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Measurements of flux tubes generated by sources in different representations of SU(2) and U(l)
lattice gauge theory in three dimensions are reported. Heavy "quarks" are considered in three
representations of SU(2): fundamental (j = 1/2), adjoint (j = 1), and quartet (j = 3/2). Wilson
loops are used to introduce a static quark-antiquark (QiQ. ) pair. Several attributes of the fields

generated by the Q~. Q pair are measured. In particular, the first direct lattice measurements of the
fiux-tube cross section A~ as a function of representation are made. It is found that A~ const, to
within about 10% (a rough estimate of the overall quality of the data). The results are consistent
with a connection between the string tension o~ and cross section suggested by a simplified model
of flux-tube formation, o~ = g j (j + 1)/(2A~. ) [where g is the gauge coupling], given that the string
tension scales like the Casimir eigenvalue j(j + 1), as observed in previous lattice studies in both
three and four dimensions (and confirmed here up to the quartet representation). These results
can be used to discriminate among phenomenological models of the physics underlying con6nement.
Flux-tube measurements are also made in compact three-dimensional +ED, which exhibits electric
confinement due to magnetic monopole condensation. Singly and doubly charged Wilson loops are
considered. The string tension is found to scale like the squared charge, and the Qux-tube cross
section is found is be independent of the charge, to a good approximation. The results of these
three-dimensional SU(2) and U(1) simulations taken together lend some support, albeit indirectly,
to a conjecture that the dual superconductor mechanism underlies con6nement in compact gauge
theories in both three and four dimensions.
PACS number(s): 12.38.Gc, 11.15.Ha, 12.38.Aw, 12.40.Aa

I. INTRODUCTION

Flux-tube formation provides an attractive description
of confinement in quantum chromodynamics (QCD). In
a simplified flux-tube picture of a very heavy quark-
antiquark pair, color-electric field lines running between
the quarks are assumed to be "squeezed" into a cylinder
whose cross section is independent of the quark separa-
tion R (ignoring end efFects), resulting in linear confine-
ment.

Consider heavy "quarks" in an arbitrary representa-
tion of the gauge group, which we take to be SU(2) for
convenience. The color-electric field E~ between quarks
in the jth representation is determined, in an Abelian ap-
proximation, by Gauss' law [I] E~Az ——gQ~, where the
quark color "charge" Q~. is related to the group Casimir
eigenvalue Q2 = j(j + 1), g is the gauge coupling, and
A~ is the cross section of the flux tube. In this simplified
model, E~ is assumed to be constant across the flux-tube
cross section. In the case of nonfundamental representa-
tion sources, B is also assumed to be below the threshold
for fission of the tube. The interaction energy of the
system V'" (R) = &E2AsR = o~R, and thus the string

* Permanent address.

tension 0.
~ is given by

In a more detailed flux. -tube model, the color field Ez
may vary in magnitude across the flux-tube cross sec-
tion; the cross section in Eq. (1) is then defined by
Ai—:(f E~dA~) / IE dA~; it is also . possible to relax
the constraint that A~ be independent of R.

If the general features of the flux-tube model of con-
finement are consistent with QCD, then the connection
Eq. (1) between o~ and A~ should hold. However, within
the context of the flux-tube picture, A~ is an unknown
function of the quark representation. The cross section is
determined by the fundamental dynamics of QCD. Flux-
tube formation has been observed in lattice QCD simu-
lations in four dimensions [2—7] and as well as in three
dimensions [8]. However, previous flux-tube measure-
ments have only been made for fundamental represen-
tation sources.

This paper presents results of the first direct lattice
measurements of A~. for static quarks in difFerent repre-
sentations of the gauge group. This work is aimed in part
at establishing the connection Eq. (1) between the string
tension and flux-tube cross section. As well, the results
obtained here go beyond the flux-tube model, providing
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important new information about the dynamics underly-
ing confinement.

For example, if confinement is due to a bulk property
of the QCD vacuum, such as a vacuum pressure, then
A~ is expected to increase with representation (a natural
"mechanical" response of a "medium" to the injection of
more intense fields). Consequently, in such a scenario,
the string tension o~ is expected to increase with repre-
sentation less rapidly than the quark Casimir eigenvalue.
This situation is realized in a wide class of phenomeno-
logical models, including bag models [1,9], models based
on a description of the QCD vacuum as a color-dielectric
medium [10], and some models of confinement based on
vacuum condensation [11].

The MIT bag [9] is typical of this general class of mod-
els. In the case of the heavy quark-antiquark (Q~Q~) sys-
tem described above, the magnitude of the color-electric
field is determined by a balance between the pressure
generated by the field and an external "bag" pressure B
[1], 2E = B. It follows that A~ oc Q~, and the result-
ing string tension oz also scales as the square root of the
Casimir eigenvalue, cr~ oc [j (j + 1)] ~ .

In fact, the phenomenological models discussed above
are not compatible with lattice simulations, which have
shown that the string tension actually scales to an ex-
cellent approximation as the Casimir eigenvalue of the
representation. This has been observed for both SU(2)
and SU(3) gauge groups [12]. In the context of the flux-
tube model, this suggests that the cross section Az is
independent of representation.

Direct measurements of the flux-tube cross section
for heavy quark-antiquark (Q~Q ) sources are obtained
here in three representations of three-dimensional SU(2)
lattice-gauge theory: fundamental (j = 1/2), adjoint
(j = 1), and quartet (j = 3/2). A more thorough check of
scaling and finite-volume effects is achieved by working in
three dimensions than would be obtained (with the same
computing power) in four dimensions. We think that our
results are relevant to the problem of confinement in four-
dimensional QCD. In particular, previous lattice studies
have shown that the string tension scales like the Casimir
eigenvalue of the representation in three dimensions [13,
14], as well as in four dimensions [12]. Moreover, the flux
tube picture of confinement is qualitatively the same in
both three and four dimensions. It is therefore reason-
able to expect that the qualitative features of flux tubes
reported here would be reproduced in four dimensions.
Of course, such a calculation can and should be done.

We find A~ const for the three representations, to
within about 10% (a rough estimate of the overall quality
of our data). This is consistent with the flux-tube pic-
ture, given that the string tension scales like the Casimir
eigenvalue of the representation (which is confirmed here
up to the quartet representation). Several additional
qualitative features of the flux-tube picture are also ver-
ified.

These results suggest a connection between confine-
ment in QCD and the physics of a dual superconduc-
tor [15]. It is well known that dual-superconductivity
(magnetic-monopole condensation) results in confine-
ment of electric charges. in compact QED in three di-

mensions (QEDs) [16]. A simple extension of the analyt-
ical calculation of Ref. [17] in the Villain approximation
to the Wilson action, to include Wilson loops for multi-
ply charged sources, demonstrates that the string tension
scales like the squared charge.

We have performed lattice simulations of singly and
doubly charged Wilson loops in compact QEDs, and our
results confirm the expected scaling properties of the
string tension and flux-tube cross section. The poten-
tial is found to scale like the squared charge to within
a few percent, and the flux tubes in the two cases have
the same cross section to within about 10%. The results
of our three-dimensional SU(2) and U(1) simulations
taken together lend some support, albeit indirectly, to
the dual-superconductor picture of confinement in four-
dimensional QCD [18].

II. METHOD

To begin with, we consider the three-dimensional
SU(2) lattice theory. Wilson loops are used to introduce
static Q~Q sources. Lattice measurements of the color-
electric and -magnetic fields generated by these sources
are obtained from correlators T"-" of plaquettes with a
Wilson loop,

(2)

where U~" (x) is the plaquette located at x (measured
relative to the center of the Wilson loop) and W~. is the
normalized trace of the Wilson loop in the jth represen-
tation:

W~—: Tr D~ U)
1

LqL

lim T". = — E "
a 3 j

1 papv 2

(4)

17~[Vi] denotes an appropriate irreducible representation
of the link U~, and L the closed loop. P:—4/(g a), where
the coupling constant g has dimensions of (mass) ~ in
three dimensions.

In the continuum limit, the trace of a 1 x 1 plaquette
is by construction independent of representation (up to
overall normalizations). As in several previous lattice cal-
culations of higher-representation Wilson loops (cf. Refs.
[12—14]), we use the action expressed in terms of links in
the fundamental representation to perform simulations
at arbitrary P. The trace of the plaquette U~ in the
fundamental representation is also used to compute the
correlators of Eq. (2).

In the continuum limit the correlator W". " corresponds
to the expectation value of the square of the Euclidean
field strength I' I = QI b'av gvgap + ~cabcgbl gev.
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where the expectation value ( ~ )& & is taken in a state
with external sources in the jth representation and ( .)o
is the vacuum expectation value.

To compute the energy density, the Euclidean three-
axis is identified with a temporal side of the Wilson loop
and the one-axis with a radial side. We separate con-
tributions to the total-energy density E't t corresponding
to the two spatial components of the color-electric Geld
(in the directions parallel and perpendicular to the line
joining the quarks) and the color-magnetic field (a scalar
in three dimensions):

(5)

[dU']D [U ]
PTr(U&Ki )/2

2+ (P &) D [V] [dU ]
PT (U Ic, )/2 (8)Ii (Pki)

where Ki is the sum of the four "staples" coupling to the
link of interest Ui and

kiUi = Ki, det Ui ——l.
A further variance reduction has been developed

by Mawhinney [14], which takes account of efFective
next-to-nearest-neighbor interactions with the link of
interest:

where [dUg] D, [U'i] .e

+i P ' 2'+i P ' D [V'V] [dU] ~s', (10)Ii (Pk,') Ii (Pki)

where S is the action [only next-to-nearest-neighbor cou-
plings to Ui are relevant in Eq. (10)] and

Note the relative minus sign between the electric and
magnetic components of the Euclidean energy density.

Previous Aux measurements for fundamental represen-
tation sources have been made in four diinensions [2—7]
and in three dimensions [8]. Following Haymaker and
Wosiek [5], we achieve a significant enhancement in the
signal to noise for the correlators by replacing Eq. (2)
with

p (W —,T (U""(x) —U""(x )))

where xR is a reference point chosen far enough from
the Wilson loop that the factorization (W~U(xR))
(W~) (U) is satis6ed. As in Ref. [5], we find that this
happens well within the lattice volume. We veriGed ex-
plicitly that the right-hand side of Eq. (7) is insensitive,
within our statistical errors, to variations in xR over a
wide range (when measurements are made for x in a re-
gion around the Wilson loop of sufEcient size to suit our
purposes). The results presented here were obtained with
xR taken at a distance of half the lattice size from the
center of the Wilson loop, in the direction transverse to
the plane of the loop. The advantage to using Eq. (7) is
that the Buctuations in the product R ~ U~, due mainly
to the Wilson loop, tend to cancel in the vacuum sub-
traction when computed conGguration by configuration.

Another reduction in the statistical errors is readily
achieved by performing some link integrations analyt-
ically, following the multihit procedure introduced by
Parisi, Petronzio, and Rapuano [19]. Consider a link
variable Ui which appears linearly in the observable of in-
terest. The simplest analytical integration over Ui takes
account of nearest-neighbor couplings in the action

k,'V, ' = ) U; (x) ) U)„(x+ l~-) Ut (x),

det Vi' = 1. (11)

l~ are four unit vectors perpendicular to I,. The oriented
plaquette Uip(x+t~) is computed with the link Ui(x+l~)
appearing first on the left [x is the position of the base of
the link Ui in Eq. (10)]. The sum over unit vectors l~ and
Ij, in Eq. (11) is taken over both parallel and antiparallel
orientations with respect to a set of fixed basis vectors.
An integration over the four links Ui(x + l~) is implicit
in Eq. (10).

The second-order variance reduction of Eq. (10) can-
not be applied to the links in the corners of the Wilson
loop, since some links would then appear more than once
in the integrand. Likewise, the Grst-order variance reduc-
tion Eq. (8) can only be applied to one link in a corner.
Further restrictions apply to calculations of the plaquette
correlators.

For Wilson loops with less than six links on a side, we
use the first-order variance reduction Eq. (8) for all links
in the loop, except for one link at each corner, where no
variance reduction is used. A plaquette correlator can
be measured simultaneously provided that all sides of
the plaquette are at least one node from the sides of the
Wilson loop.

For Wilson loops of size 6 x 6 or larger, we minimize
the variance by using a combination of first- and second-
order variance reductions. Equation (8) is applied to the

Mawhinney derived next-to-nearest-neighbor variance re-
ductions for fundamental and adjoint representations by em-
ploying an axial-gauge fixing [14]. We have generalized his
result to arbitrary representations without gauge Bxing.
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first link and to the second-to-last link on each (oriented)
side of the Wilson loop; Eq. (10) is applied to all other
links, except the last link on each side, where no vari-
ance reduction is used. In this case, a correlator can be
measured simultaneously only if all sides of the plaque-
tte are at least two nodes &om the sides of the Wilson
loop. [This variance-reduction scheme can also be ap-
plied to Wilson loops as small as 4 x 4 if measurements
of correlators near the center of the loop are not desired.
This scheme is significantly more effective than the one
employed in Ref. [14], which uses only second-order vari-
ance reductions. ]

For large P, k~ 4 and A:I 12; Eq. (10) then provides
an estimate of the reduction v, g in the variance of a
Wilson loop using the above scheme, compared to the
variance when only "unreduced" links are used (cf. Refs.
[20, 14])

timates of the statistical errors were obtained using the
jackknife method. However, measurements of different
observables (and of a given observable in the three rep-
resentations) tend to be strongly correlated, since many
Wilson loops and plaquette correlators were measured
simultaneously on a given lattice.

The quartet representation is much more diKcult to
measure than the two lower representations, due to the
exponential suppression of the Wilson loop with the
Q~Q potential, which is found to scale with the Casimir
eigenvalue of the representation. Energy-density mea-
surements in the quartet case obtained from loops larger
than about 6 x 6 are of poor quality, although these data
are consistent with conclusions drawn from results ob-
tained from smaller loops.

Representative data for Wilson loops in the three rep-
resentations are shown in Fig. 1. Earlier studies have
shown that the potentials scale with the Casimir eigen-
value of the representation at essentially all lengths scales
R [13, 14]. This is made evident in Fig. 1, where the
logarithms of the Wilson loops are scaled by a ratio of
Casimirs eigenvalues:

C~
3/4

(14)j j+1
The quantity —ln(W~(T, R))/T, which extrapolates to
the Q&. Q potential V~(R) in the limit T ~ oo, is found
to scale as j(j+1) to within a few tenths of a percent at all
T and B considered here. A simple extrapolation of the
data using V~(R) in[(W~(T „1,R))/(W—~ (T „,R))],
where T is the largest T value in the data set, gives
agreement to a few tenths of a percent with the results of
a careful statistical analysis of fundamental and adjoint
Wilson loops reported in Ref. [14].

Several attributes of the plaquette correlators were
measured. To begin with, results for the fundamental
and adjoint representations are presented. The correla-
tors were measured over a range of distances x~ from the
center of the Wilson loop, in the direction normal to the
plane of the loop. Results for the T x R = 8 x 6 loop are
shown in Fig. 2. The cross sections of the fundamental

(12)
For example, the variance reduction for a Wilson loop
of size 6 x 6 in the quartet representation at P = 10 is
estimated to be a factor of 90. Our numerical results
are consistent with Eq. (12).

The trace of an element of the group in the jth rep-
resentation can be expressed in terms of its trace in the
fundamental representation using trigonometric relations
among the group characters. In the case of the adjoint
and quartet representations [21],

~3/2 —2'/2 ~$/2,
3

(13)

N, = 4W,'/, —1

Hence one need only compute the Wilson loop in the fun-
damental representation, using the "unreduced" links U~,
or the "reduced" elements Vj, V&' of Eqs. (8) and (10), as
the case may be. The Wilson loops in higher represen-
tations then follow from Eq. (13). The Bessel functions
for the analytical integrations are tabulated separately
for the three representations.

(I . (12P) ) (2T+2R —12) (I (4P) ) (2T+2R 4)—-i "+'
i i

"+'
Ii (12P) ) & Ii(4P) &

III. RESULTS AND DISCUSSION

Our main results were obtained on a 32 lattice at
P = 10 (which is well within the scaling region for the
string tension on a lattice of this size [14]). Wilson loops
and plaquette correlators were calculated in the three
representations j = 1/2, 1, and 3/2 for all loops of sizes
T x R from 3 x 4 to 8 x 8 (these observables were measured
in groups in several separate runs). Some additional data
was taken at P = 14 in order to check for scaling of the
physical flux-tube dimensions. A standard heat-bath al-
gorithm was employed. More than 10 000 sweeps were
typically used for thermalization. 2 000 measurements
were made, taking 20 sweeps between measurements.
The resulting integrated autocorrelation times ~;„t for the
Wilson loops generally satisfy v;„t & 0.5, consistent with
the results of a systematic study made in Ref. [14]. Es-

A

4

V

I

8a

u, / T

FIG. 1. T evolution of Wilson loops in three representa-
tions of SU(2) lattice-gauge theory: j = 1/2 (o), j = 1 ( ),
and j = 3/2 (A). c~ is a ratio of Casimir eigenvalues, defined
in Eq. (14). The quantity —ln(W~ (T, R))/T extrapolates to
the Q~Q. potential in the limit T + oo.
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and adjoint representation flux tubes are indistinguish-
able within statistical errors. This is true for all Wilson
loops that were considered. For example, the T evolu-

tion of E'I.I for B = 6 Wilson loops is illustrated in Fig.
3. As observed in Refs. [4, 6], the plaquette correla-
tors are more sensitive to higher states than the Wilson
loop. Our data are consistent with a one-excited-state
parametrization given in Ref. [6].

Figure 2 demonstrates that the component of the color-
electric Beld parallel to the line joining the charges domi-
nates the energy, as assumed in the flux-tube model. The
magnetic energy turns out to be negative, which has also
been observed in four-dimensional SU(2) lattice theory
[5]. The formation of a well-defined flux tube is demon-

strated by measurements of E' in the plane of the Wilson

loop. Figure 4 shows E' for the T x B = 6 x 8 loop as aII

function of the longitudinal distance xII of the plaquette
centroid &om the center of the loop. Note the approxi-
mate symmetry of the energy density about the center of

FIG. 2. Energy-density profiles transverse to the plane of
the T x R = 8 x 6 Wilson loop [j = 1/2 (o), j = 1 ( )].
These results are an average over plaquettes with centroids
at distances +a~ transverse to the plane of the loop.

FIG. 4. Energy-density profile in the plane of the T x
R = 6 x 8 Wilson loop [j = 1/2 (o), j = 1 ( )]. z~~ is the
distance of the centroid of the plaquette from the center of the
Wilson loop. The radial sides of the Wilson loop are located
at xII = +4a. Plaquettes with a side touching the Wilson loop
cannot be measured using the variance reduction of Eq. (8),
and are not shown.

a ) 8' '(z) = V, (R).

The analogous sum rule in four-dimensional SU(2) was
studied in detail by Haymaker and Woseik [5]. The flux-
tube picture suggests a related sum rule that is much sim-
pler to measure. If the interaction energy is dominated
by a constant color-electric Beld along the line joining
the charges (as expected in the limit of quark separa-
tions much greater than the flux-tube thickness), then
the integral of the energy density along one transverse
"slice" of the flux tube should equal the string tension
(cf. oz ——limR [V~ (R) —V~ (R —a)]/a):

a) f~ (z~, z~~
= fixed) = o, ,

II

I~~ I

(16)

the loop. The formation of the flux tube is further illus-

trated in Fig. 5, where 8' is shown as a function of the
radial separation R of the Wilson loop (for fixed T = 6).

A stringent test of energy-density calculations using
Eq. (7) is provided a sum rule derived by Michael [22]

x = 0

.20

x = 0

. 10

.05 .05
x =la

, oo
3

.00

FIG. 3. T evolution of Z. (zi ——0, 2a) for Wilson loopsII

with R = 6 [j = 1/2 (o), j = 1 ( )].
FIG. 5. Energy density 8 (z& = 0, 2a) as a function of R,II

for fixed T = 6 [j = 1/2 (o), j = 1 (Q)].
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where the sum is taken over positive and negative dis-
tances x~ from the plane of the Wilson loop.

Our results are in good agreement with Eq. (16). Fig-
ure 6 shows the left-hand side of this equation for the
T x R = 8 x 6 loop in the fundamental and adjoint rep-
resentations, using a variable cutoff x& on the sum. The
right-hand side of Eq. (16) is illustrated by the dashed
line in Fig. 6 (our estimates of the string tension in the
two representations agree with Ref. [14] to within a few
percent). These results again demonstrate that the flux-
tube cross sections for the fundamental and adjoint repre-
sentations are indistinguishable within statistical errors.

Figures 2—6 also demonstrate that the local-energy
densities scale to a good approximation like the Casimir
eigenvalue of the representation throughout the flux tube.
This is a very strong test of the validity of the flux-tube
model for A~. = const. Since the magnitude of the color-
electric field varies across the flux-tube cross section (cf.
Fig. 2), a proper determination of the numerical value of
A~ should be made in terms of expectation values of the
color field, as described below Eq. (1) [some prescription
for defining the Abelian projection of the color Geld would
also be required]. However, a rough estimate A~ = 8a in-
ferred from Fig. 6 is consistent with Eq. (1), given the
estimate of the string tension c~o~ 0.14g (cf. Ref.
[141)

The cross section is also found to be approximately
independent of R (cf. Fig. 5). A similar conclusion was
reached in four dimensions in Ref. [5]. On the other
hand, the cross section in the strong-coupling limit in
four dimensions is found to increase logarithmically with
R [24]. Within statistical errors the range in R considered
here is not sufBcient to rule out such a weak dependence
on the radial separation.

Our measurements of the quartet representation (j =
3/2) correlators are consistent with the above results.
We compare data in the three representations taken from
the T x R = 5 x 6 Wilson loop: energy-density profiles
transverse to the flux tube are shown in Fig. 7 and the
sum rules Eq. (16) in Fig. 8. Data obtained from larger
Wilson loops are consistent with these results, although,

0. /5

0. 10

c e "/ g'

0.05

0.00

0.04

0.00

—0.04
0

c e~/ g'

3 4 5
x, / n

FIG. 7. Energy-density profile transverse to the plane of
the T x R = 5 x 6 Wilson loop, in the fundamental and quartet
representations [j = 1/2 (o), j = 3/2 (A)].

as mentioned above, the quartet data for larger loops
are of poor quality, due to an exponential suppression
of the Wilson loop with the Casimir eigenvalue of the
representation.

We checked for scaling of the physical flux-tube dimen-
sions by running at P = 14. The sum rule Eq. (16) for
the fundamental representation is compared at the two
values of P in Fig. 9. The cutoff x& on the sum is ex-
pressed here in units of the physical coupling constant g.
The data at P = 10 are for a 6 x 6 Wilson loop, while the
data at P = 14 are for an 8 x 8 loop. These Wilson loops
have roughly the same dimensions in physical units (T
and R measured in units of 1/g ).

These results show good evidence for scaling in the en-
ergy density and flux-tube cross section (scaling is also
observed in our adjoint and quartet representation data).
However, the factorization assumed in Eq. (7) breaks
down in the P = 14 data at the largest values of the cut-

. 15

o 10

.15

~ 10

.00

.00

FIG. 6. Energy sum rule Eq. (16) for the T x B = 8 x 6
Wilson loop [j = 1/2 (o), j = 1 ( )]. The sum in Eq. (16) is
evaluated using a variable cutoff x~. The dashed line shows
the scaled string tension c~o'~, estimated to about 5%%uo (cf. Ref.
[14]).

x'/ a

FIG. 8. Energy sum rule Eq. (16) for the T x R = 5 x 6
Wilson loop, in all three representations [j = 1/2 (o), j = 1

( ), j = 3/2 (K)]. The sum rule improves with increasing T
and R (cf. Fig. 6).
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. 00
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.30
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FIG. 9. Scaling of the energy sum rule Eq. (16) for the
fundamental representation. The open data points were taken
at P = 10 (for a 6 x 6 Wilson loop) and the solid points at
P = 14 (for an 8 x 8 loop). The cutoK z& is expressed here in
units of the physical coupling constant g.

off z& shown in Fig. 9 (z& 9.5 in lattice units, to be
compared with z~ = 16); the sum is found to diverge
linearly with x& at large cutouts. A similar behavior was
observed in four-dimensional lattice calculations in Ref.
[5], where a correction for this effect was proposed. Nev-
ertheless, scaling of the cross section is clearly supported
by data in the region z& & 1.8jg .

As described in the Introduction, the results of our
SU(2) simulation suggest a connection between confine-
ment in @CD and the physics of a dual superconductor.
In this connection, we have calculated Wilson loops W
in compact QEDs for singly and doubly charged sources
(n = 1, 2):

(U, )",

where the phase U~ for the link l defines the singly
charged representatian (i.e. , Ui is the phase used to com-
pute the Wilson action). The string tension is expected
to scale like the squared charge, as demonstrated by an
extension of the Villain approximatian used in Ref. [17]
to include multiply charged Wilson loops.

Wilson loops and plaquette correlators were measured
on a 32 lattice at P = 2.4. Mare than 10000 sweeps were
used for thermalization, and 1000 measurements were
made (90 sweeps were taken between measurements).
Variance-reduction methods similar to those used in our
SU(2) simulations were employed.

Results for the Wilson loops are given in Fig. 10. Some
data far the triply charged Wilson loap (n = 3) are also

I IG. 10. T evolution of multiply charged Wilson loops in
compact QEDs [n = 1 (o), n = 2 ( ), n = 3 (A)].

shown (useful measurements of the plaquette correlators
for n = 3 would require much larger statistics). Esti-
mates of the potential for n = 1 obtained from a simple
extrapolation of these data are consistent with results
presented in graphical form in Ref. [23].

We find that —ln (W (R, T))/T, which extrapolates to
the potential V (R) in the limit T —+ oo, scales like n to
within about 2% for all T and R that were considered,
in good agreement with the expected scaling properties
of the string tension. However, the deviation from n
scaling is about an order of magnitude larger than the
statistical errors in the data. String vibrational modes
are known to make a significant contribution to Vj in the
range of R considered here (lattice simulations [23] are
in agreement with theoretical expectations [24]). Simple
arguments [13] suggest that the vibrational term in V„
may scale like n, which could account for the small de-
viation from n scaling in the logarithms of the Wilson
loops.

The energy sum rule analogous to Eq. (16) for the
T x B = 5 x 5 loop is shown in Fig. 11. The dashed
line shows the n = 1 string tension taken from Ref. [23].
These results provide the erst direct evidence from lattice

.020

.015

LQ

.010

, oo5—

.000

x,'/ n

The analytical integrals given in Eqs. (8) and (10) are easily
adapted to the U(1) theory. The SU(2) link 'D~[U&] becomes
(U~), the Bessel function ratios I2~+i(z)/Ii(z) are replaced
by I (z)/Io(z), and det(V) becomes abs(V).

FIG. 11. Energy sum rule Eq. (16) for singly and doubly
charged sources in compact QEDs, for the T x R = 5 x 5
Wilson loop [n = 1 (o), n = 2 ( )]. The dashed line shows
the string tension o i, estimated =to about 10% iri Ref. [23].
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simulations that the Bux-tube cross section in compact
QEDs is independent of the source charge as suggested
by a simplified flux-tube model [cf. Eq. (I)], given that
o ocn.

IV. SUMMARY

The erst direct measurements of the Bux-tube cross
section as a function of representation in SU(2) lattice-
gauge theory were made. We found Ai const, to within
about 10%%uo (a rough estimate of the overall quality of our
data) for the three representations j = 1/2, 1, and 3/2.
Our results are consistent with a connection between the
string tension and cross section suggested by a simpli-
fied model of flux-tube formation, cr~ = g j(j+I)/(2A~),
given that the string tension scales like the Casimir eigen-
value j(j + 1), as observed in previous lattice studies in
both three and four dimensions (and confirmed here up
to the quartet representation). We also confirmed several
additional qualitative features of the Bux-tube picture of
color-electric conBnement. These results can be used dis-
criminate among phenomenological models of the physics
underlying confinement. For example, many models in
which confinement is due to a bulk property of the @CD
vacuum (such as a vacuum pressure) predict a sufficiently
rapid increase in As with representation as to be incom-

patible with the results obtained from our lattice simu-
lations.

We also made Bux-tube measurements in compact
QEDs, which exhibits electric confinement due to
magnetic-monopole condensation. We considered singly
and doubly charged Wilson loops. The string tension
was found to scale like the squared charge, and the Bux-
tube cross section was found to be independent of the
charge, to a good approximation. The results of our
three-dimensional SU(2) and U(1) simulations taken to-
gether lend some support, albeit indirectly, to a conjec-
ture that the dual-superconductor mechanism underlies
confinement in compact gauge theories in both three and
four dimensions. This conclusion is also supported by
the results of a recent study of dual Abrikosov vortices
in an Abelian projection of SU(2) lattice-gauge theory in
four dimensions [25]. Flux-tube measurements in four-
dimensional SU(2) gauge theory similar to those reported
here should be made in order to further explore this pos-
sibility.
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