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Heavy-quark self-energy in nonrelativistic lattice QCD
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The heavy-quark self-energy in nonrelativistic lattice @CD is calculated to O(n, ) in perturbation
theory. The heavy-quark action includes all spin-independent relativistic corrections to order v

where v is the typical heavy-quark velocity, and all spin-dependent corrections to order v . The
standard Wilson action and an improved multiplaquette action are used for the gluons. Results
for the mass renormalization, wave function renormalization, and energy shift are given; tadpole
contributions are found to be large. A tadpole improvement scheme in which all link variables are
rescaled by a mean-field factor is also studied. The effectiveness of this scheme in o8'setting the
large tadpole contributions to the heavy-quark renormalization parameters is demonstrated.

PACS number(s): 12.38.Gc, 11.15.Ha, 12.38.Bx

I. INTRODUCTION

A new approach to studying hadrons composed en-
tirely of heavy quarks, called nonrelativistic lattice quan-
tum chromodynamics (NRQCD), combines efFective field
theory and lattice techniques [1,2]. NRQCD is an ef-
fective Geld theory constructed from a set of nonrenor-
malizable, local interactions formulated on a space-time
grid; it is essentially a low-energy expansion of the Dirac
theory in terms of the expectation value v of the heavy-
quark velocity in a typical heavy-quark hadron. To fully
define lattice NRQCD, the coupling strengths of the in-
teractions appearing in the action must first be specified.
These are process and momentum independent and are
uniquely determined (for a given regulator) by requir-
ing that lattice NRQCD exactly reproduces the results
of continuum QCD at low energies.

Since the role of these couplings is to absorb the rela-
tivistic effects arising from highly ultraviolet QCD pro-
cesses, one expects that they may be computed to a good
approximation using perturbation theory, provided the
quark mass M is large enough. The simplest way to pro-
ceed is to evaluate various scattering amplitudes both in
QCD and lattice NRQCD and adjust the couplings un-
til these amplitudes agree to the desired order in v and
the QCD coupling g. In this way, one obtains coupling
coefficients which are power series in g (A), where A is

the cutoff of the effective theory. The cutoff A must be
large enough so that O(g (A)) corrections to the efFec-

tive couplings are small, making a perturbative analysis
meaningful. However, power-law divergences generally
occur, producing terms such as g2(A)A/M which render
perturbation theory useless if A is made too large.

In this paper, the lowest-order corrections to the
heavy-quark self-energy in lattice NRQCD are calculated
using weak-coupling perturbation theory. Similar to an
earlier study [3], the mass and wave function renormal-
ization parameters required to match continuum QCD
are obtained, as well as a necessary overall energy shift.
The values of these parameters will be needed in order to
extract physical information from future numerical sim-
ulations of quarkonium. In Ref. [3], only a very simple

action which included no spin effects or relativistic cor-
rections was used; here, the action formulated in Ref. [2]
which includes all spin-independent relativistic interac-
tions suppressed by v relative to the leading terms and
all spin-dependent corrections up to order v is used.
Also, a tadpole improvement scheme in which all link
variables are rescaled by a mean-Geld factor is applied in
the calculation of the heavy-quark renormalization pa-
rameters in NRQCD for the first time.

The lattice NRQCD action as determined in Ref. [2]
and its improvement using link variable renormalization
are briefIy reviewed in Sec. II. The Feynman rules for
this action are then derived in Sec. III. The self-energy
calculations are presented and discussed in Sec. IV. Tak-
ing into account the mean-field corrections introduced by
the tadpole improvement scheme, the coefIicients of g in
the heavy-quark renormalization parameters are found to
be small. Section V offers conclusions.

II. LATTICE NRQCD

Lattice simulations are performed in Euclidean space.
The Euclidean action is obtained from the Minkowski
theory by Wick rotating the contour integral of the La-
grangian over time from the real axis to the imaginary
axis in a clockwise manner. Also, the path integra-
tion over the scalar potential must be similarly Wick-
rotated at each point in space-time. One then defines
all Euclidean-space four-vectors in terms of their corre-
sponding Minkowski-space four-vectors using x4 ——x

xx(M) and xg x x(~) x~ y
for g 1 ) 2) 3)j {M)

except for the derivative operator and the gauge fields

which are defined using B4 ——6 = —iso, 6~ = B~ =
c), = —&(~) and A4 ——A = —iA(M), A, = A'(M) 4

= —A(~). With these definitions, the quantities x~
and A„(x) are then real and the Minkowski-space met-
ric tensor g„„=diag(1, —1, —1, —1) transforms into the
identity matrix in Euclidean space. The path integral
weight exp(iS) becomes exp( —S@),where S@ is the Eu-
clidean action.
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In lattice NRQCD, the heavy-quark field @(z) is de-
fi.ned on the sites of a four-dimensional hypercubic lat-
tice with spacing a and is a Pauli spinor corresponding
to the two upper components of the usual Dirac field.
The gauge-field degrees of freedom reside on the links
between the sites. With each link originating at a site
x and terminating at a site x + ai~ is associated a link
variable U„(x), which is a lattice version of the paral-
lel transport matrix between sites and is an element of
the Lie group associated with the gauge invariance of the
theory. Covariant differences are defined by

The portion of the lattice NRQCD action containing
the heavy-quark —gluon interactions may be written [2]

,),
,

( 11.) ( aHi,
2n) ( 2 )

-~.("~(*)= U. (*)~(*+-..) —~(*),
)q(z) = y(z) —U„"(x —ae„)q(z —ae„),
~(+) (~(+) + ~(—))

2

(1)

(2)
~(2) (~(2) )

2

4 4M2 (12)

where n is a positive integer, the improved kinetic energy
is given by

and the Laplacian is given by and the quark-gluon interactions are

~(2) / /(+) /( —) / /( —) /(+)
k k /~ k k

7

bH=) c~ V~,

An improved difFerence operator which reproduces the
behavior of the continuum covariant derivative through
order a is given by

~(+) ~(+) ~ ~(+)~(+)~(—)
k k k k k6

and an improved lattice Laplacian is

G 2~(2) ~(2) g ~(+)~(—)

k=1
(6)

The Hermitian and traceless field strength tensor is
best represented [4] by cloverleaf operators defined at the
sites of the lattice:

F~-(z) = ~~-(z) — T'&~-(z)-1

(n„.(*) —nt „(*)),

A„(z) = — ) U (x)Up(x+ ae )
((~,P))„„

xU (x+ ae + aep)U p(z+ aep),

5 1
F~-(x)=

3 F~-(x) —
6 [U~(z) F~-(z + ae~) U„'(z)

+U~t (x —ae„)F~„(z —ae~) U„(x —ae~)
—(p, 4-+ v)].

w't" ((o' &)) = ((p &) (i' —V) ( p —&) (—» p))—for
p g v. This representation is chosen since it transforms
as the (1,0) g3 (0, 1) six-dimensional reducible represen-
tation of the hypercubic group, similar to the contin-
uurn case. The chromoelectric and chromomagnetic fields
in Euclidean space are defined by E"(x) = Fi,4(z)—F4&(z) and B"(z) = —ze&&~F&~(z), where ei22 = 1.
An improved cloverleaf field strength tensor may be de-
fined by

where

(~(2) )
2

SM3

(~(+) . E E . ~(+))
SM2

V = — o. . (A(+) x E —E x A(+)),
SM2

g
V4 ——— cr - B,2M

V. = — ~, (a('), ~.a),SM3

V, = — ~ (a('), ~. (a(+) xE—Exa(+))),
64M4

Xg
V7 ——— cr-Ex E.SM3

(i4)

(2o)

St- = a ) l:G, (z),

where

1
&~(z) = ) Tr [2 —O„„(z)—At „(z)]"' p~-

(22)

is the usual single-plaquette lattice gauge-field La-
grangian density. An improved gluonic action may be
written

The parameter n was introduced in Ref. [1] to remove
instabilities in the evolution of the quark Green s func-
tion which occur when the temporal spacing is not small
enough to accurately treat the high-momentum modes,
and the coefBcients c~ are functions of aM and the cou-
pling g in general. At the tree level, their values are all
unity. Note that the three-vector A(+) refers to the spa-
tial components of the covariant four-vector L~(, while
E and B refer to the components E" and B", respec-
tively.

The standard Euclidean gluon action is given by
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Sa =a'& (
—ga(e) ——Cap' ~(a)), (23)

is defined in terms of the link variables using

where 8G is comprised of 2 x 2 plaquette operators(2x2)

and is given by

a„
Ue(a)—:exp iagAe (e + —e„P (28)

32G g PW~

(24)

where (e„) = 8„. The gauge-invariant path integral
measure must then be expressed in terms of the lattice
gluon field [5]:

with

A(„)(x) = — ) U (x)U (x+ae )'
~(-.p)}..

x Up (z+ 2ae )Up (z+ 2ae +aep)
xU (x+2ae +2aep)U (x+ae +2aep)
xU p(x+2aep)U p(x+aep), (25)

where

[1&U] = exp (—S,) dA„(x)
xbp,

1 2[1 —cosagA„(z+ 2e„)]

(29)

(3o)

and {(a,P))~ = {(p,v), (v, —p), (—p, , —v), (—v, p,)) for
)M g v. Presently, light quarks are neglected.

The lattice NRQCD action is formulated in terms of
the link variables U~(x) in order to preserve local gauge
invariance, and as the lattice spacing a becomes small, it
must tend to the action of the continuum theory. This
can be shown at tree level in perturbation theory using
the following relationship between the link variables and
the gluon field G„(x) of the continuum theory:

a„
U~(x)—:exp i agA„x+ —e& 1 + iagG~(x), (26)P

where the lattice gluon field A„(x) = G~(x) + O(a2).
Beyond the tree level, however, one observes that large
renormalizations are necessary to match the small a limit
of the lattice action to the continuum form. These large
renormalizations stem mainly from the higher-order pow-
ers of agA~ which occur in the expansion of U&. Such
terms generate ultraviolet divergences proportional to
powers of a and so are suppressed only by powers of
g and not a.

A simple gauge-invariant procedure for improving the
lattice NRQCD action by reducing the magnitudes of the
renormalizations needed to reproduce the continuum the-
ory has been suggested: replace all link variables U~ that
appear in the lattice action by U~/uo, where uo is a pa-
rameter representing the mean value of the link [2]. A
gauge-invariant definition of this mean-Geld parameter
may be written in terms of the mean plaquette:

and abc jfbed Ad To oidei g2
P P' )

- 2

In a lattice gauge theory, the space of gauge transfor-
mations is finite so that gauge fixing is not necessary.
However, weak-coupling perturbation theory can only be
applied if one fixes the gauge and extends the integra-
tion range of A~ (z) using the familiar Faddeev-Popov
technique [6]. Hence, a gauge-fixing term SGF must be
added to the NRQCD action. The Faddeev-Popov ghost
action can then be determined &om SGF [7].

The Feynman rules are determined by expanding the
total action in terms of the coupling g and Fourier trans-
forming into momentum space. The coupling coeKcients
are written cz ——1+g c +O(g ). Rewriting the heavy-
quark —gluon action as

S'"' = ').&'(~)G(~. *)4(*)

then

d4I a4I '
S'"' = " " " @t(k')G(kg. k)@(k)

(2vr) 4 (2~)4

uo —(-,' TrUpi, )
'~'. (27)

where the Fourier transforms are defined on an infinite
lattice by

The parameter uo may be calculated. using perturbation
theory or may be measured in a simulation in order to
include nonperturbative eAects.

III. THE FEYNMAN RULES

d4k
g(x) = e'" *g(k),

(~„((.g. (2~)'

G(k';k) = a') e '" "+'"'*G(y;x).

(34)

To facilitate the perturbative evaluation of scattering
amplitudes, a lattice gluon field A~(x) = g& i A„(x)T

The perturbative expansion of G(k', k) in terms of the
gluon fields takes the general form:
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G(k';k) = (27r) b( (k' —k) a ~(( )(k', k)

+) f d(k', k;q, ) A" (q, )
VC

x(~ ) (k', k; q~, v~, g~)

+ ) f d(k', k;q, , qm) 4;(q, )A '(q~)
D1 Mg 61 b2

where

xa(~ (k', k;qg, vg, t)g, qz, v2, b2) + . , (36)

(c)
d(k', k; qg, . . . , q„)

7 4

) b(4)
.".(2vr)4i=1

k' —k+) q;,
1=1

(37)

n()
0

k k

and A„(q) is the Fsurier transform of A (T) defined by

g4
(38)

d4p
)-'.))(k';k) =

4 A( i(k';p) B&p&(p;k), (39)

Thus, the Feynman rules follow easily from the (dimen-

sionless) ( -' functions.

One of the simplest ways to compute the functions (-'
is to erst calculate the Fourier transforms of the basic op-
erators which comprise G(k'; k) and then combine these
Fourier transforms appropriately. The perturbative ex-
pansion of the transform of each such operator will take
the same general form as that for G(k'; k) given above.
Of course, this general form also applies to transform
products. Let

2n- —1
f rz(k) r4(k) r2(k)'

nMa 3nMa 2n2M2a2) (42)

with r„(k) = P, ~
sin" (k, a/2) .

In the Feynman gauge, the lowest-order gluon propa-
gator, shown in Fig. 1(b), is given by

'D„' (k; A) = a b 'b„D„(k;A), (43)

FIG. 1. Various Feynman diagram elements. A curly line
represents a gluon; a double solid line indicates a heavy quark.

(a) Heavy-quark propagator; (b) gluon propagator; (c) low-

est-order vertices involving a heavy-quark line and r gluons;

(d) the O(g ) counterterm from link variable renormalization.

(k', k; (q(, v(, k(), ,)"
) -((d)
8=0

S

k', k' + ) q), (q;, v;, b, );.
)

then the product rule for the ( functions may be ex-
pressed as

where

D (k;A) = ".
~
&---'(", ) ~

——cos
~ ) sin (k a) + a A

)&=1 )
(44)

(. .)
(

x(~ ' k —) q, k; (q~, v~, b~ j,". ,+~ . (40)
A small gluon mass A has been introduced to provide an
infrared cutoff. If the simple gluon action in Eq. (21) is
used, the lowest-order gluon propagator is then

Using this rule and the additivity of the ( functions,

one can quickly build up the (-' functions. The Fourier
transforms of all the necessary basic operators are pre-
sented in the Appendix.

The lowest-order heavy-quark propagator, shown in
Fig. 1(a), is given by

'D '„(k; A) = a b b„„D(k;A),

where

D(k;A) = 4/ ) sin /+a A
k a

(45)

Q*~p (k) = ab*' b p Q (k), (41)

where i, j are color indices and n, P are spin indices, and

The lowest-order vertex factors corresponding to in-
teractions involving a heavy-quark line and one to three
gluons, shown in Fig. 1(c), may be written
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Vr(k', rr, i k, P j q, , v, , b ) = -g(2e) b' (k'-k+q ) ) v p T,,' r,
' ' (k', k q, ,v ), (47)

V (e'k, ,rr; ikjj, j;q, , v, , b, ;q, , vr, br) = —eg (2e') b (k' —k+qr+qr)

x ) v"p ) (Te Te -bi-~ (k', k;q „v, ;q, ,v, ),
z2@=1 V CPS

(48)

Ve (k', rr, i; k, )qj; qrv, b, ;, qe, vebr; q, ev, ebe), =, —e'g (2rr) b (k' —k+ qr + pe+ pe)
4

x ) rr"p ) (T T T ( (k', k;q, ,v, ;q, ,v, ;q, ,v, )+OP
p, =1

+6q~ Tr T T T - k ) k) /~1 )V~1 ) /~2)v~~) /~3,

(49)

where 7 „ is the group of permutations of r elements, cr are the standard Pauli spin matrices for k = 1, 2, 3 and o.4 is
a 2 x 2 identity matrix in spin space. The (& functions are obtained from the (& functions by neglecting the O(g )
corrections to the c~ coupling coe%cients. These corrections show up in higher-order counterterms. Link variable
renormalization in perturbation theory leads to the addition of the following order g2 counterterm, shown in Fig. 1(d):

2

V„,(k', rr, r;k, (q, j) = —vei i —(2e) bi i(k' —k)b pb;, e
a

( r2(k) r4(k) r2(k) ) " ( r2(k)
nMa 3nMa 2nMa) q Ma )

6r2(k) 5r2(k) ) f r.2(k) r4(k) K2(k)
Msas M a ) ( nMa 3nMa 2n M a2)

+ 1+K2(k)') ( 7
M a ) (2Ma

4r2(k) 4K4(k) 3r2(k) 2r2(k)
3Ma 3Ma nM2a2 nM2a2 )

(50)

writing uo = 1 + uo g2 + O(g4).
The goal here is to determine the numerical values of

the coupling coefBcients c~ and dz and various renormal-
ization factors for given. values of the input parameters
needed in lattice simulations: namely, the bare lattice
coupling g and the bare heavy-quark mass aM. Since
these couplings and renormalization factors essentially
absorb the relativistic effects arising from highly ultravi-
olet processes, one expects that they may be calculated to
a good approximation using weak-coupling perturbation
theory. Using the above Feynman rules, the development
of perturbative expansions for these quantities in terms
of g is straightforward. However, there is no compelling
reason to use the bare lattice coupling for the expansion
parameter. In fact, recent work [8] suggests that g is a
very poor choice of expansion parameter and that much
better perturbation series result if one reexpresses the
series in terms of a renormalized coupling g„defined in
terms of some physical quantity and which runs with the
relevant length scale. This is standard practice in contin-
uum perturbation theory. Of course, if calculations could
be carried out to all orders, then the choice of expansion
parameter would be immaterial.

To define a renormalized expansion parameter, a def-
inition of the running coupling g (j(b) and a procedure
for determining the relevant mass scale p must be given.
A renormalization scheme [8] which defines the coupling
such that the heavy-quark potential has no g„or higher-
order corrections is particularly attractive. This scheme
is physically motivated and produces O(g2) perturbative
results in good agreement with simulation results for sev-
eral different quantities. By absorbing the higher-order
contributions to the heavy-quark potential into g„, it is
hoped that higher-order contributions in other quantities
will be small. The renormalized coupling g„()(b) is then
given by the usual two-loop formula with A = 46.08A~ &.

The scale p is determined by averaging lnq over the
one-loop process of interest, where q is the loop momen-
tum. Since the heavy-quark parameters calculated here
are ultraviolet divergent quantities, one expects p, 2r/a.
Here, g„shall be used to denote the value g (p,) of the
renormalized coupling at the appropriate scale. For ex-
ample, at P = 5.7, g, (z/a) = 1.9 and at P = 6.0,
g„(2T/a) 1.7. Alternatively, g„could simply be added
to the list of parameters which must be fixed in any sim-
ulation by reference to experiment.
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IV. THE HEAVV-QUAR, K SELP-ENER.GY'

The heavy-quark self-energy Z(p) may be defined by
writing the inverse quark propagator g (p) in the form

a& '(p)*.'p = @ '(p)~*'~-O —aZ."p(p) (51)

where i, j are color indices and n, P are spin indices. At
order g and v and neglecting link variable renormaliza-
tion for the moment, this self-energy is given by

Z"p(p) = lim g'h*'b p(Z (p; A) + Z (p; A)), (52)
A~O

where

4 4
Z&"l(p; A)= -a' ) q(p —k)3 (2x)4

Pi~=&

xD„(k;A).„q" (p-k, p;k, v)], (53)

corresponding to the diagram in Fig. 2(a), and

d4k
Zl»(p; A) = —-a') D„(k; A)3 - (27r)4

x(- (p, p; k, v; —k, v), (54)

(- l (k', k; k —k', v) = s„g- l (k, k'; k' —k, v), (55)

corresponding to the tadpole diagram in Fig. 2(b). Note
that s„= (—1, —1, —1, 1). The following properties of
the g functions are used to obtain the above results:

conjugate under p4 ~ —p4.
In order to investigate Zl+l(p; A) and Zl+l(p; A) in the

neighborhood of p = 0, the integrals in Eqs. (53) and
(54) must first be evaluated. The usual initial step in
the determination of such integrals is to use the change
of variables z = exp(kik4a) to transform the integral
over k4 into a contour integral along the ~z~ = 1 unit cir-
cle. Unfortunately, the complicated pole structure of the
vertex factors near z = 0 makes diKcult the evaluation
of this contour integral by the residue theory. Because
of this fact, the simplest procedure, approximating the
four-dimensional integral by an appropriate summation
as described below, is preferred.

Because the integrand in Eq. (54) is a periodic analytic
function of the real variables k~ with period 2' when
A ) 0, Zl &(p; A) is numerically w'ell approximated by
the discrete sum

4

, ) ) D„(k;A)
A:

xgl l
(p, p;k, v; —k, v).

In this sum, ak& ——27m&/% where the n& take all in-
teger values satisfying —1V/2 & n& & K/2 for integral
N. The error resulting kom this approximation dimin-
ishes exponentially fast as N ~ oo. However, the rate
of decay of this error is directly proportional to the mass
gap aA, creating difBculties when aA is small. Fortu-
nately, the decay rate of this error can be dramatically
increased by making the following change of variables [9]:
k~ —+ k~ —n sin(k„) with 0 & n & 1. This transformation
maintains periodicity and effectively increases the mass
gap so that the approximation

(p, p; k, v; —k, v) = 0 (j = 1, 2, 3). (56) 4
aZl~l (p; A) = —— ) ) g(k)D (s(k); A)

The self-energy is invariant under interchange of any two
spatial components p, ++ p~ and spatial reflections pz m
—pz, for i, j = 1, 2, 3, and transforms into its complex x(- (p, p; s(k), v; —s(k), v), (58)

FIG. 2. Two Feynman diagrams which contribute to the
heavy-quark self-energy. A curly line denotes a gluon; a dou-
ble solid line denotes a heavy quark.

where s„(k) = k~ —n sin(k~) and g(k) = g„ i [1—
ncos(k„)], converges much more quickly as N is in-
creased. The parameter o. should be chosen so as to
maximize the efFective mass gap: n = sech(u), where u
satisfies aA = u —tanh(u).

The above procedure is sufhcient for evaluating
Zl+l(p; A) as long as the gluon mass aA is not set too
small. However, the singularity in the quark propa-
gator is problematical when evaluating Z~ l(p; A) near
p = 0. To circumvent this, the contour for the ak4 inte-
gral, which runs along the real axis from —vr to m except
near the singularity, can be continuously deformed into a
contour consisting of three line segments passing through
the points —a —+ —vr+iaA/2 ~ vr+iaA/2 ~ vr. This con-
tour is chosen for the following two reasons: for p 0,
the distance of closest approach to any singularity is a
maximum; and the contributions from the segments of
the contour running parallel to the imaginary axis cancel
due to the periodicity of the integrand. Zl l(p 0; A)
can then be accurately obtained using the approximation
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4

-~1"l(.-0;A) = —,):):.(k)~(p — (k))D. ( (k);A) .~.'-' (.— (k), ', (k) -),
P, z&:1

(59)

E(g;A) ) ggt+g~ ~lpga A ) (aA)
A~0+

m=O
(60)

where the coefBcient bo is known from the contin-
uum theory since the infrared divergence is insensitive
to the ultraviolet regulator. If one neglects the 6(~)

terms for m & 0, then polynomial extrapolation us-
ing Neville's algorithm may be applied to fo(p; A)

Z(p; A) —bo lna2A . The extrapolation can be im-
proved by applying Neville's algorithm to the function

fi(p; A) = fo(p; A) —aAB1 ~1E(p; A) + 2bI) which has no
aA lna A term. Polynomial extrapolation of f2(p; A) =
fi (p; A) + (a A /2) 81 &1

Z (p; A) +bo, which does not suf-

fer &om a A lna A and aAlna A effects, is another
method. Since the gluon mass appears only in the gluon
propagator, the derivatives of K(p; A) with respect to aA

can be exactly and eKciently taken. In practice, polyno-
mial extrapolation of all three functions fo(p; A), fi (p; A),
and f2(p; A) is done using between six and twelve values
of the gluon mass lying in the range 0.15 & aA & 0.8,
and agreement among the results is verified. In calculat-
ing Zl ) (p; A —+ 0), one finds that only even powers of aA
occur in its asymptotic expansion. In this case, the accu-
racy of the extrapolation can be increased by explicitly
excluding the odd powers in the extrapolating polyno-
mial. Neville's algorithm is then applied to the functions

fp(p; A), f, (p; A) = fo(p; A) —a A o)( 2p2)Z(p; A) + bo

and f2(p; A) = fi(p; A) + (a A /2)81, &, lZ(p; A) + b(I /2
Uncertainties in the extrapolated values are estimated by
examining the spread of values in the Neville table and
by comparing the results obtained using different sets of
gluon mass values and using the different functions de-
scribed above.

The small v expansion of the zeroth-order heavy-quark
inverse propagator, keeping only those terms which are

where r„(k) = k~ —o. sin(k~) + zaA84 ~/2 and ak„
2zrn„/N with the n„ taking all integer values satisfy-
ing N/—2 & n~ & 1V/2. Also, n = sech(y) and
aA/2 —y —tanh(y). In practice, the approximations
in Eqs. (58) and (59) are applied using increasing values
of N until sufhcient convergence is observed; typically,
N = 20 is adequate. Note that for values of p satisfying
p = p„=p„ the number of terms which must be inde-
pendently evaluated in these sums may be dramatically
reduced by exploiting the invariance of the summands
under interchange of any two spatial components of k.

The evaluation of Zl 1 (p 0; A) and Zl l (p 0; A) us-

ing Eqs. (59) and (58) is feasible only if the gluon mass
A is not set too small. However, the limits of these func-
tions as A ~ 0 are actually required, necessitating the use
of an extrapolation procedure. The expected behavior of
these quantities as A tends to zero may be expressed as
an asymptotic expansion of the form

suppressed by no more than v relative to the leading
terms, is given by

(62)

where tvo(p) denotes the value of p4 at the singularity
of the zeroth-order propagator. This dispersion relation
agrees exactly with the continuum form from full QCD
to this order in v.

In the modified minimal subtraction (MS) renormal-
ization scheme, the inverse propagator to order g for
full QCD in continuum Minkowski space has the form

where

+cont

(I +cnntg ) [g M(I + ~cantg )

1
[
—4+in(M /)(t ) +2 ln(M /A ) (64)

, [4+31n(p'/M') . (65)

Note that p is the mass scale introduced by dimensional
regularization and A is the gluon mass regulating the in-
frared divergence. Thus, the sole effect of the order g
corrections is to renormalize the quark field and mass. If
lattice NRQCD is to reproduce the low-energy physical
predictions of full QCD, then the order g corrections to
the heavy-quark propagator in lattice NRQCD must also
do no more than renormalize the heavy-quark field and
mass to the appropriate order in v.

Explicit calculation shows that the heavy-quark self-
energy in lattice NRQCD has a small v representation of
the form

p 2 g 2

aE(g) = g' (Ho + ~g4aB, + B~ + ),2Ma (66)

retaining only radiative corrections to the lowest-order
terms in v as specified by the power counting rules of
Ref. [2]. The on-mass-shell quark now satisfies a disper-
sion relation given by

too(p) = z
~

Ao + (I+g Oi —g 02) +
p'

a 2M

(67)

Defining M„= ZmM, where Zm = 1 —g Og + g 02 is
the mass renormalization factor, and p4 ——p4 + ig Ao/a,
the inverse propagator for small v may be written

(p 2
)

2 a4
(p 2

)
2 a4

8M a 8M a2

recalling that p4 is of order v . The on-mass-shell quark
then satisfies the dispersion relation
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( p2a2
O-'(p) =&~ I'p + +2Ma )' (68)

where Zy = 1 —g2(Bp + Oj) is the wave function renor-
malization parameter. Thus, the addition of a counter-
term which shifts the energy by an overall amount g Bp/a
is needed in order to match the low-energy physical pre-
dictions of lattice NRQCD with those of @CD. Alterna-
tively, one could simply shift the energies obtained in sim-
ulations using the action in Eq. 11 by an amount g, Bp/a
for each heavy quark.

A more convenient set of renormalization parameters
may be obtained. by defi.ning Zy ——1—g C, Z~ = 1+g B,
and p4 ——p4 —ig A/a. The parameters A, B, and C can
then be calculated using A = —00, B' = 02 —Oq, and C =
Bp + Ay where Ap ——aE(0)/g, Aq ———iaB„, Z(0)/g
and 02 ——2Ma OP2 2 E(0)/g . Because of the complexity
of the NRQCD vertex factors, the derivatives in these ex-
pressions must be taken numerically. Four- and five-point
formulas are applied in the differentiation; only points
which satisfy p = p„= p are used since the self-energy
can be computed much more quickly at such points.

Results for the energy shift parameter A and the Inass
renormalization parameter B are presented in Tables I
and II, respectively. Both A and B are gauge invari-
ant and infrared fi.nite. The wave function renormal-
ization parameter C has an infrared divergence of the

form —(lna A )/6m as the gluon mass is taken to zero.
This divergence is cancelled in physical quantities by an
infrared divergence occurring in the quark-gluon vertex
correction. Values for the infrared-finite portion of C
are given in Table III. In these tables, the contribu-
tions from the quark-gluon loop and tadpole diagrams
are given separately. Results using the simple and the
improved gluonic actions are presented. Values for the
stability parameter n are chosen such that the singular-
ity in the quark propagator Q(p) falls on the same side of
the real axis in the complex p4 plane for all allowed values
of p and tends to move farther away from this real axis
as ~p~ increases to its allowed maximum. For aM & 2, n
is set to unity; for 1 ( aM ( 2, n = 2 is used. These
values of n ensure the stability of the evolution equation
for the quark Green's function.

Contributions from the quark-gluon loop graph to the
energy shift parameter A are small and decrease in mag-
nitude as aM decreases. At large aM, there is little dif-
ference between the shifts obtained using the simple and
improved gluonic actions. The tadpole contributions are
large and contain power-law divergences which grow in
magnitude as aM is decreased. Since high-momentum
modes are more strongly damped in the improved gluon
propagator, the ultraviolet-divergent tadpole terms are
appreciably smaller in the case of the improved gluon
action. These total downward shifts in the energy are

TABLE I. The energy shift parameter A for various values of the product of the bare heavy-quark
mass M and the lattice spacing a. The contribution to A from the quark-gluon loop diagram of
Fig. 2(a) is denoted by A, (A) for the improved gluon action of Eq. (23) and by A, (A) for the
simple gluon action of Eq. (21). The contribution from the tadpole diagram of Fig. 2(b) is denoted
by A, (B) and A, (B) for the improved and simple gluon actions, respectively. For aM & 2, the
stability parameter n is set to unity; for 1 & aM & 2, n = 2 is used. Extrapolation uncertainties
are no larger than +0.0001.

aM
5.00
4.75
4.50
4.25
4.00
3.75
3.50
3.25
3.00
2.75
2.50
2.25
2.00

A, (A)
0.0417
0.0407
0.0397
0.0385
0.0372
0.0358
0.0342
0.0325
0.0306
0.0284
0.0261
0.0234
0.0206

A, (B)
0.1361
0.1387
0.1415
0.1446
0.1480
0.1519
0.1562
0.1611
0.1667
0.1732
0.1807
0.1896
0.2002

A, (A)
0.0414
0.0403
0.0391
0.0377
0.0363
0.0347
0.0329
0.0309
0.0288
0.0263
0.0237
0.0208
0.0176

A. (B)
0.1688
0.1719
0.1754
0.1793
0.1835
0.1883
0.1937
0.1998
0.2067
0.2147
0.2241
0.2351
0.2482

1.90
1.80
1.70
1.60
1.50
1.40
1.30
1.20
1 ~ 10
1.00

0.0199
0.0185
0.0172
0.0158
0.0143
0.0129
0.0114
0.0100
0.0086
0.0075

0.2046
0.2101
0.2160
0.2226
0.2300
0.2383
0.2476
0.2584
0.2708
0.2850

0.0168
0.0154
0.0139
0.0124
0.0108
0.0092
0.0076
0.0061
0.0047
0.0036

0.2536
0.2603
0.2677
0.2759
0.2850
0.2952
0.3068
0.3201
0.3354
0.3530
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nearly the same as those obtained in Ref. [3] which used
a much simpler heavy-quark action. Calculations of A
using cz ——0 for j = 3, 4, 5, 6, 7 reveal that contributions
to this parameter from the spin-dependent interactions
are small.

Contributions to the mass renormalization parameter
B from the quark-gluon loop diagram are very small and
do not vary proportionately with aM. For all values of
aM, there is little diQ'erence between the results obtained
using the simple and the improved gluon actions. The
tadpole contributions are again large, growing in mag-
nitude as aM is decreased. The tadpole terms in the
case of the improved action are slightly smaller and con-
tributions to this parameter from the spin-dependent in-
teractions are small. The total values for B obtained
here are appreciably larger than the order g corrections
to the mass renormalization calculated in Ref. [3] (see
Ref. [10]).

The tadpole diagrams do not contribute to the heavy-
quark wave function renormalization parameter C. The
values for the infrared-finite portion of C are very small
and become increasingly negative as aM is decreased.
There is little difference between the results obtained us-

ing the simple and the improved gluonic actions. The
magnitudes of the wave function renormalization correc-
tions are much smaller than those obtained in'. Ref. [3]
(see Ref. [10]).

The contributions to the energy shift and mass renor-
malization parameters from the link variable renormal-
ization counterterm are given by

»=us 11+(2) ( 7
2Ma) '

bB =uo(2) f 2

(3 4nMa M a ) (70)

No change in the wave function renormalization occurs.
As previously stated, the purpose of link variable renor-
malization is to enhance the similarities between lattice
and continuum gauge-field operators, especially those de-
pending on the cloverleaf electric and magnetic fields.
Consequently, the counterterms introduced by this renor-
malization ofFset the large tadpole contributions which
commonly afIIict lattice perturbation theory, oÃering a
means of improving its convergence. As shown in Ta-
ble IV, the order g corrections to the heavy-quark renor-
malization parameters are small once the mean-Beld cor-
rections are taken into account. In this table, the value

uo ———0.083 obtained by evaluating Eq. (27) in pertur-
bation theory for the simple gluonic action is used. For
g„2 and a 1 GeV, the 6 quark receives approxi-
mately a l%%uo lowest-order correction to its mass and the
c quark receives about a 7/q mass correction.

TABLE II. The heavy-quark mass renormalization parameter B for various values of the product
of the bare heavy-quark mass M and the lattice spacing a. The contribution to B from the
quark-gluon loop diagram of Fig. 2(a) is denoted by B,(A) for the improved gluon action of Eq. (23)
and by B,(A) for the simple gluon action of Eq. (21). The contribution from the tadpole diagram
of Fig. 2(b) is denoted by B,(B) and B,(B) for the improved and simple gluon actions, respectively.
For aM ) 2, the stability parameter n is set to unity; for 1 ( aM ( 2, n = 2 is used. Extrapolation
uncertainties are no larger than +0.0001 for the tadpole values and +0.0002 for the contributions
from the quark-gluon loop diagram.

aM
5.00
4.75
4.50
4.25
4.00
3.75
3.50
3.25
3.00
2.75
2.50
2.25
2.00

B,(A)
—0.0024
—0.0016
—0.0008

0.0000
0.0009
0.0018
0.0028
0.0039
0.0049
0.0059
0.0069
0.0077
0.0080

B'(B)
0.0556
0.0568
0.0582
0.0599
0.0619
0.0642
0.0670
0.0704
0.0747
0.0801
0.0871
0.0963
0.1091

B.(A)
—0.0030
—0.0021
—0.0011
—0.0002

0.0008
0.0019
0.0030
0.0042
0.0054
0.0065
0.0076
0.0085
0.0089

B (B)
0.0697
0.0712
0.0728
0.0748
0.0771
0.0798
0.0832
0.0872
0.0923
0.0987
0.1070
0.1181
0.1334

1.90
1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00

0.0076
0.0077
0.0077
0.0076
0.0073
0.0068
0.0060
0.0048
0.0032
0.0010

0.1175
0.1248
0.1332
0.1431
0.1550
0.1692
0.1868
0 ~ 2089
0.2373
0.2752

0.0083
0.0084
0.0084
0.0083
0.0079
0.0073
0.0064
0.0051
0.0032
0.0007

0.1438
0.1525
0.1626
0.1746
0.1889
0.2061
0.2274
0.2541
0.2885
0.3345
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TABLE III. The infrared-Bnite portion of the heavy-quark
wave function renormalization parameter C for various values
of the product of the bare heavy-quark mass M and the lattice
spacing a. The infrared-finite contribution to C from the
quark-gluon loop diagram of Fig. 2(a) is denoted by C, for the
improved gluon action of Eq. (23) and by C, for the simple
gluon action of Eq. (21). The tadpole diagram of Fig. 2(b)
does not contribute to this parameter. For aM & 2, the
stability parameter n is set to unity; for 1 & aM ( 2, n = 2 is
used. Extrapolation uncertainties are no larger than +0.0001.

aM
5.00
4.75
4.50
4.25
4.00
3.75
3.50
3.25
3.00
2.75
2.50
2.25
2.00

C,
0.0032
0.0018
0.0002

—0.0015
—0.0033
—0.0054
—0.0077
—0.0102
—0.0131
—0.0163
—0.0199
—0.0239
—0.0285

C,
0.0029
0.0014

—0.0004
—0.0023
—0.0044
—0.0067
—0.0092
—0.0120
—0.0152
—0.0187
—0.0226
—0.0270
—0.0319

1.90
1.80
1.70
1.60
1.50
1.40
1.30
1.20
1.10
1.00

—0.0300
—0.0322
—0.0345
—0.0369
—0.0395
—0.0422
—0.0450
—0.0480
—0.0511
—0.0542

—0.0335
—0.0358
—0.0382
—0.0408
—0.0435
—0.0464
—0.0493
—0.0524
—0.0555
—0.0587

V. CONCLUSION

Lattice NRQCD is an efFective-field theory which
promises to make possible high-precision numerical stud-
ies of heavy-quark systems. It is essentially a low-energy
expansion of QCD in terms of the mean velocity of the
heavy quarks in a typical heavy-quark hadron. To fully
define lattice NRQCD, the coupling strengths of its in-
teractions must be specified. These are determined by
requiring that lattice NRQCD reproduces the low-energy
physical results of continuum QCD. Since the role of
these couplings is to absorb the relativistic effects arising
from highly ultraviolet QCD processes, one expects that
they may be computed to a good approximation using
perturbation theory, provided the quark mass M is large
enough.

The heavy-quark self-energy in nonrelativistic lattice

aM
5.00
4.00
3.00
2.00
1.70
1.30
1.00

A,
0.210
0.220
0.236
0.266
0.282
0.314
0.357

A,
0.069
0.064
0.056
0.038
0.028
0.008

—0.017

Bs
0.067
0.078
0.098
0.142
0 ~ 171
0.234
0.335

B,
0.006
0.012
0.022
0.035
0.036
0.039
0.041

QCD was calculated to O(o., ) in perturbation theory.
An action which includes all spin-independent relativis-
tic corrections to order v and all spin-dependent correc-
tions to order v was used. The standard Wilson action
and an improved multi-plaquette action were used for the
gluons. Results for the mass and wave function renormal-
ization and an overall energy shift were obtained. Con-
tributions from the quark-gluon loop graph were found
to be very small; however, the tadpole contributions were
large. The values of these parameters will be needed in
future numerical simulations of quarkonium. The effec-
tive couplings will also be needed; calculation of these
quantities is in progress.

A tadpole improvement scheme in which all link vari-
ables are rescaled by a mean-field factor uo was also
applied in perturbation theory. The main purpose of
this link variable renormalization was to enhance the
similarities between lattice and continuum gauge-Beld
operators, especially those depending on the cloverleaf
electric and magnetic fields. An important consequence
of this scheme was a significant offsetting of the large
tadpole contributions to the heavy-quark renormaliza-
tion parameters. Using a perturbative approximation
to the mean plaquette for uo, the tadpole-improved
heavy-quark renormalization parameters were shown to
be small. This scheme offers a means of improving the
convergence properties of lattice perturbation theory.
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TABLE IV. Tadpole improvement of the energy shift pa-
rameter A and mass renormalization parameter B for various
values of the product of the bare mass M and the lattice spac--
ing a. Results are given for the simple gluon action only. The
renormalization parameters without tadpole improvement are
denoted by A, and B; the improved parameters are denoted
by A, and B,. The perturbative value uo = —0.083 is used(2)

for the mean-field parameter.

APPENDIX: FOURIER TRANSFORMS

The momentum-space representations of various components of the lattice NRQCD action are presented in this
Appendix. Below, ( functions are introduced and are defined by

(~) (&) b1 b„(k 1 ~j 91)+1&l1 j j gv')+v'&b7') g C~ (k r kj Ql&+ij j @war ) (Al)
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Also note that b„ is an "anti-Kronecker delta function" and is trivial when p = v and unity otherwise.
In momentum space, the link variable becomes

Ua(k';k)= a ) e '~ "~' e' " exp e'agAa(a+ —e„)

= (qaj'6 ~(k' —kje' .+ "~~'+eag J g(k' k. q)e* ~" +""~~'A (q)

G
d(k', k; q), q2)e' "«+"«A„(q))A„(q2)

ia g
6

d(k', k; q&, q2, qs)e' "«+" 'A„(q&)A„(q2)A„(q&) + . (A2)

The momentum-space representation of L„may be wntten(+)

(~) (k', k) = i sin —(k' + k)„

(~ i(~) (k', k; q), vt) = iacos —(k'+ k)„b'„„,,+(+) 2

2

(~ i(~) (k', k; q), vt, q2, v2) = i s—in ——(k' + k)„b„,b„ (A3)

3

(p) (k k; qy vt ,'q2 v2 qs, vs) = E —cos —(k + k'))k b)k b)k

The improved symmetric derivative has the momentum-space representation

(~) (k', k) = i
~

—sin —(k'+ k)„——sin a(k'+ k)„

(. -(+) (k, k;q). ,vt. ) = i —b„, , 4cos —(k'+ k)„cos a(k'—+k)„]cos~ —q,„~

C -(+)( k'q). vt. ;q2, v2) = ia b„, ,b„, , ——sin —(k'+ k)„+—sin a(k'+ k)„cos~ q)„~ cos~ —q2„—
~

G+—cos a(k'+ k)~ sin —(qq —qz)~

(A4)

( '-(~) (k', k; q), vt, q2, v2, qs, vs) = ia b„,„,b„„,b« „, ——cos —(k'+ k)«+ —c lao(sk'+k)„] cos —(k' —k)„
2 P

1 f, 1 1
+—cos a

~

k'+ k+ —q) ——qs
~6 (, 2 2

The Fourier transform of the lattice Laplacian may be written

a
cos( —q,„)2 )
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3

(~, ~

(,&(k', k) = —4) sin —(k'+ k)~

(,~
(k', k; ql, vl) = —2a sin —(k' + k)» b4,»,

(~', ~

(,)(k', k; q„v, ; q2, v2) = -a' cos —(k' + k)„, b „„,b4, „
(A5)

3

&( ~
(k, k; ql, vl, q2, v2, q3,v3) = —sin —(k + k), &„„,b „,&4

Similarly, for the improved Laplacian,

(, -(,&(k', k) = —4) sin —(k'+ k)z + —sin —(k + k)~
1 . 4 a
3 4

(, -(,&(k', k;ql, vl) = —b4 „, —8sin —(k'+ k), + sin a(k'+k)„, cos
3 '

( 2 . . (2 ))

(, - (,&

(k', k; ql, vl, q2, v2) = a b, ,b4 „, ——cos —(k' + k)„, + —cos a(k'+k)„, cos
~

—ql„, ~

cos
~

—q2„,8 2 "' 3 - "'-
q2 "') ~2

(A6)

~ /
-a——sin a(k'+k)„, sin —(ql —q2)„,

(. »(„(k', k;qlqvliq2qv2qq3qv3) = a'b „.,b.„.,b4,., —»n —(k'+ k), ——»n a~ k'+k+ ql q3— (a
cos

I q2 )
1 a——sin'a(k +k)„, cos —(k —k)„,18 '- 2

Another important operator is the cloverleaf field strength tensor. Its Fourier transform is given by

F„„(k';k)=a ) e '~" "~' F„„(x)

= —,—):f d(q' g q) f." (qI &'.(q) —f.".(q) &'.(q) .T'
b

+~g ):f d(&', &; ql, q2) 7"T"
(fp (ql q2) &".(q|)&.."(q,2)

bib~

f (ql q2)Ap (ql)A'„'(q2) + f„.(ql, q2)Ap ('ql)A ('q2)

-f.„(",") '. (. ) '„(. ))
—iag ) f d(k', g;qq, q2, q~) (T 'T 'T ——TrT 'T T'')'

bg bg b3

(A7)

+o(g )

f ( Igl qq2qq q3) A (ql)A ('q2)A ('V3) f p(ql~ 'V2 q3) A'„' (ql)A'„'(q2)A ('q3)

f„(qs, q2, ql) A"„'(—ql)A„'(q2)A„'(q3) + f„(q„q2,q3) A„'(ql)A '(q2)A„'(q3)

+ff (q3 qg qf) A„' (q)& ' (q2)&"(q) + f „(q„q„)&„'(qm)A
' (q)A„'(q3)I
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where

f (q) = sio(oq„) cos —q ),2

Qf (qq, q2) = cos —(q) + q2)), sin —(qz + q2)»n —(qi —q2)fs
2 P 2

I (a ) ( a l (a & (
f„(q~, q2) = — cos

I q&~
I

cos
I

aqua + q2 I
+ cos

I q2 —
I

cos
I aq2„+ qqf") ( 2 J E2 )

( a l ( a ) (a l (a+ cosl aq2v + qadi I
cosl aqua + q2 I

cosl q&v I
cosl —q2

&2 ") E2 )

a 1. -

f „(q„q2,qs) = cos —(qq + q2 + qs)„—sin a(qq + q2 + qs) „ (AS)

a a . (a—cos —(qg + q2 + qs) cos —(qg —qs) sin
I

—q2
2 )

Q G a (a,f (q), q2, qs) = cos —(qq+q2+qs)f, cos —
(q) +q2+qs) cos —(qq+q2)„sinI —qs„ IP 2 (2 )

(+ —cos al q2+ —qs I2 ),
a

sin —(qg + q2)

a (1 a
f (qz, q2, qs) = cos —(q) + q2 + qs) ~ sin a

I

—q) + q2 + —qs I
cos —(qq —q3) f

Ii 2 2 9 2

Using A (q)* = A ( q), one can ea—sily check that F„(k';k)* = F~ ( k'; k). Furt—herm—ore, F~ (k', k) = F„~(k', k), —
as required. Note the absence of a TrT 'T ' term in the order g coeKcient.

The Fourier transform of the improved. cloverleaf field strength tensor has the same form as that for F„„,but the
functions f„,. . . must be replaced by the functions

f (q) = —(5 —cos(aq„) —cos(aq ))f (q),

f„ (qs, qs) = —

( (5 —cos o(qs + qs) „ —cos o(qs + qs) ) f„ (qc, qs)

( I l ~ . (I"" al q~+ —q2 I
f„" (q).)+»n al —q~+q2

I
f„"(q2)).

fs. (qc qs ) = —

I
(q —

cos ts (qc, + qs )o] —coo [o(qs + qs ). ) f„ (qc qs). ,

(I+ sio ol qs + —qs
I

f (qs) + ""
I q

os + qs
I

f (qs) )) k2 )f
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fs (qs, qs, qs) = —((5—cas a(qs+qs+qs)s] —cos a(qs+qs+qs) )f„(qsqs, qs)

l1 ) ~ . (I+»n (il qi+qz+ —qs I f &(qi qz) —»n fil —qi+q2+qs
I f, (qz qs)l 2 r„" '

q2 r

1 f 1 1 ) ~ 1 fl 1—cos nl qi+ qz+ —qs I
f"„(qi) ——«s nl —qi+ —q2+qs

I f~~(qs)2 g 2 2 ) "" 2 q2 2

fl+ cos a
I

—qi + qz + —qs I f„„(qz)
E2 2

(A9)

f, (q q .qs)s=s-((5 —cos a(qs+qs+qs)s —cos a(qs+qs+qs)- )f„(qsq.sqs,),
(

l1l . fl—»n nl qi+qz+ —qs I f„.(qi q2) —»n fil —qi+qz+qs
I f &(qz qs)

r

1 fl 1--««I -qi+ -qz+ qs I f."„(qs)
2 (, 2 2

f„( qq,s)s=qs—((5—cos a(qs+qsq-qs)s —cos a(qs+qs+qs) ])f„( qs, qsq s)

Cl»n (zl qi + q2 + —qs I f „(qi q&) »n
I

—qi + q2 + qs I f„.(q2 qs))2 r
"" '

q2

fl—cos a
~

—qs + qs q- —qs ~ f „(qs)).(2 2 r „
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