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In this paper we show that the apparent failure of QCD lattice perturbation theory to account for
Monte Carlo measurements of perturbative quantities results from choosing the bare lattice coupling
constant as the expansion parameter. Using instead "renormalized" coupling constants defined in
terms of physical quantities, such as the heavy-quark potential, greatly enhances the predictive power
of lattice perturbation theory. The quality of these predictions is further enhanced by a method for
automatically determining the coupling-constant scale most appropriate to a particular quantity.
We present a mean-6eld analysis that explains the large renormalizations relating lattice quantities,
such as the coupling constant, to their continuum analogues. This suggests a new prescription for
designing lattice operators that are more continuumlike than conventional operators. Finally, we
provide evidence that the scaling of physical quantities can be asymptotic or perturbative already at
(quenched) P's as low as 5.7, provided the evolution from scale to scale is analyzed using renormalized
perturbation theory. This result indicates that reliable simulations of QCD are possible at these
same low P's.

PACS number(s): 12.38.Gc, 11.10.Gh, 12.38.Bx

I. INTRODUCTION

In principle, nonperturbative lattice simulations allow
the calculation of any quantity in QCD, without recourse
to perturbation theory. In practice, however, perturba-
tion theory is important to lattice QCD in several ways.
Firstly, it provides the essential connection between lat-
tice simulations, which are most effective for low-energy
phenomena, and the high-energy arena of perturbative
QCD phenomenology. This is accomplished through such
constructs as the operator-product expansion. Secondly,
perturbation theory can account for effects on low-energy
phenomena due to the physics at distance scales shorter
than the lattice spacing. Provided the lattice spacing a
is small enough, systematic errors of order a and higher
can be removed from the theory by perturbatively cor-
recting the action and operators that deGne the lattice
theory. This approach provides a cost-efFective alterna-
tive to simply reducing the lattice spacing when system-
atic errors must be removed. Finally, lattice simulations
and perturbation theory must agree for short-distance
quantities, where both approaches should be reliable, if
we are to have confidence in simulation results for non-
perturbative quantities.

It is disturbing therefore that Monte Carlo estimates
for most short-distance quantities seem to agree poorly
with perturbative calculations. An example is the vac-
uum expectation value of the lattice gluon operator U„
in Landau gauge. This is the lattice analogue of the
expectation value (A ) of the square of the bare gauge
field A~. Since (A ) is quadratically divergent, the loop
integral in first-order perturbation theory is dominated
by momenta of order the cutoff, and perturbation theory

should be effective for cutoffs of order a couple of GeV or
larger. However, the perturbative result, when expressed
in terms of the bare coupling constant ni &

=
g& t/4m of

the lattice theory, is

(1 —
s TrU„)pT = 0.97ni t ——.078

at P = 6/g& t ——6.i This is almost a factor of 2 smaller
than the nonperturbative result

(1 —
s TrU„)MC = 0.139, (2)

P is the parameter used to specify the bare coupling con-
stant in the standard lattice action for QCD.

obtained from Monte Carlo simulations [1]. The coupling
constant is quite small here (ni t ——0.08), and the loop
momenta typically large (q = 7r/a = 6 GeV). Perturba-
tion theory ought to work; instead it seems to fail com-
pletely. Discouraging results such as this have arisen in
a wide range of lattice calculations, leading to consider-
able pessimism about the viability of lattice perturbation
theory at moderate P's.

In this paper we show that although these facts are true
they are misleading. We Bnd that the key problem with
previous calculations of this sort is in the choice of the
expansion parameter for the perturbation series: o.~ q is
generally a very poor choice. There is no compelling rea-
son in a field theory for using the bare coupling constant

. as the expansion parameter in weak-coupling perturba-
tion theory. Standard practice is to express perturbation
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series in terms of some renormalized coupling constant,
one usually defined in terms of a physical quantity. In-
deed the renormalized coupling is usually a running cou-
pling "constant" whose value in a particular expansion
depends upon the length scales relevant in that process;
there is no single expansion parameter for all series. The
perturbative quantities important in lattice QCD gener-
ally involve lengths of order the lattice spacing a, and so
one might expect little renormalization of the coupling
from its bare value. However this argument, the usual
rationale for using o;~ q, ignores the possibility of a large
scale-independent renormalization of the bare coupling.
We Gnd that just such a renormalization does occur in
lattice QCD, making expansions in ni t useless except at
very large P's.

Faced with large renormalizations, we must replace
o.~ & by a renormalized coupling. It is straightforward to
reexpress lattice perturbation expansions in terms of any
of the expansion parameters that have proven effective
in continuum perturbation theory, for example, o.Ms(q)
with some physically motivated momentum q, where MS
denotes the modified minimal subtraction scheme. When
this is done we find that lattice perturbation theory be-
comes far more reliable. In fact, perturbation theory be-
comes about as effective for lattice quantities as it is for
continuum quantities at comparable momenta.

The large renormalization of o.~ q is due to the struc-
ture of the link operators from which the theory is built.
The nonlinear relation between the link operator and the
gauge field leads to large renormalizations of lattice op-
erators relative to their continuum analogues, and these
in turn result in large shifts of the coupling constants
in the action. In this paper we present a simple non-
perturbative procedure for removing the bulk of these
large "tadpole" renormalizations from gluon and quark
operators. This procedure elucidates the problems with

More importantly, perturbative expansions of the
renormalization constants that relate quark currents and
other composite operators on the lattice to their contin-
uum counterparts become far more convergent once the
tadpole contributions are removed.

In Sec. II we discuss the symptoms that result from
a poor choice of expansion parameter in a perturbation
series. We show how these symptoms afIIict lattice ex-
pansions expressed in terms of o.~ q, and we suggest a new,
physically motivated procedure for renormalizing lattice
perturbation theory. In Sec. III, we compare predictions
from our renormalized perturbation theory with nonper-
turbative results obtained from Monte Carlo simulations.
We examine quark masses (TrU~) and a variety of Wilson
loops and Creutz ratios. We find impressive agreement
for all quantities, with no tuning of the theory, even at
P's as low as 5.7. In Sec. IV we discuss the origins of the
large renormalizations that arise when comparing lattice
quantities with their continuum analogues. We develop
a new prescription for building lattice operators that are

For a discussion of these issues in the context of dimension-
ally regularized QCD perturbation theory, see [2]. A prelimi-
nary version of our lattice analysis is in [3].

much closer in behavior to their continuum counterparts;
in particular the large renormalizations disappear. The
success of renormalized perturbation theory at low P's
suggests that the evolution of the coupling constant with
lattice spacing is also perturbative and scaling asymp-
totic at these P's. This important issue is discussed in
Sec. V. Finally, in Sec. VI, we summarize our conclusions,
stressing their implications concerning the reliability of
simulations on relatively coarse (and therefore much less
costly) lattices. The data for the plots throughout the
paper are tabulated in the Appendix.

II. RENORMALIZED LATTICE PERTURBATION
THEORY

A. A poor expansion parameter

If an expansion parameter o,g d produces well-
behaved perturbation series for a variety of quantities, us-
ing an alternative expansion parameter nb d = ns q(1—
—10000 ns g) will lead to second-order corrections that
are uniformly large, each roughly equal to 10000o.b~p
times the first-order contribution. Series expressed in
terms of o.b g, although formally correct, are misleading
if truncated and compared with data. The signal for a
poor choice of expansion parameter is the presence in a
variety of calculations of large second-order coeKcients
that are all roughly equal relative to first order.

A large coefricient appears in the first second-order cal-
culation done for the lattice theory: the calculation of the
gluonic three-point function used to relate the A param-
eter of the bare lattice coupling o.~ q to the A's of var-
ious continuum coupling constants [5,6]. The coupling
constant n(q)MOM, defined in terms of this three-point
function at momentum q, has the expansion

o'(q)MQM o'1 t (1 + col t[Pp in(7r/aq) + 5.419]), (3)

where Pp = 11/47r and MOM denotes the momentum-
space subtraction scheme. Naively, one expects that
n(q = 7r/a)M&M ni«, since vr/a is roughly the largest
momentum on the lattice. However, the constant 5.419
spoils the equality; it results in very large ratios between
continuum and lattice A' s.

Since continuum quantities are usually well behaved
when expanded in terms of n(q)M&M, it is immediately
obvious that most other continuum quantities have a sim-
ilar constant term when expressed in terms of o.~ q. For
example, the heavy quark potential V(q) at momentum
transfer q has the expansion [7]

2
f4~0.'lat f ~'l

V(q) = — 1 + n&, Po ln
~

—
~

+ 4.70 ),( q)

(4)

where Cf = 4/3 is the quark's color (Casimir) charge.
Similar results hold for the e+e hadronic cross section,

A preliminary version of this analysis is published in [4].
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derivatives of moments for deep inelastic ep scattering,
etc.

A crucial point is that a similar constant term appears
in the expansions for all short-distance lattice quantities
that have been studied. For example, the corrections to
the heavy-quark potential as a function of distance have
the form [8]

Ea)

Cf 47rCkv (q)V q (6)

with no higher-order corrections. We can easily relate
nv to the bare lattice coupling constant n~ i since V(q)
has been computed in terms of n~«[Eq. (4)]:

larly easy to tie the coupling constant's argument to the
gluon's momentum for this quantity: we define nv(q),
the coupling strength of a gluon with momentum q, such
that

+C(R/a) (5)
o.t r

——nv(q) (1 —riv Po ln(vr/aq) + 4.702 ) + O(nv)

(7)

where C(R/a) for various values of R is given in the table

R/a 2 4 6 oo

C(R/a) 5.5 5.5 5.6 5.711

[The constant for R = oo can be obtained by Fourier
transforming the equation for V(q) above. ] Note that
the constants C(R/a) at finite R vary little from the one
at B = oo. This is expected since these corrections are
dominated by quadratically UV divergent tadpole loops
that are insensitive to the external momenta.

As we show later, similar terms are present in Wilson
loops and Creutz ratios. Thus the pattern of second-
order coefBcients for lattice quantities strongly suggests
that o;~ q is a poor choice of expansion parameter.

o'v'(q) = po»(q/Av) + pi/po»»(q/Av)
+O(~v(q))

where Pp
——11/4vr (as before), Pi = 102/16m, and

~v ——46.08 A

(8)

is the scale parameter for this scheme. The scale param-
eter A~~& for o, ~~& is defined implicitly by

ni ~
——Pp 1n(1/aAi«) + Pi/Pp In in(l/aA~«) + .

for SU(3) color with no light-quark vacuum polarization.
With this expression, any one-loop or two-loop lattice
expansion can be reexpressed as a series in a~. The
q dependence of o.~ is given by the usual formula

B. A better expansion parameter

To define an improved (renormalized) expansion pa-
rameter, we must both choose a definition of the running
coupling o., (q) ("fix the scheme" ) and specify how the
scale q of the coupling is to be chosen ("set the scale" ).
It is natural and convenient in perturbation theory to tie
the scale of the coupling to that of the loop momenta
circulating in the Feynman diagrams. Thus, we want to
define n, (q) so that it approximates the coupling strength
of a gluon with momentum q. It is also important that
a, (q) be defined in terms of a physical quantity, so as
to avoid confusions, such as that between the minimal
subtraction (MS) and MS schemes, that are artifacts of
arbitrary definitions.

Eixing the 8ehevne

Of the many physical quantities one might use to de-
fine an o., (q), the heavy-quark potential V(q) is among
the most attractive [2]. Typically there is an integral
over the momentum of the leading-order gluon, but the
gluon in V(q) has only momentum q. Thus it is particu-

It is natural in a gauge theory to associate the scale of
the coupling with the gluon's momentum since every g in the
theory is associated with a particular A„by gauge invariance.
This association allows us to set the scale in a gauge invariant
way.

The coupling nMs(q) is numerically fairly close to
nv(q), and thus is another useful alternative to n~ q. In
this case,

a& &
= riMs(q) (1 —nMs Pp 1n(vr/aq) + 3.880 )

+O(nMs), (11)

and the scale parameter is

AMS —28.81 Alat.

Note that the relation between nv (or o.Ms) and o.~ q

can be elegantly reexpressed in terms of the inverse cou-
plings:

o.'& ~
——nv (q) + pp In(vr/aq) + 4.702+ O(nv), (13)
= o'Ms(q) + pp ln(m/aq) + 3.880 + O(o.'Ms). (14)

As we discuss in Sec. IV B, it turns out that these ex-
pressions are also more accurate.

2. Setting the scale

The coupling constant o.v is defined so that nv(q')
is the appropriate expansion parameter for a process in
which the typical gluon momentum is q*. For many pro-
cesses it is possible to guess q* fairly accurately. For ex-
ample, power-law UV divergent quantities such as (TrU)
are controlled by the lattice modes with the highest mo-
menta, and so one expects q' m/a. (The largest lattice
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momentum is actually 2m/a, but there are few xnodes
with such high momenta; thus the e6ective cutofI'is more
like m/a. ) Although such guesses are often suKcient,
there is a simple automatic procedure that takes the
guessing out of q*. This procedure has proven invaluable
in our systematic study of the reliability of perturbation
theory.

Consider a one-loop perturbative contribution in our
scheme:

f = ~v(q') f ~'v f(v), (15)

where q is the gluon's momentum. The natural definition
of q* would be

ov(v') f d'vf(v) = f ~'v~v(v)f(q) (16)

except that the second integral is singular. The singular-
ity is due to the pole in the coupling constant at q = A~.
This pole is an artifact of the all orders summation of
perturbative logarithms that is implicit in the formula
for ofv (q) [Eq. (8)]. The singularity does not arise in any
finite order of perturbation theory, as may be seen by re-
placing the running coupling constant nv(q) in Eq. (16)
by its expansion in terms of the coupling constant renor-
malized at some fixed scale p:

by nv(q*) using Eq. (7). The scale q* is determined by
probing the first-order calculation with a factor lnq, as
in Eq. (19). In calculations that extend through two-loop
order we assume that the one-loop q*, determined this
way, is also appropriate for the two-loop contribution.

A special feature of expansions in nv(q*) for contin-
uum quantities is that they are unafI'ected through sec-
ond order by quark vacuum-polarization insertions in the
gluon propagator. All such contributions are automati-
cally absorbed into nv(q ), by virtue of its definition.
Consequently perturbative expansions are identical (in
second order as well as first order) for quenched and un-
quenched versions of QCD when they are expressed in
terms of nv(q*). This result is only approximately true
for lattice quantities. Since o,v is defined in the con-
tinuum, finite lattice-spacing corrections due to quark
vacuum polarization can become important for quanti-
ties with the largest q*'s. In practice, however, such
efFects appear to be small. The only other relevant
difference between quenched and unquenched QCD is
in the evolution of nv(q): Po ~ (11 —sny)/4m' and
Px ~ (102 —

s ny)/167r in Eq. (8) for ny light-quark
flavors. The ny independence of o.~ expansions leads to
an alternative procedure for determining q* that is ana-
lyzed extensively, for continuum QCD, in [2].

~v(q) = ~v() )(1+Po»(q/I )'~v(I )

+[Po»(q/s )'«() )]'+".). III. TESTING RENORMALIZED
PERTURBATION THEORY

None of these terms separately results in a singularity,
but the sum of all terms diverges.

In fact it is incorrect to sum to all orders since the
QCD perturbation series is an asymptotic series. The
proper procedure is to retain only those terms consistent
with the accuracy of the rest of the calculation. For our
purposes we should retain only the first two terms in
Eq. (17):

~v(v') f ~'sf(q)—:~v(v) f ~'«(v)

+Pa v(v)'f d'vf(v)»( lv)q'

+ 0 ~ ~

Expanding nv(q') in terms of nv(p) in this equation we
obtain a sixnple definition for q* (independent of p):

f d q f(q) ln(q2)

jd q f(q)

Our procedure for defining a renormalized coupling
constant with a proper scale (Sec. IIB) follows solely
from known results in lattice perturbation theory, with-
out regard to Monte Carlo data. Only now are we ready
to consider the extent to which our renormalized per-
turbation theory agrees with Monte Carlo simulations of
short-distance quantities.

Having converted all of our perturbative expansions
from o.~ & to o.~, we need some way of determining val-
ues of o.~ that are appropriate to particular simulations.
The most straightforward procedure is to measure n~
in the simulations. This can be done, for example, by
measuring the heavy-quark potential, or, more simply, by
measuring the trace of the plaquette operator U~x q (the
1 x 1 Wilson loop). The improved perturbative expansion
for the logarithm of TrUp] q is

—ln(s TrU~x z) = —nv(3. 41/a) (1 —(1.19+0.017ny)

x nv + O(cxv) ). (20)

9. Suvnmav y

To summarize, our general procedure for analyzing a
perturbation series in lattice QCD involves replacing nx q

We thank Urs Heller for alerting us to an inconsistency
concerning this point in an earlier draft of this paper.

As we discuss in Sec. IV, o.~ can also be computed directly
from n~ t without using Monte Carlo data. However this pro-
cedure is less accurate than measuring o.~.
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TABLE I. Monte Carlo data for logarithm of the plaquette,
together with the coupling constant values used in this study.

5.7
6

6.1
6.2
6.3
6.4
9
12
18

—ln Wgi
0.5995
0.5214
0.5025
0.4884
0.4740
0.4610
0.2795
0.1954
0.1227

eclat

0.0838
0.0796
0.0783
0.0770
0.0758
0.0746
0.0531
0.0398
0.0265

nMs(1/a)
0.2579
0.1981
0.1860
0.1774
0.1690
0.1617
0.0815
0.0532
0.0317

nv (1/a)
0.3552
0.2467
0.2275
0.2144
0.2020
0.1913
0.0878
0.0558
0.0326

o.v vr a
0.1885
0.1557
0.1483
0.1430
0.1377
0.1329
0.0739
0.0499
0.0305

A. (A2)

Given data for this quantity, one can easily solve for
nv(3 41/.a) Th. e coupling nv(q) for other q's can then
be obtained using standard two-loop evolution [Eq. (8)].
We have extracted nv(3. 41/a) in this way from data for
quenched QCD at several P's. The results, evolved down
to q = 1/a and to q = a/a, are given in Table I. We
also give values for ni q and for nMs(1/a), the latter be-
ing obtained from the measured o.~ using the relation
AMS

——0.6252 A~.
Note that the coupling-constant scale of 3.41/a used

in this expansion is fixed by our scale-fixing procedure
[Eq. (19)]. Also we use the logarithm of the Wilson loop
here, rather than the loop itself, since its perturbative
expansion is better behaved (see below).

Our choice of —ln(s TrU~i ~) for determining nv is
for convenience; we have not attempted to optimize this
choice. One could use any other short-distance quan-
tity whose o.~ expansion is known through second order.
Other alternatives might be Creutz ratios of small loops,
whose perturbative expansions might be more conver-
gent, or a combination of Wilson loops chosen so that
potential nonperturbative area-law contributions cancel.

As discussed above, the formula used in measuring o.~
[Eq. (20)] is almost identical for quenched and un-
quenched QCD. This should be true for all of the nv
expansions that follow. Thus the same techniques and
tests we use here can be applied to the unquenched case.
We have not yet done this, but we expect similar results.

0.2—

I I

Monte Carlo 0

~MS 0
~lat X

1 ——TrU
0.1—

I

5.6
I

5.8 6 62
4 = 6/ui'. t

6.4
I

6.6

FIG. 1. The expectation value of the trace of a link in Lan-
dau gauge, calculated by Monte Carlo simulations (circles),
and in erst-order perturbation theory using for the expan-
sion parameter nv(q') (diamonds), nMs(q') (boxes), and nl t
crosses .

B. Mass renormalization for Wilson quarks

A famous example of the "failure" of lattice perturba-
tion theory is the calculation of the additive mass renor-
malization for Wilson quarks. The bare mass in Wil-
son's formulation of the lattice quark action is renormal-
ized by an ad.ditive power-law divergent term. The crit-
ical quark mass, for which this term is canceled (leaving
the quark massless), is given in perturbation theory by
m a = 1/2K, —4 = —5.457n, [9]. (Here, K is the "hop-
ping parameter" used to parametrize the quark mass in
lattice gauge theory )The .linear divergence in this result
suggests that the important momenta here are of order
vr/a. We find q* = 2.58/a using our procedure [Eq. (19)].
In Fig. 2 we compare perturbative results for m with
Monte Carlo data [10] at several values of P. Again we
see that the data agree with our renormalized perturba-
tian theory to within 10—15% for all P's, but disagree

difr'erences between the o.~ and o.MS predictions give an
indication of how important such terms might be. Of
course part of the difI'erence between perturbation the-
ory and Monte Carlo might be nonperturbative, partic-
ularly at the lowest P. The data disagree with the ni t
expansion by almost a factor of 2.

The lattice equivalent of (A„) is (1 —
s TrU&), which

is given in perturbation theory by 0.97n, . (We use n,
to represent a generic choice for the coupling. ) The one-
loop contribution comes from a quadratically divergent
tadpole graph, and we therefore expect that it is domi-
nated by momenta of order the lattice cutofF vr/a. Using
the procedure of Sec. IIB we find q* = 2.80/a. In Fig. 1
we compare perturbative results for (1 —

s TrU„) with
Monte Carlo data [1] at several values of P. We present
results from perturbation expansions in o.~ q, in our fa-
vorite coupling constant nv(q*), and in nMs(q*). The
data agree with perturbation theory to within 10—15'%%uo

for all P & 5.7 when nv or nMs is used. Uncalculated
terms of order o«or higher in the perturbation theory
could easily account for the remaining differences; the

X X

Monte Carlo 0
0

mc

0

Q

o o

5.6 5.8 6 6.2
P 6/Plat

I

6.4
I

6.6

FIG. 2. The critical quark mass m, , for Wilson quarks,
calculated by Monte Carlo simulations (circles), and in
first-order perturbation theory using for the expansion param-
eter nv (q*) (diamonds), nMs (q*) (boxes), and n~~t (crosses).
Statistical errors in the Monte Carlo results are negligible.
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with perturbation theory using o.1 t by almost a factor of
2.

C. Wilson loops and Creutz ratios X22

0.4—

0.3—

0.2—

I I I I

1 Order Perturbation Theory
I I

Monte Carlo 0

O'lat X

Aside &om the heavy-quark potential and the cou-
pling constant, Wilson loops are the only lattice quanti-
ties for which two-loop perturbation theory has been cal-
culated. Consequently they provide the most stringent
tests of perturbation theory. Large Wilson loops have
badly behaved perturbative expansions for a trivial rea-
son: they contain a self-energy contribution proportional
to the length of the loop. For large loops, contributions to
this self-energy approximately exponentiate, so we expect
that the logarithm of a Wilson loop is better behaved. in
perturbation theory than the loop itself. Taking Creutz
ratios [11]of Wilson loops further improves perturbation
theory by reducing the effects of both the divergent con-
tributions associated with the perimeter of the loop and
those coming from the corners of the loop.

For these reasons we concentrate in this study on the
logarithms of small Wilson loops and on Creutz ratios

defined by

(W „W
g „—=—ln

( ) (21)

where W is one third the expectation value of the trace
of the m x n planar Wilson loop:

W „—:s(TrU x„). (22)

We compare perturbative predictions with new data gen-
erated on a 16 lattice at P's ranging from 5.7 to 18 [12].
We use one-loop and two-loop perturbation-theory co-
efficients computed for a 16 lattice [8], and include the
leading-order contribution &om the zero mode [13]. Thus
our perturbation theory is accurate up to uncalculated
terms of order n&, and of order nv. /V, due to the zero
mode, where V = 16 is the volume of the lattice. The
finite-volume errors become significant for larger loops
and sa we limit ourselves ta 5 x 5 leaps and smaller.

In Fig. 3 we show results for y22, calculated through
first order in o.„and also through second order. The
pattern at first order is similar ta that in our previous ex-
amples: expansions in n~(q*) and nMs(q*) give reliable
results at all P's; the expansion in ni t is off' by almost a

0.1 — x XX

I

6

I I I I

8 9 10 11
p = 6/g, ',

I

12

X22

0.4—

0.3—

0.2—

0.1—

I I I I

2" Order Perturbation Theory

X XX

I I

Monte Carlo 0

~vs 0
O'lat X

8 9 10 11
p = 6/g, '.,

Q
I

12

FIG. 3. Results for Creutz ratio yq2 at difFerent couplings P
from Monte Carlo simulations (circles), and from pertur-
bation theory [using nv(q') (diamonds), nMs(q') (boxes),
and n~, (crosses)]. The First plot shows perturbation the-
ory through one-loop order, and the second through two-loop
order. Statistical errors in the Monte Carlo results are negli-
gible.

factor of 4 at P = 5.7, and still by almost 30% at P = 12.
The second-order corrections significantly improve agree-
ment between the data and the o.~ and o;Ms expansions,
with errors ranging from a few percent at P = 5.7 to a few
tenths of a percent at P = 12. The remaining discrepancy
could easily be accounted for by uncalculated corrections
of order o.„although again nonperturbative effects may
play a role at the lowest P's. The second-order expansion
with o.1 t gives results that are at least an order of mag-
nitude worse than those from the other two expansions
(at all P's). By comparison with the others, the conver-
gence of this expansion is very sluggish —an unambiguous
symptom of a bad expansion parameter.

In Fig. 4 we show two-loop results with each of the
coupling constants for a variety of different Creutz ratios
at P = 6.2. The nv and nMs expansions are again far
superior for all of the ratios.

We expect smaller momentum scales for Creutz ratios
than for the loops themselves since many of the divergent
contributions to loop expectation values cancel in the

Our data confirm that perturbation theory works better for
logarithms of the W than for the W themselves, the ex-
pansions for the latter failing completely for even modestly
large loops. Curiously the pathologies in the W expan-
sions seem to cancel the pathologies in o;~ t when m and n are
small, making the n~ t expansion more accurate than the n~
expansion for these loops. Neither expansion is as accurate as
expanding —ln W in powers of n~ and then exponentiat-
ing. This last procedure gives good results (when P is large)
for all loops out to 8 x 8, the largest we checked.

Nate that some of our results have been anticipated in the
literature. The fact that perturbative results for Creutz ratios
are better behaved when expanded in terms of o.Ms than when
expanded in terms of n~ i was painted aut in [14]. The fact
that perturbative results for Creutz ratios are better behaved
when expanded in terms of an o., defined from any given ratio
than when expanded in terms of n~ & was pointed out in [15].
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FIG. 4. Results from perturbation theory [with o.v(q')
(diamonds), o.Ms(q*) (boxes), and o~ q (crosses)] and Monte
Carlo simulations (circles) for diagonal Creutz ratios y at
P = 6.2. Statistical errors in the Monte Carlo results are
negligible.

IV. MEAN-FIELD THEORY

We have shown that perturbation theory works well
when a proper coupling constant is used, but it is still
important to understand the origins of the large mis-
match between the lattice coupling and the continuum
couplings. This mismatch is one of many examples where
a large renormalization is required to relate a lattice
quantity to its continuum analogue. In this section we

0.2—
MC

ratios. Our scale-setting procedure indicates that q* is
1.09/a for yzz, and smaller for ratios involving larger
loops.

The importance of choosing a proper q* is illustrated
in Fig. 5, where the two-loop prediction for y22 has been
reexpressed in terms of nv. (q) and plotted versus q. Tak-
ing q = vr/a, for example, rather than q = q*—:1.09/a
results in a 10% error rather than a 1% error. This situa-
tion should be contrasted with that for —ln Wz2 (Fig. 6).
This quantity is significantly more ultraviolet than y22,
having q* = 2.65/a. Here our perturbative estimate de-
grades signi6cantly if we use, say, q = 1/a rather than
q* to set the scale of our expansion parameter. These
examples illustrate the importance of our scale-setting
procedure when high precision is required. Small depar-
tures from q* are unimportant, at least for reasonably
convergent series; but deviations by factors of 2 or more
can affect the reliability of a perturbative estimate.

FIG. 6. Results for —ln W22 from Monte Carlo simulations
(line) and from the perturbation expansion in a&(q) (dia-
monds) vs the scale q.

explore the connection between operators on the lattice
and in the continuum.

A. Tadpole improvement

We usually design lattice operators by mapping them
onto analogous operators in the continuum theory. For
gauge fields, this mapping is based upon the expansion

U„(x) = e* ~( m 1+iagA„(x).

This expansion seems plausible when the lattice spacing a
is small, but it is misleading since further corrections do
not vanish as powers of a in the quantum theory. Higher-
order terms in the expansion of U„contain additional fac-
tors of gaA„, and the A„'s, if contracted with each other,
generate ultraviolet divergences that precisely cancel the
additional powers of a. Consequently these terms are
suppressed only by powers of g2 (not a), and turn out
to be uncomfortably large. These are the QCD tadpole
contributions.

The tadpoles spoil our intuition about the connection
between lattice operators and the continuum, and so we
should not be surprised if the lattice theory is not quite
what we expected (because of large renormalizations). In
order to regain this intuition we must reine the naive for-
mula that connects the lattice operator to the continuum
operator [Eq. (23)]. Consider the vacuum expectation
values of these operators. In the continuum, the expec-
tation value of 1 + iagA„(x) is 1. In the lattice theory,
tadpole corrections renormalize the link operator so that
its vacuum expectation value (in, say, Landau gauge) is
considerably smaller than 1 (see Fig. 1). This suggests
that the appropriate connection with continuum fj.elds is
more like

X22

0.1— U„(x) m uo [1+iagA„(x)], (24)

0
0 0.5

I

1.5
I

2.5

FIG. 5. Results for the Creutz ratio y22 from Monte Carlo
simulations (line) and from the perturbation expansion in
ov(q) (diamonds) vs the scale q.

where uo, a number less than one, represents the mean
value of the link. Gauge invariance requires that param-
eter uo enter as an overall constant.

This formula follows simply from a renormalization-
group argument. The tadpole contributions come mainly
from the gauge-field modes with the highest momenta.
Consequently the tadpoles can be removed by splitting
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the gauge field into ultraviolet (UV) and infrared (IR)
parts (in a smooth gauge), and integrating out the UV
parts. Averaging over the UV modes, the link operator
is replaced by its IR part:

~

FAIRU„-+ uo e' g ~ = uo (1 + ingA'„),

0.2—

~v(~/a)
0.1—

measured 0
mean-field

perturbative X

where now the Taylor expansion of the exponential is
quite convergent. Parameter uo contains the averaged
UV contribution. It enters only as an overall constant
since the link operator functions as a gauge connection
both before and after averaging.

The mean-field parameter uo depends upon the param-
eters of the theory. It can be measured easily in a simula-
tion. Simply measuring the link expectation value gives
zero since the link operators are gauge dependent. How-
ever relations such as Eq. (24) only make sense in smooth
gauges, such as the Landau gauge. Thus one might de-
fine uo to be the expectation value of the link operator in
the Landau gauge. A simpler, gauge-invariant definition
uses the measured value of the plaquette:

up =—(-,'TrUp& q)' (26)

B. ca~ from cxi~t

Our new prescription for building continuumlike oper-
ators suggests that

1Ss(„„=) Tr(Up) q+ H.c.)
g 'll 0

(27)

Several other definitions are possible based upon such
things as the expectation value of long Wilson lines or
the critical hopping parameter for Wilson quarks. All
give similar results: at P = 6, for example, uo is 0.86
from the Landau-gauge link and 0.88 from the plaquette.

Our improved relation, Eq. (24), between lattice
and continuum gauge-field operators suggests that all
links U„ that appear in lattice operators should be re-
placed by U„/uo, where uo is measured in the simulation.
The operators U„/uo are much closer in their behavior
to their continuum analogues; large tadpole renormaliza-
tions are largely canceled out by the uo (and the cancella-
tion is nonperturbative since uo is measured rather than
calculated). This is the key ingredient in our tadpole-
improvement procedure for lattice operators. Several il-
lustrations follow in succeeding sections.

I I

11 12

FIG. 7. Values of ov (vr/a) as determined by measur-

ing —ln( —TrUp~ ~) (circles), by using a nonperturbative
mean-field formula to relate it to the bare coupling (dia-
monds), and by using perturbation theory to relate it to the
bare coupling (crosses).

rather than g& t. The difference is significant; for exam-
ple, g —1.7g& i at P = 6 (using the measured value of
the plaquette to relate the couplings). It is a big mistake
to expand in powers of n~ t rather than n~ t = g /4vr.

If our mean-field analysis is correct, 6~ t should be
roughly equal to a&(vr/a). This is confirmed by per-
turbation theory which implies that

nv(~/a) =, ' ' [1+0.513nv + O(ni, )]; (29)
—,'TrUpi q

the difference between the two coupling constants is only
a few percent at P = 6. This formula provides a non-
perturbative relationship between the bare lattice cou-
pling o.~ & and o,v when measured values for the plaquette
are used.

Note that since the renormalization is multiplicative,
its main effect is to rescale the argument of the running
coupling constant. This suggests that we define o.v by

nv(46. 08/o) = criat 1+ O(o.i, )

(since A~ = 46.08Ai t), and then use two-loop evolution
to determine nv(q) for any other scale q. This provides a
purely perturbative relation between o.~ and o.i &. Relat-
ing the couplings by rescaling the arguments is roughly
equivalent to using the formulas that relate the inverse
couplings [Eq. (13)].

In Fig. 7 we compare the measured values of cr~(vr/u)
from Sec. III with values obtained from the mean-field
formula, Eq. (29), and from the perturbative formula,

-2 2 r 4= ~]at//uo
= gi', /(-,'Tr(Up& ~)). (28)

is a better gluon action for lattice @CD. In particular,
perturbation theory in g is much more like continuum
perturbation theory (i.e. , no tadpoles). Of course this
tadpole-improved action becomes the normal gluon ac-
tion if we identify

Our analysis of the gauge-Geld action was anticipated by
Parisi [16] who gives a simple analysis for the compact Abelian
theory. To see what effect the (UV-divergent) tadpoles have
on infrared modes, we can split the gauge Geld in UV and IR
components, and average over the UV part. Then the Abelian
gauge action becomes

(9 cos(9F„„+9F~„)) = 9 (cos(9F„„))cos(9'„)
This relationship is very important; it tells us that the
correct expansion parameter for the usual theory is g

and the eAective coupling for the IR modes is g divided by
the UV part of the plaquette expectation value.
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Eq. (30). Large coupling-constant renormalizations are
automatically incorporated when o.v is measured, and
so the validity of our mean-field analysis is tested by the
extent to which the mean-field values agree with the mea-
sured values. All three methods produce results consis-
tent up to corrections of order o«. The first two methods
of determining o.~ are preferable to the perturbative for-
mula, particularly at low P's, since they incorporate some
higher-order and nonperturbative effects.

C. Field strengths

5.7
6.0
6.1
6.3

bm, a
-0.44
-0.31
-0.29
-0.22

Perturbative
-1.11
-0.91
-0.86
-0.79

Tadpole improved
-1.00
-0.80
-0.76
-0.70

Measured
-1.04(2)
-0.80(2)
-0.78(2)
-0.70(2)

TABLE II. Mass renormalization for Wilson fermions
at difFerent couplings P as computed using ordinary a&
perturbation theory, tadpole-improved perturbation theory,
and Monte Carlo simulation. Also listed is the first-order
perturbative correction to the mean-6eld estimate of m. ,
bm, a = —1.268o;v(1.03/a).

Our prescription for defining tadpole-improved lattice
operators is crucial in other, related contexts. One ex-
ample is in defining operators to represent the chromo-
electric and magnetic fields. These are needed for the op-
erators that remove O(a, a ) errors from quark actions.
The standard cloverleaf definitions E,~ and 8 I involve
products of four link operators, just like the plaquette
[17]. Thus the tadpole-improved operators

E„=E„/(-Tr(U, )),
B„=B„/(-'Tr(U, )),

(31)

(32)

are almost twice as large at P = 6. The plaquette fac-
tors account for the bulk of the very large renormaliza-
tions found in perturbation theory for operators contain-
ing cloverleaf fields. Such operators play an important
role in all formulations of heavy-quark dynamics [18,19I;
omitting the tadpole renormalization leads to severe un-
derestimates of their effects.

D. Improved %ilson fermions

Our tadpole-improvement scheme provides valuable in-
sights into the pattern of large renormalizations in lattice
@CD, and it is generally trivial to implement. As another
example consider the tadpole-improved action for Wilson
quarks:

~ =).0@+ ).4 i(1+&) "l0+- —(

Again, this action is identical to the usual one if we relate
the modified parameters, here the hopping parameter F,
to the usual ones by rescaling with up.

m, a = 1/2K, —4 4uo —4. (36)

m a = —4 1 — —TrUP) q
~ —j..268 o,~ 1.03 a

+ O(~v ). (37)

This formula has the same perturbative expansion as that
used in Sec. IIIB, but, by rearranging the expansion
and using the measured value of the plaquette, we make
it far more accurate since large tadpole renormalizations
are summed to all orders. Higher-order perturbative cor-
rections should be smaller for the improved formula, as
should nonperturbative effects. This seems to be the
case as we show in Table II, where the two predictions
are compared with Monte Carlo data. Tadpole-improved
one-loop perturbation theory predicts m, (and K,) about
as accurately as it can be measured.

In the continuum limit, the tadpole-improved la-
grangian for massless quarks becomes

2' @p„B"g+ O(a). (38)

This indicates that ~2r @ is the lattice quantity that
corresponds to the continuum quark field. Since 6,

1/8 when the quarks are massless (or, equivalently, uo
1/8K, ), a tadpole-improved operator for massless quarks
on the lattice is

This formula accounts for about 75'%%uo of the renormal-
ization of the hopping parameter when P is large, as
is evident if we compare the perturbative expansions
for the two sides (defining uo —— (s TrU~i q) / ). By
combining these perturbative expansions, we obtain a
tadpole-improved perturbation theory for the critical
bare mass m, :

0 = 4'/2 (39)

The modified hopping parameter should be more con-
tinuumlike; for example, the tree-level value that gives
massless quarks, k = 1/8, should be roughly correct for
interacting quarks as well, at least at high P's. Thus
an approximate nonperturbative formula for the critical
value of the usual hopping parameter is

This lattice operator has roughly the same normaliza-
tion as the continuum field; in particular, there are no

This result is only valid for rc = ~ . Away from K, @
becomes [20,4]

1/8uo,

or, in terms of the critical bare mass,

(35)
@ = (1 —3~/4~, )'~' g.

Note that the K, dependence here is quite diRerent from that
of the commonly used (but incorrect) ~2m@.
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TABLE III. Renormalization constants relating continuum
(Ms at Ij, = 1/a) and lattice operators for massless quarks.
Results are for the ratio of continuum to lattice matrix ele-
ments, both without and with tadpole factors removed.

Operator

&i [040]
d~ [@@4]
d4 [4@4]

4 0O+@@

@@Ops @

[»]

[21]
[21]

[22]
[22)
[22]
[23]
[23]
[23]
[23]

Perturbative

(1 —1.39 nv)
(1 —2.40 nv)
(1 —2.19nv)
(1 —1.68 nv)
(1 —1.80 nv)
(1 —2.78 nv)
(1 —2.89 nv)
(1 —2.76 nv)
(1 —3.81 nv)
(1 —3.66 nv)
(1 —3.78 nv)
(1 —3.55 nv)

2Kc

2Kc

2Kc

2Kc

2Kc
(2r.,)
(2K,)"
(2r.,)
(2K )
(2P; )
(2r. )

Tadpole improved

(1 —0.03 a'v) /4
(1 —1.O3 nv) /4
(1 —O. 82 nv) /4
(1 —0.31 nv) /4
(1 —0.44 nv) /4
(1 —0.73 nv) /8
(1 —0.84 nv) /8
(1 —0.71 nv) /8
(1 —1.08 nv) /16
(1 —0 93 nv) /16
(1 —1.05 nv) /16
(1 —0.83 nv) /16

large tadpole contributions to the renormalization con-
stant relating them. This is important in designing new
lattice operators involving quark fields. For example,
if one wants matrix elements of the continuum current
@p"p5@, then one should simulate with the lattice oper-
ator

(40)

These results are for Wilson parameter r = 1; very similar
results arise for r = —.

Our procedure differs somewhat from common prac-
tice. Frequently the quark renormalization factor is taken
to be +2K, for massless quarks, rather than the fac-
tor /2k, = 1/2 that we use. Then an operator 0 con-
taining n quarks is renormalized with a factor of the form
(2r, )

/2 Zo, where v., is measured and Z~ is computed
in perturbation theory. With our procedure, such an
operator is renormalized with a (simpler) factor Zo/2
where Z~ = (SK,) / Z~ is again determined perturba-
tively. This is simply a rearrangement of perturbation
theory, but by incorporating the K factors into Z~ we
cancel most of the tadpole contribution. Thus perturba-
tion theory should be significantly more convergent for
Z~ than it is for Z~. We have verified this for a variety
of two-, three-, and four-quark operators. Our results are
presented in Table III. There we present the renormal-
ization factors for each operator (continuum divided by
lattice) as computed in the standard fashion, and with
our tadpole improvements. Perturbation theory is much
more convergent with our procedure.

The continuum operators used in this comparison were
defined using the MS scheme. Our choice of normaliza-
tion scale, p = 1/a, was somewhat empirical; a more sys-
tematic determination of the appropriate scale is possible
using a variation of the techniques discussed in Sec. II.
Also, there is another obvious nonperturbative proce-
dure for normalizing the operator for lattice quarks. The

quark field's normalization should be roughly the square
root of the normalization of either the vector or axial-
vector current since these currents are conserved (or par-
tially conserved). Inspection of our table indicates that
using the average normalization of the two currents to
define the quark normalization gives even better results
than those shown there.

The results here are all for massless or nearly mass-
less quarks. Tadpole-improved operators and actions for
heavy quarks are discussed in [20,4], for Wilson quarks,
and in [19], for nonrelativistic quarks (NRQCD).

V. IMPLICATIONS FOR SCALING

An important test of any lattice analysis is that phys-
ical results are independent of the lattice spacing a, or,
equivalently, that they are independent of the bare cou-
pling n~ t used in the action (each value of n~ q corre-
sponds to a particular value of a). To apply this test
we need to know how variations in o.~ t are related to
variations in a; that is, we need to know the P function,
dn~ t/dlna. This is because simulation results are all in
units of a, while a itself is specified only indirectly in a
simulation, through the value of n~ t. (The lattice spac-
ing sets the scale for a simulation, and so the variation
of the coupling with varying lattice spacing is referred to
as the "scaling" of the coupling constant. )

There are two common procedures by which the P
function is determined. One uses simulation results for
a long-distance quantity such as the string tension or a
glueball mass. Simulations of a glueball mass M, for ex-
ample, produce values of M a for each value of o.~ t used
in the simulation's action. Prom these one can compute
dn~ t/din Ma, which is the same as dn~ t/din a insofar
as mass M is a independent. Unfortunately, any quan-
tity such as M is only approximately a independent be-
cause of finite-lattice-spacing errors in the action. This
additional a dependence results in systematic errors in
the determination of the P function that are diKcult to
quantify without extensive simulation.

A second approach for obtaining the P function is to
compute it analytically, using weak-coupling perturba-
tion theory. This becomes feasible when a is small since
the P function is predominantly determined by the short-
distance behavior of the theory, and this behavior is per-
turbative for @CD. A perturbative calculation of the P
function avoids ambiguities due to finite-lattice-spacing
errors in the action since these are readily analyzed in
perturbation theory. The main issue in this approach
is whether or not the lattice spacing is small enough to
justify using perturbation theory.

Our results in Sec. III show that perturbation theory
successfully predicts a range of short-distance quantities,
and so it is likely that it also correctly predicts the P
function, a short-distance quantity like any other. Thus
our results provide indirect evidence in support of per-
turbative scaling of the coupling. Our results also test
the scaling properties of the coupling constant directly.
This is because at each P we measure the coupling nv at
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q = 3.41/a, using data for the very ultraviolet-divergent
plaquette, and then we perturbatively evolve o.v down to
scales ranging Rom 0.4/a to 2.8/a to compute estimates
for a variety of less ultraviolet quantities. (Note that nv
at P = 6 increases by more than 50%%up when evolving from
q = 3.41/a down to q = 1.09/a, the scale for Creutz ra-
tio y22. ) The success of our many perturbative estimates
is compelling evidence that coupling-constant evolution
is mostly perturbative for all P's down to 5.7, and possi-
bly even for lower ones. Of course, this discussion only
applies to the o.v and o.MS definitions of the coupling;
o.1 t is poorly behaved, but also largely irrelevant given
our new perturbative techniques.

The q dependence of ni (q) is readily extracted from
our data. The results for three values of P are shown in
Fig. 8. To obtain these plots, we fit second-order expan-
sions in nv(q*) to Monte Carlo data for the six smallest
Creutz ratios, and for the logarithms of the six smallest
Wilson loops. The value of nv. (q') obtained from the fit
for each quantity is plotted versus the q* for that quan-
tity. The q*'s for the 12 quantites used here range from
0.43/a (for y44) to 3.41/a (for —ln Wii)—about a factor
of 8. For comparison, we have included the (two-loop)
perturbative prediction for ni (q) (solid line), arbitrar-
ily normalizing o.~ so that the curve passes through the
data point for —lnlV22. The data are quite consistent
with perturbative scaling, even at P = 5.7. Note that
statistical errors in the Monte Carlo data are negligible
here; the Huctuations visible in the plots are due to uncal-
culated third-order terms in perturbation theory, which
differ from quantity to quantity, and, at the lowest P, to
nonperturbative effects. (The onset of the long-distance
area law in the logarithms of the Wilson loops is appar-
ent in the plot for P = 5.7, although the effect is not all
that large even for the 3 x 3 loop. )

Our conclusion, that the coupling constant scales per-
turbatively even at P = 5.7, contradicts standard lore.
This lore derives in part from studies of scale-invariant
ratios of A~«, de6ned perturbatively &om o.~«, with phys-
ical quantities such as the decon6ning temperature T or
the string tension c. that are determined nonperturba-
tively in simulations. Such ratios, which should become
independent of P with the onset of perturbative scaling,
show considerable variation with P for P's less than 6.2.
This is illustrated by the upper plots in Fig. 9. These
show the 1P-1S mass splitting LM divided by A~ t for
the g [18] and T [25] meson families, as well as ~o/AI t
[26], for a range of P's. Variations of order 30—40'Fo are
readily apparent between P = 5.7 to P = 6.1. However,
the situation changes completely if we replace the A~ t's

Similar results are reported for the SU(2) lattice theory in
[24], although the finite-scaling technique used there is quite
different from our procedure. That study probes different
scales by examining a single quantity on a series of lattices
with different lattice spacings. Our study probes different
scales on single lattices by examining a variety of quantities,
some more ultraviolet than others. In both cases the evolution
of the coupling constant is tracked over a large range of scales.

ov(q)

p =5.7
0.6 — (

C

P =6.2
0.1—

0.4—
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FIG. 8. Values of n&(q) for a range of q's as determined
from lattice +CD measurements at various P's. The data
points (circles) are measured values (with negligible statisti-
cal errors) obtained by fitting second-order perturbation the-
ory to Monte Carlo simulation data for various short-distance
quantities. The solid line shows the variation in av(q) ex-
pected from two-loop perturbation theory.

Note that the 1P-1S splitting in quarkonium mesons is one
of few hadronic measurements that is suitable for studying
scaling. This is because the splitting is almost completely in-
sensitive to the heavy-quark mass, and so depends only upon
the coupling constant. This is also why the @ results shown
are nearly indistinguishable from the T results.

in these ratios by Av. 's determined (perturbatively) &om
the o.~'s we used in Sec. III. When compared with A~,
the ratios are constant to within a few percent.

The P independence of these ratios is not exact. There
are certainly 6nite-lattice-spacing errors in each of the
measured quantities we use here. These errors have been
analyzed carefully for the T data [4]; they lead to vari-
ations of order 10% in the ratio with Av over the range
shown. Errors for the other two quantities are probably
smaller since T's are the smallest mesons.

There are, of course, physical quantities that are more
sensitive to finite-lattice-spacing errors than those dis-
cussed here, and scale-invariant ratios involving these
will show considerably more variation than we find for
the quarkonium and string tension data. This does not
indicate a failure of perturbative scaling for the coupling
constant; rather, it indicates that O(a, a2) corrections
are needed in the action for accurate simulations of these
physical quantities.

These results suggest that the two methods for deter-
mining the P function, indirectly, using nonperturbative
simulations of long-distance quantities, and directly, us-
ing perturbation theory, agree even at low P's, provided
the action is sufBciently accurate that the long-distance
quantities are insensitive to finite-lattice-spacing errors.
We feel that the perturbative determination is proba-
bly more reliable, at least until it is common practice to
correct actions for O(a, a2) errors. Standard lore about
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and the 1P 1S mass s-plittings AM for @'s and T's with A~ q

(top row) and with Av (bottom row).
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FIG. 10. Ratios of the square root of the string tension cr

with the 1P 1S mass splittings AM-for g's and T's.

scaling is invalid partly because it is based on simula-
tion results from uncorrected actions, and partly because
it relies upon perturbative expansions in the bare cou-
pling o.I t. The coupling o.1 t does not scale perturba-
tively at low P's (at least through two-loop order), but
renormalized couplings such as n~(ir/a) are perturba-
tive. This is why the ratios with Ai scale so well. (Of
course, ratios of physical quantities should be P indepen-
dent as well, and they are; see Fig. 10.)

It has been apparent for some time that the deconfin-
ing temperature scales better when analyzed in terms of
a modified coupling constant similar to ours [27]. Now it
is clear that the modified coupling constant is just a con-
tinuum coupling constant such as o.~ or o.MS. Further-
more it is clear that the failure of perturbative scaling for
the coupling constant was intimately related to the lack
of convergence of perturbation theory for short-distance
quantities such as v, or y22. Both problems are resolved
by replacing o.l & with o.v.

The use of lattice perturbation theory in conjunction
with simulations has been hampered by two problems:
expansions in powers of the bare lattice coupling o.1 q con-
sistently underestimate perturbative effects, sometimes
by factors of 2 or 4; expansions for many quantities (and
particularly renormalization constants for lattice opera-
tors) have large coefficients due to tadpole diagrams and
consequently converge poorly, if at all.

We have addressed both problems in this paper. We
have shown here that lattice perturbation theory works
well when a proper coupling constant is used; and it can
be made about as convergent as the continuum theory
by systematically removing tadpole contributions.

The first problem is remedied by replacing o.1 t with
a renormalized coupling constant such as ai (q*), where
scale q* is customized (in a predetermined way) to the
quantity under study. The coupling constant o.~ is de-
fined in terms of a physical quantity, the heavy-quark
potential, and it can either be measured (Sec. III) or it
can be determined from the bare lattice coupling o.1 t
using formulas from mean-field theory (Sec. IV B). Per-
turbation theory, when expressed in terms of nv(q*), is
remarkably effective even at P = 5.7.

The second problem, large tadpole-induced renormal-
izations, is remedied by simple redefinitions of the basic
operators used to define the lattice theory. Every U„ in a
naive lattice operator is replaced with U„/uo, where uo is
a measured constant representing the mean value of the
link (Sec. IV); and every renormalized low-mass (Wilson)
quark field +2rc,g is replaced by @/2. The new opera-
tors obtained this way are rescaled versions of the naive
operators. Their normalizations are very close to those of
their continuum analogues; renormalization constants for
composite operators built from these tadpole-improved
operators have perturbative expansions that are far more
convergent. Tadpole improvement is essential for opera-
tors, such as the cloverleaf operators for F~„, that involve
many links; without it normalizations are wrong by as
much as a factor of 2, and perturbation theory becomes
useless.

Our examples suggest that lowest-order perturbation
theory in o.~ gives results for short-distance quantities
that are typically correct to within 10—20% at P = 6.
Expansions in o;1 t can be off by factors 2 or 4 at the same
P. Adding higher-order corrections usually reduces errors
by factors of 2—5 for o.~ expansions, and by very little for
o;1 t expansions. In many situations, nv expansions can
be made still more accurate through tadpole improve-
ment, where powers of the mean-Geld parameter uo are
factored out of the expansion leaving behind a more con-
vergent series. Our tadpole-improved one-loop formula
[Eq. (37)] for the critical value of the hopping parameter
in Wilson's quark action, for example, is about as accu-
rate as the best numerical determinations of this quan-
tity. Finally, our procedure for determining the proper
scale q* for the coupling consistently leads to excellent
expansions, although expansions in nv(vr/a) for quanti-
ties defined over one or two lattice spacings usually give
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errors that are within a factor of 2—3 of those obtained
with crv(q ).

The fact that perturbation theory seems to be working
at P = 5.7 implies that asymptotic or perturbative scal-
ing should also work. We verified this here, for a number
of physical quantities, by comparing their dependence on
P with that of the scale parameter Av for the renormal-
ized coupling o;~, scale invariant ratios of these quantities
with Av (as opposed to Ai i) showed little variation all
the way down to P = 5.7. These results suggest that
the lattice spacings used in current simulations are small
enough for reliable studies of QCD. Indeed, if anything,
they are unnecessarily small. It is probably much more
cost effective to simulate QCD at P = 5.7, while remov-
ing the O(a, a ) errors that are important by correcting
the action. Previous efForts at improving lattice actions
have not been too successful; but these relied upon the
use of expansions in o.~ q, and naive lattice operators.
The perturbative quantities we examine in this paper are
very similar in character to the new coupling constants
that appear in corrected actions and operators. Thus
our success in computing these quantities (to within a
few percent in most cases) suggests that the use of nv
perturbation theory and tadpole-improved operators to
correct the action will be much more successful. The po-

tential savings in computer resources make it imperative
that this possibility be thoroughly investigated.
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APPENDIX

This appendix presents data for some of the figures in
Tables IV—XII.

TABLE iv. (] —i TrU ) (Landau gauge) the expectation value of the trace of a link in the
Landau gauge calculated in 6rst-order perturbation theory and by Monte Carlo simulation for
various P's. Statistical errors in all data presented are of order one in the last digit quoted or
smaller.

5.7
6

6.4

O'lat

0.081
0.077
0.072

Perturbation theory
Ms(q )
0.161
0.136
0.118

~v(q )
0.191
0.157
0.133

MC
data
0.176
0.139
0.117

TABLE V. am, —the critical quark mass m for Wilson quarks with r=1.0, calculated in
first-order perturbation theory and by Monte Carlo simulation for various P s. Statistical errors in
the simulation data are of order 2 in the last digit quoted.

5.7
6

6.1
6.3

eclat
-0.46
-0.43
-0.43
-0.41

Perturbation theory
~Ms(q )

-0.93
-0.78
-0.75
-0.70

~v(q )
-1.12
-0.91
-0.86
-0.79

MC
data
-1.04
-0.80
-0.78
-0.70



48 VIABILITY OF LATTICE PERTURBATION THEORY 2263

TABLE VI. y22—the expectation value of the Creutz ratio y2q calculated in Grst-order and
second-order perturbation theories and by Monte Carlo simulation for various P s. Statistical errors
in the Monte Carlo results are negligible.

5.7
6

6.2
9
12
18

0'lat
0.10160
0.09652
0.09341
0.06435
0.04826
0.03217

First order
~MS

0.29790
0.23170
0.20840
0.09749
0.06399
0.03826

Ay
0.40100
0.28560
0.24990
0.10490
0.06703
0.03930

0'lat
0.15429
0.14407
0.].3794
0.08548
0.06015
0.03746

Second order

Ms
0.33181
0.25225
0.22497
0.10112
0.06556
0.03882

AV

0.35347
0.26150
0.23146
0.10167
0.06570
0.03885

MC
data

0.37343
0.26558
0.23317
0.10173
0.06574
0.03885

TABLE VII. y —diagonal Creutz ratios y as computed in second-order perturbation theory
and by Monte Carlo simulation at P = 6.2. Statistical errors in the Monte Carlo results are
negligible.

0'lat
0.13794
0.05207
0.02525
0.01512

Perturbation theory
~Ms(&*)
0.22497
0.09467
0.06283
0.03881

~v(~')
0.23146
0.10312
0.07121
0.04780

MC
data

0.23317
0.11348
0.06793
0.04949

TABLE VIII. Perturbative predictions for Creutz ratio yq2 using expansion parameter nv(q)
with various q's at P = 6.2. Monte Carlo simulation gives y22 ——0.233.

aq
X22

0.5
0.174

0.8
0.227

aq* = 1.09
0.231

1.5
0.228

2.0
0.222

3.0
0.212

TABLE IX. Perturbative predictions for —ln Wq2 using expansion parameter uv(q) with various
q's at P = 6.2. Monte Carlo simulation gives W22 = 1.527.

aq
—ln &22

1
1.074

2

1.446
aq* = 2.65

1.485
3

1.492
4

1.494
6

1.474

TABLE X. o.v(7r/a) as measured (from —ln Wii), as computed from the bare lattice coupling
using nonperturbative mean-field theory, and as computed in perturbation theory. Statistical errors
in the Monte Carlo results are negligible.

5.7
6

6.2
9
12
18

Measured
0.188
0.156
0.143
0.074
0.050
0.031

Mean 6eld
0.168
0.145
0.135
0.073
0.050
0.030

Perturbative
0.148
0.134
0.127
0.072
0.049
0.030

TABLE XI. Scale invariant ratios for the 1P 1S mass difFerences -b,M for g's and T's and the
square root of the string tension o.

5.7
5.8
5.9
6.0
6.1

aM~/Ai,
130(9)

105(6)

96(6)

&Mr/Ai ~

136(15)

105(4)

~o/Ai. ,
134(1)
120(1)
110(1)
105(1)

ZMy/Av
1.36(9)

1.31(7)

1.31(7)

&Mr/Av
1.42(15)

1.36(5)

~o./Av
1.40(1)
1.40(1)
1.37(l)
1.38(l)
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TABLE XII. n&(q*) as determined by fitting second-order perturbation theory to Monte Carlo

simulation results for logarithms and Creutz ratios of small Wilson loops. Statistical errors in the
Monte Carlo results are negligible.

—ln TVgg
—ln R'g2
—ln Wg3
—ln TV22
—ln R'g3
—ln TV33

X2-2

X2 3

g2.4

X3 3

g3.4

g4 4

q*

3.41
3.07
3.01
2.65
2.56
2.46
1.09
1.10
0.97
1.07
0.80
0.43

P =5.7
0.183
0.196
0.200
0.222
0.234
0.251
0.353
0.390
0.489
0.449
0.594
1.642

Fitted av(q*)
P=62

0.140
0.146
0.147
0.155
0.159
0.163
0.208
0.215
0.235
0.227
0.262
0.370

P = 9.0
0.073
0.074
0.075
0.076
0.077
0.077
0.087
0.087
0.089
0.088
0.092
0.101
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