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Breathing mode in the extended Skyrme model
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We study an extended Skyrme model which includes fourth- and sixth-order terms. We explore
some static properties such as the A-nucleon mass splitting and investigate the Skyrmion breathing
mode in the framework of the linear response theory. We find that the monopole response function
has a pronounced peak located at 400 MeV, which we identify as the Roper resonance N(1440).
As compared to the standard one, the extended Skyrme model provides a more accurate description
of baryon properties.

PACS number(s): 11.10.Lm, 11.10.Ef, 14.20.Gk

I. INTRODUCTION

At low energy the QCD running coupling constant n,
becomes large which renders the standard perturbation
theory inapplicable. In order to describe hadronic physics
at low energy, effective theories including the main fea-
tures of QCD (e.g. , chiral symmetry) have therefore been
proposed. These theories carry the label "effective" be-
cause their degrees of freedom are the hadronic observ-
able instead of the fundamental constituents, quarks and
gluons, which are con6.ned. Ten years before the ad-
vent of QCD, Skyrme proposed a model [1] for hadronic
physics which involves only meson fields (pions), and
where baryons emerge as topological solitons. This model
is now recognized as the simplest chiral realization of
QCD at low energy and large N [2]. In the following we
will refer to this model as the minimal Skyrme model.

The minimal Skyrme model has been studied exten-
sively to describe static properties of baryons [3—7] as well
as dynamical properties, in particular the simplest vibra-
tional excitation of the Skyrmion: the breathing mode [8—
15]. Concerning the static properties, the predictions of
the model are generally within 30% of experimental val-
ues when the parameters are adjusted to Bt the nucleon
and the 4 masses. In this paper we investigate whether
this discrepancy is due to the use of the minimal Skyrme
model. One motivation for this study is that it is easy to
show that the second- and fourth-order terms in the pion
field derivatives have the same contribution to the soliton
mass so that further terms should be added. Moreover, in
taking into account the Casimir energy of the Skyrmion,
the authors of Refs. [16,17] have found that the nucleon
mass is lowered to a value between 0 and 400 MeV which
is much too small. They also proved that the O(N, ) and
O(No) mass contributions are of same order. Thus the
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large N, expansion is a poor approximation within this
minimal Skyrme model.

In this article we mainly focus on the breathing mode.
One problem regarding this mode in the minimal Skyrme
model is that it does not show up in analysis based
on phase shifts [10,12], whereas when other calculations
found it [8,9,11,13—15, its excitation energy stands be-
tween 200 and 300 MeV which is too small compared to
its experimental value of 500 MeV.

One possible way to circumvent these diKculties is
to improve this model by adding higher order terms in
derivatives in the corresponding chiral Lagrangian as the
sixth-order term generated by tv-meson exchange [17]
(first proposed in Ref. [18]).

This extended model has already been used to describe
the Roper resonance. Kaulfuss and Meissner [19] used
both scaling approximation and semiclassical quantiza-
tion. They found a resonance at an excitation energy
of 480 MeV. However, these authors used values for
the parameters of the model which are in conQict with
those determined by chiral perturbation theory [20,21]
and, moreover, changed the sign of the so-called Skyrme
term. Schwesinger and Weigel [22] have also used phase
shifts analysis within this extended Skyrme model. How-
ever, they did not find the Roper resonance.

In this work, we describe this low-lying monopole res-
onance within the same extended Skyrme model of Refs.
[17,22] using the linear response theory. This method
is more transparent and has already been shown to be
powerful in different domains such as giant resonances in
nuclear physics [23] or nucleon polarizabilities in hedge-
hog models in hadronic physic [24]. In a previous ar-
ticle [15] we demonstrated the practicability of this ap-
proach. However, this calculation was limited to the min-
imal Skyrme model only.

The present article is organized as follows. In Sec. II
we introduce the extended Skyrme model and de6ne our
notation. In Sec. III we review the linear response ap-
proach of Ref. [15] and specialize to the extended model
considered here. We finally discuss our results concern-
ing some static properties of the soliton and the Roper
resonance in Sec. IV.
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II. EXTENDED SKYRME MODEL Our starting point is then the Lagrangian

Q2

16
Tr (0 UB"Ut)P

Tr ( [(B„U)Ut, (B„U)Ut (2.1)

The simplest chiral efFective Lagrangian proposed by
Skyrme [1] reads

2 = Zsi, + Zs + isE m Tr (U+ Ut —2) . (2 5)

The first and second terms in Eq. (2.5) have been dis-
cussed above. The last term which is proportional to
the square of the pion mass m implements a small ex-
plicit breaking of chiral symmetry. Assuming the hedge-
hog ansatz for the pion field 7r(r, t) = E E(r, t) r/2 [see
Eq. (2.2)], the Lagrangian density (2.5) becomes

where U is an SU(2) matrix parametrized by the (Gold-
stone) pion fields n, normalized to the pion decay con-
stant E

U = exp[2i7r . v/F ], (2.2)

the ~ 's being the usual Pauli matrices. The Grst term
in the Lagrangian (2.1) corresponds to the well known
nonlinear o. model and the second one, which is of fourth
order in powers of the derivatives of the pion B.eld, was
introduced by Skyrme to stabilize the soliton. It is gen-
erally referred to as the Skyrme term. It can be derived
from a local approximation of an effective model with p
mesons [25]. Similarly, a term of order six can be gener-
ated &om w-meson exchange [18,26]. It reads

F sin F P (si nFI~+ +
8 e2r2 8m2~4 q

fsinF 5 2 sin F 1E +2 + —E m (c soF —1).
2r p e2r 2 4

(2.6)

g'F + nF' = (g'E') ' —(0 + o E") (2.7)

where the time-dependent functions g, o, , and 0 are, re-
spectively,

The corresponding classical Euler-Lagrange equation
reads

1 A2
gP

2m2 (2.3)
gr t = r +2sin E+

4 4m2 ~4 r2

where the anomalous baryon current B'~ is given by

B~ = e"" ~Tr ((B„U)Ut(0 U)Ut(BpU)Ut) (2.4).
24vr2

P e /si En~
n(r, t) = 1+

~ ~
sin(2E)4m' ~4

q
(2.8)

The two new constants appearing in Eq. (2.3) are the
w-meson mass m and the parameter P which can be
related to the w ~ vrp width [27].

In Ref. [17] it was shown that the eKect of the Casimir
energy, including the term Zs in the Lagrangian (2.1), is
to lower the nucleon mass by about 500 MeV, so that one
obtains a more satisfactory value of 1 GeV. Anticipat-
ing on the last section, let us observe that the axial-vector
coupling constant g~ is found to be 1.24 instead of the
Skyrme model prediction 0.34. So there are good reasons
to think that the extension of the Skyrme model which
consist in adding the sixth-order term (2.3) to the La-
grangian (2.1) is a good approximation to describe the
baryonic sector.

There are of course other sixth-order terms in the pion
Geld derivatives such as the contributions of the p and
scalar mesons. Nevertheless, a Lagrangian containing all
possible sixth-order terms leads in general to an Euler-
Lagrange differential equation of order higher than two.
Consequently, one is not sure to find a soliton-type so-
lution. This question is still open up to now since the
parameters which correspond to these terms have not
yet been determined. Fortunately, the term Z6 in Eq.
(2.3) has the noteworthy property (as the Skyrme term)
of being quadratic in the time derivatives and to lead to
an equation of motion of second order as we will see be-
low [see Eq. (2.7)]. For this reason we consider only this
term in this work.

(eE ) 2 . z sin(2F)
0 r, t = " r2+ sin2E

4 r2

E(o, t) = ~, F(~, t) = o; (2.9)

which are sufhcient for a difFerential equation of second
order.

III. LINEAR RESPONSE ANALYSIS

In order to describe the low-lying monopole vibrations
of the Skyrmion within the extended Skyrme model (2.5)
we explore the response of the Skyrmion to an external
infinitesimal monopole Geld with a frequency O. The re-
sponse function is determined from the evolution of the
isoscalar mean square radius of the Skyrmion with re-
spect to the frequency O.

An external time-dependent monopole Beld corre-
sponds to the addition of the following term to the La-
grangian density (2.6):

+—(eF ) m r sinF
4

Primes and dots in Eq. (2.7) indicate radial coordinate
differentiations and time differentiations respectively. In
order to ensure that the baryon number is equal to one,
the equation of motion (2.7) has to be solved with the
conditions
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Lint ——eF r B (r, t) csin(Ot) exP(i7t), (3 1)

where Bs(r, t) is the time component of the baryon cur-
rent (2.4),

Because the term (3.1) is weak (in the domain t
[
—oo, 0]), it introduces small changes of the classical so-

lution. We thus can treat this solution in a linear ap-
proximation. To first order in e, F(r, t) has the form

1 sin (E) OEa'r, t =—
2vr2 r2 Br '

and g a vanishingly small positive number. Adding this
interaction term (3.1) to the Lagrangian density (2.6),
the new corresponding Euler-I agrange equation reads

g E+ nE = (g E') —(0+ o.E'
)

eE
+e sin E sin(Ot) exp(rjt), (3.2)

where g, 0, , and 0 have been defined in the previous sec-
tion. This last equation is to be solved with the boundary
conditions E(t = —oo, r) = E, (r) and E(t = —oo, r) = 0
where E, (r) is the static solution of Eq. (2.7).

E(r, t) = E.(r)+bE(r, t) + hF'(r, t),
where bE(r, t) is linear in the field strength e. Moreover,
its time dependence reads

hE(r, t) = —i —B(r) exp[i(B —ig)t].
2

Thus, Eq. (3.2) becomes

[(0 —ig)' —A.](g,B) =—
gs

(3.3)

where the function g, and the operator A, are, respec-
tively,

g. (r) = (eE)2 2 . 2 P2e2 sin F,r +2sin F, + 4m2 ~4 &2 (3 4)

d g, 2 . P e /sin E,+ —' ——sin(2F, ) E, +
I

'F,'
Idr2 g, g2 ' ' 4m2 ~4 ( r2 ')

sin E, P2 ez
1+

&2 4m2 &4
47

+ cos(2E, ) E, — ——sin E,(eE ) 2

The isoscalar mean square radius [3] is given by

(r') = —— r' sin'(E)E' dr

and the P are the eigenstates of the operator A, [see
Eq. (3.5)], with the eigenvalues w, normalized according
to

Up to first order in e it reads P„(r)P (r)eE dr = 6„
0

(r ) = (r ). —i —(f(O) exp[i(O —ig)t]
2

—f*(0)exp[ —i(O + irI) t]),

oo i 2

f (0) = — r '
(g, R) dr.

vr 0 gs
(3.6)

where (r ), is the static mean square radius [3] and f the
response function

In Eq. (3.7) the limit rI —+ 0 is, as usual [23], implicit and
corresponds to the boundary condition specified above.
The quantity of interest here is the imaginary part of
the response function, which is directly related to the
distribution of collective strength (see, e.g. , [23]). The
energy at; which the imaginary part of the response func-
tion (3.7) exhibits an unbound peak is identified with the
excitation energy of the Roper resonance.

By using Eq. (3.3), we can extract the following spectral
representation of the response function (3.6):

IV. RESULTS AND SUMMARY

where the state P is defined by

(r14) = 2eE~ r sin Es

f(q)
1 ) - I(&I@-)I'
vr (0 —irI)2 —(u2 '

(3.8)

In this section we present our results for some static
properties and for the energy of the Roper resonance
within the extended Skyrme model (2.5) and compare
them to those of the minimal one. First of all, because
it is a meson theory, the parameters of the model have
to be fixed by Btting the low-energy meson observables.
Concerning the pion decay constant, the pion, and the
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FIG. 3. Energies splitting of the A and Roper N* reso-
nances with respect to the nucleon N according to the cases
[i] and [ii] of the parameters (see Sec. IV) and to the experi-
ment [28]. All the energies are in MeV.

extended model, is the closest to the experimental situ-
ation. In order to obtain a better agreement one has to
take into account higher order terms in addition to C6
[see Eq. (2.3)] in the chiral Lagrangian.

Finally, the message that we want to transmit through
this work is that one should not restrict oneself to the
standard Skyrme model [1] [see Eq. (2.1)] for the de-
scription of low-energy hadron physics, but consider ex-
tensions of this model including higher order terms in
powers of the derivatives of the pion field. In this sense,
the model considered here can be considered as a minimal
extension of the Skyrme Lagrangian. This claim confirms
the conclusions of Refs. [17,29]. A more realistic improve-
ment consists of considering effective Lagrangians which
incorporate low mass mesons with finite mass [27,30].

and P = 13.6) to investigate the Roper resonance with
our approach, we find a sharp peak located at 320 MeV.
This leads us to think that the diKculty in finding the
breathing mode resonance in Ref. [22] is due to the im-
plementation of the phase shifts method.

To summarize the main results of our calculations, we
plot in Fig. 3 the energy spectrum of the L and Roper
(N*) resonances for the difFerent values of the param-
eters and compare them to the experimental one. We
see obviously that the case [ii], which corresponds to the
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