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Quark mass matrices with full first-order perturbation

Dongsheng Du
Institute of High Energy Physics, P.O. Box 918(4), Beijing 100039, China

Zhi-zhong Xing*
China Center of Advanced Science and Technology (World Laboratory), P.O. Box 8730, Beijing 100080, China
and Institute of High Energy Physics, P.O. Box 918(4), Beijing 100039, China
(Received 26 January 1993)

In view of current experimental constraints on the top-quark mass m, and the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements V;, we study a modified form of the Fritzsch quark mass matrices, in
which two nonzero diagonal elements for the charm and strange quarks are introduced as the additional
first-order perturbative terms. In a reasonable analytical approximation, this modification can yield the
upper bound of m, twice as much as that predicted by the Fritzsch Ansatz. The magnitudes of the CKM
matrix elements and the parametrization-invariant measure of CP violation are restricted very well in
terms of ratios of quark masses, and some interesting relations such as |V,,/V,|*~m,/m,,
|Via/Vil?=my/mg, and |V,,| =|V,| are obtained to better accuracy.

PACS number(s): 12.15.Ff

In the standard electroweak model, the family struc-
ture of Yukawa couplings is not constrained by gauge in-
variance so that the values of the fermion masses and
flavor-mixing parameters are completely model undeter-
mined. In trying to understand this puzzle, various forms
of mass matrices have been proposed [1]. Among those
suggested Ansdtze, the most popular and economical one
is the Fritzsch Ansatz [2]

0 xqemq 0
M@= |xe 0 yqelﬁ" , (1
0 yqe 4 zZ,
where x,, y,, and z, are real parameters and ¢ =u (d)
denotes the up (down) charge sector of the quark mass
matrices. Within this scheme the masses of the heavy
quarks (z,b) are introduced initially as the ‘“driving
terms,” while the masses of the light quarks (c,s) and
(u,d) are generated through the first- and second-order
perturbations, respectively. In other words, the masses of
the ith family (i =1,2) fully pick up values from mixing
of the ith and (i + 1)th families. Unfortunately, the pre-
diction of the Fritzsch Ansatz to the top-quark mass [3],

m,<m [(m;/my)' 2= [Vy[172, 2)

with mP$ <90 GeV [4], is below or, at best, near to the
lower bound of m, (mP"*>91 GeV) indicated by the
present measurements [5]. This implies that the form of
the Fritzsch quark mass matrices should be either aban-
doned or modified to fit our better experimental data on
the top-quark mass and flavor mixing. In Ref. [6] Al-
bright has pursued a numerical approach to investigate
the general form of the three-family mass matrices, where
the 22, 13, and 31 matrix elements are nonzero for both
the up and down charge sectors. He identified the crucial
role played by the 22 elements in extending the allowed
range for m, but keeping a good fit to the mixing data.
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In contrast the off-diagonal 13 and 31 elements were ex-
pected to have little effect on the upper bound of m, [6,7].
Recently three specific phenomenological approaches
have been reattempted for the modification of the
Fritzsch mass matrices M{*) and M{? [8—10]. The first is
to treat the Fritzsch Ansatz as the tree approximation re-
sulting from a spontaneously broken symmetry of the La-
grangian, and to take into account the corresponding ra-
diative corrections so as to make the Ansatz compatible
with all the existing experimental data [8]. Another ap-
proach is to introduce two additional nonzero off-
diagonal elements into M* and M{* so that the general-
ized mass matrices can serve as a full realization of the
idea that the lighter quarks in each charge sector get
masses through mixing [9]. However, this treatment fails
to lead to an appreciable increase in the upper bound of
the top-quark mass, as pointed out by Albright and
Lindner [6,7]. The third approach, examined by Gupta
and Johnson [10], is to introduce a nonzero diagonal ele-
ment for the charm quark into the Fritzsch matrix M*
in view of the fact that m_ is much larger than m,, my,
and m,, but comparable with m,. They obtain
mP$ <170 GeV by comparing their theoretical results
for the Cabibbo-Kobayashi-Maskawa (CKM) matrix ele-
ments with the relevant experimental data [11].

In this Brief Report we start from a somewhat different
point of view and take an analytical approach to modify
the form of the Fritzsch quark mass matrices. Following
the assumption that the matrices for both up and down
sectors have parallel dynamical origins in a perturbative
structure around a heavy quark [2,12], we introduce two
nonzero diagonal elements for the charm and strange
quarks into M{*) and M{® as the additional first-order
perturbation:

MP >MP= xgze %4 w,  yge , (3)
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where w, is a real parameter. This modification can of
course be understood as a generalization of the Gupta-
Johnson’s work [10] but it is based on the following non-
trivial consideration: (1) the physical value of m, is far
above the QCD threshold scale Agcp and has the same
order as that of m,; and (2) the ratio m,/m, is smaller
than mg /m, in view of the existing lower bound of m, in-
dicated by experimental data [5,13]. As a matter of fact,
a nonzero w, means that the second family quarks ¢ and s
may not gain their masses fully via mixing of the second
and third families. Note that the form of M? in Eq. (3)
includes the same number of parameters as that with full
off-diagonal mixing [7,9]; therefore, it is also worth look-
ing at. Instead of trying to justify M‘? by dynamical
principles or to construct a model giving rise to M‘? in a
natural way, here we are going to explore its conse-
quences on the top-quark mass and flavor mixing. A re-
markable result of ours is that M ‘% can yield the upper
bound of m, twice as much as that predicted by the
Fritzsch Ansatz [comparing Eq. (2) with Eq. (21)]. We
also find that the magnitudes of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements and the
parametrization-invariant measure of CP violation may
be restricted very well by ratios of quark masses, and
some interesting relations such as |V, /V,,|*~m, /m.,
Via/Vil?=my/m,, and |V,|=|V,| are obtained in
better accuracy. Therefore, we hope that our generaliza-
tion of the Fritzsch Amnsatz might contain something
reasonable and provide some clues to the origin of the
quark mass matrices. This will be helpful in constructing
models of the Higgs-boson couplings of quarks, which are
currently of much experimental and theoretical interest.

In Eq. (3), the diagonal elements corresponding to the
light quarks u and d are expected to be vanishingly small.
Based on the assumption that the masses of the heavy
quarks 7 and b set the scales of M‘*) and M'?, respective-
ly, we can require further that the diagonal elements cor-
responding to ¢ and b are approximately equal to the ob-
served values of their masses:
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It should be noted that the mass matrices M ‘%’ can yield
z,~m, and z;~m, naturally only if x, <<y, <<z, and
w, <<z,. Considering that the intermediate masses m,
and m, may not pick up their values fully through mixing
of the second and third families, we treat w, and w, as
the additional first-order perturbative variables which
may be comparable with y, and y,, respectively [12]. As
a result, we restrict the values of w, in the range

0=w,<m,, 0Zwy;=<m, . (5)

It can be seen later on that a nonzero w, has little effect
on the scale term z, and the second-order perturbative
term x, in M9, but can affect the first-order perturbative
term y, significantly.

In order to derive the CKM matrix, one first diagonal-
izes M'? through the following unitary transformation:

MO=U"pmg UT (6)
with
ml 0 0
M@, =10 —m, 0 |. @)
0 0 mij

Here m,, m,, and m; correspond to m,, m, and m, for
M. and my, m,, and m, for M), respectively. In
view of our knowledge of the quark masses [13], we retain
only the leading powers of m,/m,, m;/ms, m,/m,, and
w, /m3, and obtain
172
x,= T =(mm,)
a my—m,+m;—w, 2

172
>

yq=(—-xqz—i—zqwq+m1m2+m2m3—m1m3)1/2

z[(7’12*'10(,)”’13]1/2, (8)

z,=my—mytmy;—w,~mj .

zZ,=my ., Zg=my . (4) Thus the matrix U'? can be approximately given by
|
1 (m 172 mymy(my+o,) 172
m, mg
172 172
U= Ll I o i el | e | ©)
m, msy
172 172
| mi(mytw,) —ila, +8,) m,+uw, —ila, +8,) AR
mym; m3
The flavor-mixing matrix
Vexm = uwty@ 10)
is then obtained as
1 —B+ 4" 4e'*eD—gce™)
Vexm= | —A4+Be" e eMep—ece'™) | (11)

Be''\(cc—eDe'?) P eCc—EDe™)

i(¢)+¢,)
e¢1¢2
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where
m. 172 m. |72 m. 172
A= u , B= d , C= c ,
c mg m,
(12)
e m, 1/2 [ mg+w, 1/2 [ my+w, 172
| T : o ;
¢=a,—a;, $,=B,— B, . (13)

In obtaining Eq. (11), we have only kept the leading term
of every matrix element [14]. To transform V gy into a
simplier form, we make the following successive rotations
of the quark fields:

(1) c—ce' , t—ste" B e s
(2) u—ue' B ? R d—de"®™? s (14)
(3) t—>te’®, b—be'?,
where
¢=arctan(sing,/(cos¢,— A /B)] ,
6=arctan(sing,/( —cos¢,+£&D /5C)] . 13
Accordingly we obtain
1—47 n  Ape'
Verm = - 1—4n*  p ’ (16)
_Bpei<¢,—¢) —p ]
where
n=(A*+B?—2AB cos¢,)'"?, an

p=(E2C*+E2D*—2£LECD cosg,)'/?

and we have added the next-to-leading terms in the diag-
onal elements V,; and ¥, by using the unitary condition.

Clearly, the form of Vg in Eq. (16) is quite similar
to that parametrized by Wolfenstein [15]. To some ex-
tent, this similarity might imply the reasonableness of the
quark mass matrices M‘? given in Eq. (3), and one may
be interested in speculating the underlying physics which
gives rise to M'?. In the following paragraph we will ex-
plore some consequences of our modified form of the
Fritzsch Ansatz.

Except for the top-quark mass, there still exist four un-
known variables in the CKM matrix Vcxy [see Eqgs.
(15)-(17)]: ¢, ¢,, w,, and w,, originating from the pro-
posed mass matrices M) and M'¥. Here we do not
want to allow these unknown parameters to vary numeri-
cally so as to achieve close agreement between the
theoretical results and the experimentally determined
central values of the magnitudes of the CKM matrix ele-
ments [6,8,10]. Instead of quantitative evaluation, we use
our analytical results to restrict the magnitudes of the
nine CKM matiix elements, to give an upper bound of
the top-quark mass, and to look at the rephasing-
invariant measure of CP violation.

According to our argument that the diagonal element
w, (wy) may vary from zero to m, (m) in M (M'?),
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we obtain from Egs. (5) and (12) that
1<SESV2, 15E<V2. (18)

For various possible values of the unknown phases ¢, and
¢,, the ranges of 7 and p in Eq. (17) are limited by

B—A<n<B+4,

(19)
D—V2C<p<V2D+C).

In obtaining the lower bound of p one needs to take
£=V2 and £=1, in view of the fact that mP"*>91 GeV
and C <D [5,13], to ensure sufficient cancellation be-
tween C and D. Using Egs. (16)-(19), the magnitudes of
the CKM matrix elements can be approximately restrict-
ed by ratios of quark masses as follows:

172

m m mm
l—_u—_d— el SIVud|z|VcsI
m. my memg
172
<1— m, _ my m,my
B m. myg m.ms ’
m 1/2 m 172
d u
‘ms ] ——‘mc } S|Vu5|z|VCd|
m 172 m 172
< || +|= ,
myg m,
m 172 m 172
[ms ] _‘/i‘mc l S|Vcblleu|
b t
172 172
<vz| | B + | Ze
B my m; ’
(20)
172 172
IVub|~ m, |th|~ my |V I~1
chbl m. ’ ’Vtsl myg ’ ® )

Three features should be noted in the above expressions.

(1) The magnitudes of V,; and V_,; (V,,; and V), which
correspond to the flavor mixing between (within) the first
and second quark families, are mainly limited by
m,, my, m., and m,. They are approximately indepen-
dent of the masses of the third quark family, m, and m,,.

(2) The magnitudes of ¥, and V,, which correspond
to the flavor mixing between the second and third quark
families, are mainly determined by m_, mg, m,, and m,.
They are approximately independent of the masses of the
first quark family, m, and m,.

(3) The ratios |V, /V,,|* and |V,;/V,|? are approxi-
mately equal to m, /m_, and m,/m,, respectively [11,16].
They are almost irrelevant to the corresponding masses
of the heavy quarks b and ¢.

It is remarkable that Eq. (20) can straightforwardly
yield the upper bound of the top-quark mass:

m,<2m_.[(m,/m,)"*—|V,,|172. 1)

This result shows that our mass matrices M‘? can make
the upper bound of m, twice as much as that predicted by
the Fritzsch Ansatz [3,4]. In Eq. (21) the coefficient 2
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comes out under the condition w, =m, and w,; =0. This
means that in our generalized quark mass matrices the
maximal value of the upper bound of m, is obtained when
the diagonal elements corresponding to the light quarks
u, d, and s are vanishingly small, while those correspond-
ing to the heavy quarks c, b, and ¢ are approximately
equal to the observed values of their masses. This special
condition has just been chosen by Gupta and Johnston
[10] so that they obtain m P <170 GeV in their numeri-
cal calculation. Here we get it in a natural and analytical
way. Using the current values |V, |=0.030-0.058 [5],
m, (1 GeV)=1.35+0.05 GeV, and my/m;=0.033
+0.011 [13], and transforming m,(1 GeV) into m,(m,)
[17], we obtain the approximate value of the upper bound
of the top-quark mass as

mPhS <190 GeV . (22)

Of course, this result increases the values of the upper
bound of m, predicted in Refs. [3,4,7,9].

Finally, let us look at the rephasing-invariant measure
of CP violation in the electroweak interactions [18]:

J=Im(Vy Vi ViVl . (23)

Using our flavor mixing matrix Vg with leading-order
elements in Eq. (16), we obtain

J~ ABp®sing, . (24)

Note that our CP-violating phase factor (el¢‘) is associat-
ed with the second-order perturbative terms in the quark
mass matrices M* and M‘?. Thus CP violation might
be vanishing small if m, and m, tend to be zero or a, is
equal to a;. A similar result has also been obtained in
Ref. [11] with more detailed arguments. As a result, the
maximal value of J in Eq. (24) is given by
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Jpax =2AB(C+D)*, (25)

which is of order 10~ #~1073 for current values of the
quark masses [5,13].

We have followed a phenomenological approach to
find a modified form of the Fritzsch quark mass matrices
so as to deal with flavor mixing and CP violation in the
electroweak interactions. Considering that the masses of
the second family quarks are not too small compared
with those of the third family quarks and might not pick
up values fully from mixing these two families, we intro-
duced two nonzero diagonal elements for ¢ and s into the
Fritzsch mass matrices as the additional first-order per-
turbation. Our treatment leads to an interesting Wolfen-
stein pattern of the flavor mixing matrix, and yields the
upper bound of the top quark mass twice as much as that
predicted by the Fritzsch Amnsatz. In addition, the mag-
nitudes of the CKM matrix elements and the rephasing-
invariant measure of CP violation can be restricted very
well by ratios of quark masses, and some interesting rela-
tions such as |V, /V,|*~m,/m., and |V, /V,|*
~m,/mg are obtained in better accuracy.

In conclusion, our modification of the Fritzsch Ansatz
can fit current experimental data on the CKM matrix and
the top-quark mass. Evidently any simple Ansatz (con-
taining only a few free parameters), which can account
for the observed systematics of fermion masses, is useful
in order to find clues of the origin of the fermion mass
matrices. We are looking forward to obtaining more pre-
cise experimental data to examine our phenomenological
model.
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