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On the renormalization-group analysis of gauge groups containing U(l) t3 U(1) factors
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I point out the existence of misconceptions of a similar nature in the analyses of two diferent
cases in which a grand unified theory —SO(10) in the first case, SU(8) in the second one—breaks to
the standard model via an intermediate-energy gauge group containing a factor U(1) S U(1). In the
second case, false conclusions have been drawn concerning the possible unification of the gauge cou-
plings. The erroneous procedure has been to use two U(1) factors which, though orthogonal relative
to complete representations of the grand unification group, are not orthogonal when considering
only the low-mass fields.

PACS number(s): 12.10.Dm

I. INTRODUCTION

The purpose of this Brief Report is to correct the
inadequate renormalization-group (RG) treatments of
two different cases in which a grand unified theory
(GUT) breaks to the standard model (SM) through an
intermediate-energy gauge group containing two U(1)
factors. In Secs. II and III, I present those treatments
as they were given in the literature, and show that they
lead to a paradox. In Sec. IV, I outline the correct way
of analyzing such cases. It is possible that there exist
in the literature other instances of the same inadequate
treatment, beyond the ones that I present in Secs. II and
III.

The correct treatment of cases in which multiple U(1)
factors are present differs, for each particular case, ac-
cording to the set of fields which is considered to be
light. The RG treatment implies the calculation of loop
diagrams. At the tree level, the U(1) factors may be ar-
bitrarily chosen, any orthogonal rotation of one choice
yielding another choice which is just as good. But at the
one- or two-loop levels, this is no longer true. Loops of
light particles lead to divergent ofF-diagonal self-energies,
which means that the gauge bosons of an arbitrary choice
of U(1) factors will not in general be the eigenstates of
propagation. One must diagonalize the matrix of self-
energies in order to identify the correct choice of U(1)
factors, and only afterwards can one proceed with the
RG analysis. This must be done order-by-order in per-
turbation theory; in this Brief Report I shall remain at
the one-loop level.

scale MU, the second one occurs at the energy scale MI.
B and X are two orthogonal and correctly normalized
generators of SO(10); Y and another U(1) charge Z are
given by an orthogonal rotation of B and X:

Y = /3/5B —Q2/5X, Z = Q2/5R+ +3/5X. (2)

dg;/din p = (I/16~ ) a;g; (3)

(no summation in i), which becomes linear if one uses
instead of g, the variable w, = 4 /gi;r:

da;/d ln p, = —a, /27r . (4)

The coefIicient a; is given, in the case of a general U(1)
charge K, by the trace of K over all the low-mass

TABLE I. R, I, Y, and Z values of the low-mass fermions
and scalars in the SO(10)-breaking chain of Eq. (1).

All U(l) charges in this Brief Report are normalized in
the GUT fashion.

There are in the theory a large number of scalars with
masses of order MU, which are not relevant in this con-
text, because they decouple. The RG evolution from MU
to MI is governed by the low-mass particles only, which,
in addition to the SM gauge bosons, consist in three fami-
lies of fermions, one scalar doublet, and one scalar singlet
S. The values of B and X, and also of Y and Z, for these
fermion and scalar fields, are given in Table I.

The RG equation at the one-loop level for the evolution
of the gauge coupling g, of the gauge group i is [3]

II. FIRST EXAMPLE
The first example [1,2] of the paradox is in a breaking

chain of SO(10):

SO(10)m SU(3)~ SU(2)i U(1)~ (g U(1)x
-+ SU(3)~ I3 SU(2)i U(1)~, (1)

where X is proportional to the baryon number minus
the lepton number, and Y is the standard-model hyper-
charge. The erst symmetry breaking occurs at the energy
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Section III may be skipped without inconvenience.
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fermions and scalars (the high-mass ones decouple). In
this paper I use a definition of the trace as being 2/3
times the sum over all light fermions, plus 1/3 times the
sum over all light scalars. Using this prescription and
the values in Table I one finds a~ = a» = 9/2. It is im-
portant to keep in mind that the origin of Eq. (3) is the
vertex-correction diagram of Fig. 1(a), which is essen-
tially a vacuum-polarization diagram (Fig. 2); the other
three vertex-correction diagrams [in Fig. 1(b)] have di-
vergences which cancel due to the Ward identity, and
which moreover are individually zero if one computes
them in the Landau gauge [4]. If the diagram in Fig.
2 would be nonvanishing and mix B and X, then the di-
agram in Fig. 1(a) would also yield a term proportional
to g»g~ to the equation for dgR/din p.

At MI the group U(l)&U(1)» breaks to U(1)& upon
S acquiring a vacuum expectation value. As a conse-
quence of the first of Eqs. (2), wi. at MI is given as a
function of ~R and ~~ at the same mass scale by

cui (Ml) = ~It(MI)-+ ~»(MI) .

At MU all gauge couplings unify, in particular u~(M~) =
w»(Mrr) = urU. We therefore obtain

FIG. 2. The vacuum-polarization diagram mixing the
gauge bosons of U(1)& and U(1)». A similar diagram exists
with scalars instead of fermions. The sum of the diagrams is
proportional to the trace of the product of B and X.

which contradicts Eq. (6).
The difference between Eqs. (6) and (7) is neither very

large (9/2 not being too di8'erent from 41/10) nor very
important, because, in the end, one anyway concludes
that the breaking chain of Eq. (1) does not work, be-
cause with the new very precise values obtained at the
CERN e+e collider I EP for the gauge couplings at Mz
one finds that there is no MU at which they unify. But
it is clear that there is an error of principle somewhere.
The error might have had more dramatic consequences
if instead of U(1)R C3 U(1)» one had used another or-
thogonal combination of those two U(1) factors. This is
illustrated by the following case.

(ui. (MI) = (err + ( 2/2') ln(MU/MI ) . (6) III. SECOND EXAMPLE

~y (MI) = ~U + ( io/2ir) ln(MU/MI), (7)

I now observe that there is a paradox. It is clear
that, between MU and MI, we might have worked with
the gauge group U(1)& U(1) & [SU(3)& SU(2)&] in-
stead of working with U(1)R g U(1)». This is because Y
and Z, being orthogonal combinations of B and I, have
the same properties of orthogonality [between themselves
and also to SU(3)& and to SU(2)&] and normalization as
R and X. The two sets of U(1) charges are equally legit-
imate choices. Now, if one computes the trace of Y one
obtains ai = 41/10. Therefore, the procedure of using
U(1)& g) U(1)& between Mrr and MI, and then dropping
U(1) & below MI, leads to

The second example [7] is a GUT with a gauge group
SU(8) which contains as a subgroup the product of
the Georgi-Glashow SU(5) [8] by a gauged horizontal-
symmetry group SU(3) H. The breaking chain considered
is

SU(8)m SU(3)~ SU(3)~ SU(2)i Igw U(l)~ g) U(1)~
m SU(3)~ C3 SU(2)i I3 U(1)~ . (8)

The Higgs fields used to break SU(3)~, and to break
U(1)z U(l)& to U(1)&, at MI, have not been consid-
ered in connection with the RG analysis in the original
proposal of this theory. I shall also neglect them here,
because they are irrelevant for my aim. The low-mass
fermions are the usual three families, and the low-mass
scalars are two doublets of SU(2)&. They and their U(1)
charges are listed in Table II. The SM hypercharge Y and
another U(l) charge W are orthogonal combinations of
A and B given by

Y = —-A+ 5B, lV = 5A+ 5B. (9)

It should be noted that in this model there is a host of
superheavy fermions, which are needed in order to ob-
tain complete representations of SU(8) and to cancel the
anomalies, but this needs not concern us here.

Now, if we compute the traces of A2 and of B we
obtain the results 63/20 and 13/5, respectively. Using
then the first of Eqs. (9), we get

FIG. 1. Feynman diagrams relevant for the computation
of the one-loop RG equation for a U(1) gauge coupling. The
diagram in (a) is in fact the only relevant one, because the di-
vergences cancel among the diagrams in (b), due to the Ward
identity. Similar diagrams with scalars instead of fermions
must also be taken into account.

The numerical difference between the two procedures may
however slightly affect analyses which use the gauge group
SU(3)~ SU(2)z U(1)n U(l)» as part of a three-step
breaking chain of SO(10) [5,6].
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TABLE II. A, B, Y, and W values of the low-mass
fermions and scalars in the SU(8) breaking chain of Eq. (8).

is proportional to the trace of (BX), leads to a divergent
mixing of their gauge fields, which therefore are not the
eigenstates of propagation. Under these conditions, it is
meaningless to talk about the gauge couplings of U(1)R
and U(l)~ and their RG evolution. When there are two
(or more) U(1) factors present, out of all the possible
choices of pairs of U(1) factors, related among themselves
by orthogonal transformations, one must choose the one
in which the trace of the product of the two U(1) charges
over the low-mass fields vanishes. This is done by a
simple diagonalization of the matrix of the traces.

Let us work out this prescription for the example of
Sec. II. In that example, the trace of (YZ) is 1/+150
and the trace of (BX) is I/i/6, and therefore neither
U(l)& U(1)x nor U(1)& I3U(1)& are the correct choice.
The correct choice is U(1)M U(1)iv.'

M = Ycos8 —Zsino, N = Ysino+ Zcoso,

with

This result was used in Ref. [7] to obtain unification. It
is very difFerent from the one obtained in the standard
model with two Higgs doublets:

] p]
~y(Mr) = ~v+ ——ln

Mr

tan(28) = 2 tr (Y Z)/(tr Z —tr Y ) .

This gives

cos 0 = (v 3 + i/2)/i/10,
(14)

While unification is impossible (the GUT triangle does
not close) using Eq. (11), it is possible (after taking into
account the experimental error bars and the two-loop RG
efFects) using Eq. (10), provided Mr is very close to the
Fermi scale. However, the result in Eq. (11) is also ob-
tained if one runs U(1)& U(1)iv between M~ and Mr,
instead of running U(1)& U(1) &. As the two procedures
are equally reasonable, one has here the same paradox as
in the preceding section, now with more dramatic conse-
quences. Using the coefficient 369/125 in Eq. (10), one
is able to achieve unification, without having to populate
the GUT desert with fermions or scalars which deflect the
RG evolution, as is done for instance in the supersym-
metric standard model [9]. This possibility looks suspect.
Is it that by simply changing the gauge group, without
populating the desert with any particles, one is able to
restore unification'?

IV. SOLUTION OF THE PROBLEM
The solution of the paradoxes of the preceding two sec-

tions lies in the realization that the vacuum-polarization
diagram in Fig. 2 may lead to a divergent mixing of
two U(1) gauge bosons when only the low-energy parti-
cles run in the loop. Even though the two U(1) charges
(say, B and X from the example of Sec. I) are orthogo-
nal in the context of the whole GUT, which means that
the trace of (BX) over any representation (of fermions or
of scalars) of the grand unification group vanishes, they
are in general not orthogonal when only the low mass
particles (which include both fermions and scalars, the
latter usually not constituting complete representations
of the grand unification group) are taken into account.
It does not make sense to use the charges B and X if
they are not orthogonal relative to the low-mass parti-
cles: the vacuum-polarization diagram of Fig. 2, which

sin0 = (~3 —~2)ji/10.
The trace of (MX) is then zero as required. The one-
loop RG equations for the gauge couplings of U(1)M and
U(l)~ are

dwM

din p

1 /9
2m (2 6

(15)

3At the two-loop level one must use the more general re-
quirement that the two-loop self-energies of the U(1) gauge
bosons be diagonal, i.e., that the gauge bosons be the eigen-
states of propagation at the two-loop level. Only afterwards
can one proceed with the two-loop RG analysis.

Indeed, the trace of (MN) is separately zero for the fermion
and scalar sectors, a consequence of the fact that the low-
energy fermions are in a complete representation of SO(10).
But this is not so in general; for instance, it is not so in the
SU(8) theory of Sec. III.

&9 ~O&

ding 27r (2 6 )
The correct choice of U(l) factors depends on which

fields (fermions and scalars) one considers to have low
mass. This is usually decided by means of the minimal
fine-tuning hypothesis, but that hypothesis does not nec-
essarily hold. Suppose for instance that, in the example
of Sec. II, one wanted to have two low-mass scalar dou-
blets instead of only one. Then, the trace of Y would be
21/5 instead of 41/10, the trace of Z would be 149/30
instead of 49/10, and the trace of (YZ) would be 2ji/150
instead of I/+150. Equation (13) would then yield
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cos 0 = 2~6/5, sin 0 = 1/5,

instead of Eq. (14), and the RG equations for AIM and
co~ would be

84)M 1 25 d(d~ 5

ding 2' 6 ' ding 2' '

instead of Eqs. (15). Upon changing the low-mass fields
present in the theory one should also change the U(1)
factors used in the RG evolution, even if the gauge group
does not change.

This also applies at a particle threshold. . If one would
make the (admittedly rather artificial) assumption that
some fermion or scalar fields would have their masses
somewhere in the middle of the GUT desert, instead of
being either at MU or at MI, then at the corresponding
thresholds one would have to switch U(1) factors, satis-
fying the following prescription. As discussed. previously,
in the energy range just below MU (and above the first
threshold) the U(1) factors must be orthonormal relative
to the GUT group, because we want their gauge couplings
to unify at MU, and they must also be orthogonal rela-
tive to the particles with masses smaller than that energy
range [which means that the trace over those particles
of the product of two U(1) charges should vanish]. On
the other hand, at all other (lower) intermediate-energy
ranges, the U(l) factors must be orthogonal relative to
the particles with mass smaller than the particular energy
range, but not orthonormal relative to the whole GUT
group —nor do they need to be, because in that case
the gauge couplings do not unify at the upper boundary
of the energy range. At each threshold one has to switch
the U(l) factors used in the RG analysis according to
these principles.

One now asks what will be the result for the low-energy
gauge coupling of the standard-model hypercharge Y if
one uses in the running, as one should, the gauge cou-
plings of orthogonal U(1) groups. The answer to this
question is given by the following reasoning. Let (for
whatever GUT with whatever low-mass fields) U(1)I, and
U(l)& be orthogonal with respect to the low-mass fields,
the breaking chain being, as a generalization of Eqs. (1)
and (8),

GUTm G SU(3) ~ SU(2)~ 13 U(1)~ Is U(l)~
—+ SU(3)~ Is SU(2)i II U(1)~. (18)

The standard-model hypercharge Y will be given by

Y = Pc os/ + Q sing,

for some angle g. Then

(uy (Mz) = su~(MI) cos Q + (uq (Mz) sin

= su~ + (1/2vr) [(tr P ) cos

+ (trQ ) sin g]ln(MU/MI)
= ~U + (1/2~)(tr Y ) ln(MU/MI), (20)

where in the last step use was made of Eq. (19) and of
the fact that the trace of (PQ) is zero by definition of
orthogonality. Equation (20) means that one does not
gain anything, in what concerns unification, by using an
intermediate-energy gauge group U(1)& U(l)& instead
of simply using U(1)&. The final result for the U(l)~
gauge coupling is the same, just as if that gauge cou-
pling had been evolved from MU to MI with an a~
coefficient [see Eq. (3)] given, as usual, by the trace
of Y2. This shows that Eqs. (7) and (11) are correct,
though they have been obtained by an incorrect reason-
ing, and that the claim made in Ref. [7] is not correct:
unless one populates the GUT desert with some parti-
cles (fermions, scalars, or gauge bosons [10]), unification
cannot be achieved by just formally using an extended
gauge group. This is what one should have expected.
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