of order unity and so make no as-
sumption about the amount of correlated noise present,
then the upper bounds on Og from intrasite correlations
will be worse by a factor of v k 300 than those ob-
tained from intersite correlations. Only if C „-1/~k
will the two be comparable. However, because of the pos-
sibility of weak, unknown sources of noise, it is probably
inappropriate to make such a strong assumption.

4. Implications for data processing

The distribution (A21) with pc ——const is of the form

(A42)

where Oz = O~(fr = I/r, ), because the matrices are all
approximately diagonal in frequency. Using Eq. (2.12),
we find that the argument of the exponential in Eq. (A42)
becomes

(A43)

where p b = 4p p b/(5vrf ). Hence we find, using

j, df ~ (1/~. ) P„that

(A44)

and

&r = k oz tr SI, (fr) p Sb (fr) Sb (fr) (A45)

One would like to summarize the information con-
tained in Eq. (A42) by calculating some kind of signal-
to-noise ratio. There are various, inequivalent ways of
doing this. For example, one could calculate probabil-
ity distributions for the quantities 0 = maxI OI or
A = Pz Oz/n; it is clear that the SNR for 0 „would
be worse than that for O. What we shall in fact do is
calculate the probability distribution p(A~Or = 0) of 0
assuming that 01 —— . - ——0 = 0, as this is the easiest
to calculate. Now if we ignore the a priori information
represented by p, in Eq. (A42) [so that p(Oz) is a mul-
tivariate Gaussian], then this is equivalent to calculating
the PDF for the weighted average

pc(&) ~
~ 4 4 I I 4 I

I=1 a&b
exp

(Re/3 bz)

1+ kC' (A40) n, =) (A46)

This function is of the form of Eq. (A42) below, where,
from Eq. (A36),

However when we include the information contained in
p, , the main effect is to truncate and renormalize [18]
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the PDF's for each OI, since all the 0's must be positive.
Hence a simple interpretation of the PDF p(O~OI = O)
and the corresponding SNR in terms of the average (A46)
not possible. Nevertheless we suspect that p(O~OI = O)
approximately represents the probability distribution of
some type of average of Og(f).

We now insert the assumption OI = O (const) into
Eq. (A42), which gives a PDF of the form

S2 (4p ')¹ (5'�) ()

O„i(f)'
f6

xtr

Finally the intersite SNR OM/a can be obtained
from Eq. (A43) [18]. If we assume that Sh, (f)+O„l(f)p(f)+, so that all the intersite correlations we
measure come from the SB, then the SNR takes the form

p(O
~
OI = O) oc 8(O) exp

(O —OM)'
(2o.2)

Here the quantity

OM =):
I

(A47)

(A48)

(A.52)

Using the fact that the matrix p(f) s will be constant on
each subblock corresponding to two detector sites, one
can derive Eqs. (3.12) and (3.13) from Eq. (A52).

is the statistic that should be calculated to estimate the
value of O. We obtain

APPENDIX B: CALCULATION OF THE
OVERLAP REDUCTION FUNCTION

ftr S~ S

This can be written in the time domain as

OM oc dt d7. H (t+ r)L 6(r)H6(t),

where L(f) = p(f), and

(A49)

(A50)

The ath detector is characterized by its position x
and by the tensor d = (u (3 u —v v)/2, where u and v
are unit vectors in the direction of its arms. In terms of
these quantities, the overlap reduction function is given,
from Eq. (2.13), by

p»(l)= —) J d»»(d:e ')(d»:e '
)

A

H(f) =,],S '(f) ' h(f).

The functions L (,(r) are the sliding delay functions dis-
cussed in Sec. III. Note that OM is constructed from the
measured correlations in the following way: the intrasite
correlations are used only to estimate the detector noise
matrix S„,and then this noise matrix is used together
with the measured intersite correlations to estimate OM.
However, the matrix S will typically be approximately
diagonal, and so neglecting the intrasite correlations will
give only a negligible error.

x exp [2vrifn (x —xs)] . (81)

Jab(f) —daij I ij l(Anm») dill»»»

where

(82)

) d2O A, ne&, n eian m
zg A l

A

(83)

This integral can be evaluated by the standard method
of writing down the most general possible answer:

If we write x —xl, ——d m where m is a unit vector, and
put n = 2vr fd (in units in which c = 1), then we obtain

I';~ql(n, m) = A(n)b, ~b), l + B(n) [b;qb~l + h, lb~), ] + C(n) [8;~mimi + bedim, m~] + D(n)m, m~mqml

+E(n) [b,i, m, ml + . + S,im, mi, ] . (84)

Pal, (f) = Pi(n)da: ds+ P2(n)m da ds m

+p3(n)(m d . m)(m. ds m). (85)

The functions p~ (n) are linear combinations of the spher-
ical Bessel functions:

One might expect to have to include a term proportional
to ~zl~ jA; + ~;A;~jl where ~zj GzjA;m, but in fact this
tensor is a linear combination of the five tensors included
above. Contracting Eq. (84) with the five diB'erent tenso-
rial expressions that appear on its right-hand side yields
a system of linear equations for A(n) E(n) which in-
volves scalar integrals that are straightforward to evalu-
ate. Solving these equations and substituting the results
back into Eqs. (82) and (84) gives

» (n) = 5js(n) —2ji(n)/n + 5j2(n)/n'

p2(n) = —1ojo(n) + 40ji(n)/n —»j2(n)/n
and

(86)

(87)

p3 (n) = 5j(i (n) /2 —25ji (n)/n + 175j2 (n)/(2n ) . (88)

The result (85) applies to any gravitational wave an-
tennas, such as interferometers with nonperpendicular
arms and arbitrary orientations, or resonant bar anten-
nas. The special case of two resonant bar antennas, for
which each d oc 1 —3n n for some vector n, has
been previously derived by Michelson [16]. As can be
seen from Fig. 10, the first term in Eq. (85) dominates
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I I I I
]

1 I I I

]
I I I I

]
I I I I d(o, o, P) = sin(2o)(e& C3 e& —e& I3 e&)/2

—cos(2o)(e& C3 e& + e& C3 e&)/2, (B10)

then we can take di —d(A + b, n/2 + P/2, 0) and dz ——

d(A —h, ir/2 —P/2, 0). Inserting these expressions into the
formula (B5) yields, after some manipulation, the result
(4.1), where the functions g~(n) are

5
gi(a) = —f(n) (

—9, —6, 9, 3, 1),

5
g (CX) = —f(n) . (45, 6, —45, 9, 3), (B12)

t

0 5 10
Q'

I I I [ I I I I

15 20

and

5
g, (n) = —f(~) . (15, —4, —15, 9, —I),

FIG. 10. A graph of the functions pi(n), pz(o. ), and ps(n).

for n + 1 (unless d: dt, 0). A similar simplification
applies for o. )) 1: we have

P b(f) = 5j o(n) d: db + O(n ), (B9)

where d denotes the trace-free part of the projection
(8,y —m;my) (8~i —mimi) d yi of d perpendicular to xxx.

The fact that p(f) does not depend on the components
of d and db parallel to rn is due to the fact that the
cross correlation at o. )) 1 is dominated by modes whose
wave vectors are nearly parallel to m, as discussed in
Sec. IVB.

To apply Eq. (B5) to terrestrial detectors, we need to
choose a coordinate system and. express the tensors dq,
d2, and xxx in terms of the angles h, A, and P defined
in Sec. IV. A convenient choice is to take the detectors
to be located at 0 = n/2 + P/2 and P = 0, where r, 0, P
are spherical polar coordinates with origin at the Earth' s
center, so that the unit vector in the direction joining the
detectors is m = e, . If we let e„-,e&, and e& be the usual
basis of orthonormal vectors, and de6ne

L i,(r) = df e ' *
W-~(f) (B15)

The function I ~(r) vanishes for [r[ ) d = 2r~ sin(P/2).
For [r[ ( d, Lab(r) is given by Eqs. (4.1)—(4.3), where
the functions g~ are now

g, (r) = (1+3v+ sv ),32d
(B16)

g, (r) = (3 —3v ——v ),
5 15 2

32d 8 (B17)

gs(r) = (—4+ Sv — v), -5 5 2

32d 2

andv=l —T /d.

f(a) = (ncosn, n cosa, isnn, n sinn, n sino)/o,

(B14)
From Eq. (4.1) it is straightforward to evaluate the

Fourier transform of the overlap reduction function,
which gives the sliding delay function discussed in
Sec. III,
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