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The electromagnetic transition moments of the SU(3)-Qavor baryon octet to decuplet are exam-
ined within a lattice simulation of quenched @CD.The magnetic transition moment for the X p ++ 6
channel is found to be in agreement with recent experimental analyses. The lattice results indicate
p„~/y,„=0.88(15). In terms of the Particle Data Group convention, f~i ——0.231(41) GeV ~ for

p p ++ A+ transitions. Lattice predictions for the hyperon Ml transition moments agree with those
of a simple quark model. However the manner in which the quarks contribute to the transition
moments in the lattice simulation is diferent from that anticipated by quark model calculations.
The scalar quadrupole form factor exhibits a behavior consistent with previous multipole analyses.
The E2/Ml multipole transition moment ratios are also determined. The lattice results suggest
RFM: g+g/QM'i ——+3 + 8% for p p ~ 6 transitions. Of particular interest are significant
nonvanishing signals for the E2/Ml ratio in = and E electromagnetic transitions.

PACS number(s): 13.40.Fn, 12.38.Gc, 14.20.—c

I. INTRODUCTION

One of the great promises of the lattice gauge approach
to @CD is to reveal the quark substructure and dynam-
ics of hadrons. Lattice calculations of SU(3)-Ilavor octet
and decuplet baryon electromagnetic form factors [1,2]
have made significant steps in this direction. Calcula-
tions of quark charge distribution radii have described
the manner in which the quarks are distributed within
baryons and how these distributions change from one
baryon to the next. The magnetic properties of quarks
within baryons have also been examined. A strong sensi-
tivity to the environment in which a quark resides is seen
in the quark contributions to the octet baryon magnetic
moments. Evidence suggests dynamical quark mass ef-
fects, nonperturbative gluon interactions, and relativistic
dynamics are the mechanisms underlying this phenom-
ena. The lattice calculations have also given us access to
many @CD observables that otherwise are not available
at present from laboratory experiments. This new in-
formation will be indispensable in both the development
and testing of model hypotheses for low-energy hadron
physics.

In this paper we continue our exploration of baryon
electromagnetic structure through calculations of the
electromagnetic multipole form factors describing the
N p ~ A transition as well as other octet to decuplet
baryon electromagnetic transitions. The electromagnetic
transitions of % p ++ D have been the subject of intense
study [3—20] since the preliminary analyses of the pho-
toproduction data [21—23] in which a nonvanishing value
for the E2/Ml ratio of form factors was found. The finite

value of this ratio indicates some deviation from spheri-
cal symmetry in the nucleon and/or A ground-state wave
functions [24].

The calculation and prediction of transition moments
is an integral part of the development and testing of
model hypotheses. By calculating the transition mo-
ments of the entire baryon octet we hope to discover the
dependence of the transition moments on the quark mass
and make more extensive comparisons with model calcu-
lations. It will be interesting to learn whether the quark
electromagnetic properties resemble those of quarks in
octet baryons or decuplet baryons. A comparison of the
efFective quark moments determined from the transition
moments with those determined in our previous anal-
yses will give a great deal of insight into the concept of
constituent quarks and intrinsic moments. Moreover, the
lattice results will provide access to many more transition
moments which may be useful for model development.

While most of the present attention is directed to a
determination of the E2/Ml transition moment ratio it
should be noted that the actual value of the M1 transi-
tion moment is itself not well known. Factors contribut-
ing to this are the long-standing and well-known prob-
lems associated with defining the properties of a hadron
unstable to strong interactions. In this lattice calcula-
tion, these issues do not present a problem until we at-
tempt to make a comparison with the experimental mul-
tipole analyses. For the quark masses considered on the
lattice the A is stable, since energy conservation prevents
it from decaying to a more massive sr% state.

An obvious approach to the defi. nition of A properties
on the lattice is to calculate where the A is stable and
smoothly extrapolate the values to the physical quark
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masses. In essence, this deGnes a model for what we mean
by the properties of the A. Such a deGnition is common
to many models of hadron structure, such as the simple
quark model, which have excitations which are stable to
strong interactions. However, the 4 should be regarded
as dressed as the possibility of Z graphs in the quark
propagators allow intermediate states of the 4 with mul-
tiple qq states. These intermediate states are expected to
have overlap with mesonic dressings of 6 including vir-
tual mN intermediate states [25]. The quark mass depen-
dence of the M1 transition moment is extremely weak.
Any problems associated with the extrapolation to the
physical quark masses are not apparent.

Early lattice calculations of electromagnetic form fac-
tors focused on the pion with SU(2) color [26—28] and
later with SU(3) color [29—31]. Calculations of the pro-
ton electric form factor followed [32]. Electromagnetic
form factors of vr, p, and % were calculated [33] from
which magnetic moments and electric charge radii were
extracted. Our analysis of the entire baryon flavor-octet
followed [1] in which electromagnetic properties were re-
ported for both baryons and the quark sector contribu-
tions. The q dependence of the nucleon electromagnetic
form factors was examined using a method which char-
acterizes one of the nucleon interpolating fields as a zero
momentum secondary source [34]. Finally, our examina-
tion of the baryon decuplet [2] revealed underlying quark
interactions in which mass effects and spin-dependent
forces counteract each other. The significant baryon de-
pendence of quark electromagnetic properties seen in the
octet was not reproduced in decuplet baryons.

The study of hadronic wave functions has also received
some attention and has conGrmed the presence of spin-
dependent interactions in lattice simulations of @CD that
cause the distribution of the d quarks in the neutron to
be larger than that of the u quark [35). Similar spin-
dependent interactions were seen in our calculations of
octet baryon electromagnetic form factors and are re-
sponsible for the negative squared charge radius of the
neutron. The wave-function analyses also indicate an
absence of substantial scalar diquark clustering, in agree-
ment with our calculations of octet and decuplet baryon
charge radii [36]. A comparison of wave functions cal-
culated in quenched and full @CD [37] indicates there is
little difference between the two calculations outside of
a simple renormalization of the coupling constant. This
supports the usefulness of the quenched approximation,
at least for the quark masses currently investigated on
the lattice.

The qualitative behavior of charge distributions in the
nucleon have been confirmed in wave-function analyses
[35] which employ a very different approach in obtain-
ing information on quark distributions. Unfortunately a
quantitative comparison is not possible as wave functions
are not defined in a gauge invariant manner. Wave func-
tions calculated in difFerent gauges have difFerent shapes
and distribution sizes. In contrast with our lattice form
factor analyses, it is not possible to calculate, for exam-
ple, a charge radius from the wave functions that may be
directly compared with experimental measurements.

The format of our paper is as follows. In Sec. II we re-

II. CORRELATION FUNCTIONS AT THE
QUARK LEVEL

A. Interpolating Aelds

For the octet baryon interpolating Gelds we use the
following standard forms. For the proton,

~"(x) = '
[~ (x)&»d'(x)] ~ (*). (2.1)

This interpolating Geld has the advantage of excluding
components which vanish in a nonrelativistic reduction
and which otherwise act to increase statistical uncertain-
ties in lattice simulations [1]. Unless otherwise noted we
follow the notation of Sakurai [38]. The Dirac p ma-
trices are Hermitian and satisfy 1p~, p ) = 2 8„„,witho„„=2, [p»p~]. C = p4p2 is the charge conjugation
matrix, a, 6, c are color indices, u(x) is a u-quark field,
and the superscript T denotes transpose. As in our de-
cuplet baryon analysis we utilize the A+ interpolating
Geld

(x) = ~ ' 2 u (x)Cp d (x) u'(x)
3

+ ~'(*)~~-"'(*) & (*)j ('2)

Other baryon interpolating fields are obtained with the
appropriate substitutions of u(x) or d(x) —+ u(x), d(x)
or s(x). For the transition moments of E p ++ Z* we
use the octet interpolating field

X'(x) = ,.b. T. x C~5sb x d x

+ [d (*)&~. '(*)1 (*)), (2 &)

view the interpolating fields used to excite the octet and
decuplet baryons. The two- and three-point correlation
functions corresponding to these interpolating Gelds are
presented at the quark level. The transition moments
for A p ++ Z* are not reported here as the correlation
functions for this transition difFer from those of the rest
of the octet. These transition moments will be examined
in a future lattice investigation of AH baryons and heavy
quark symmetry. Section III reviews the covariant ma-
trix element that defines the baryon multipole transition
moments. The formalism developed to isolate and ex-
tract the form factors from the current matrix element is
presented in detail. Lattice techniques are briefly sum-
marized at the end of Sec. III. Calculations of the three-
point correlation functions used to extract the form fac-
tors from the lattice simulations are illustrated in Sec.
IV. To provide some background to the study of tran-
sition moments we have generalized the quark model of
Darewych, Horbatsch, and Koniuk [9] for Z and A transi-
tions, to include nucleon and:- transitions. These quark
model predictions are summarized in Sec. V. Section VI
presents the lattice determinations of the transition mo-
ments and compares the lattice results with model expec-
tations. Section VII presents an overview of the results
and an outlook on future calculations.
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and the decuplet interpolating field B. Correlation functions

bc ~Ta &C+ db x s

+ dT (x)Cp s'(x)] u'(x)

+ ~ (*)&~-~'(*) ~'(*)) ('4)

Correlation functions at the quark level are obtained
through the standard procedure of contracting out pairs
of quark fields. Consider the p ~ 4+ two-point correla-
tion function at the quark level:

(G. "(t;p) ) =) e ""(~ TIX. (z)~"(0)) ~) (2.5)

—ip x abc a' 'c' 2Saa' CSTbb'C Scc' 2Saa' CSTbb'C Scc'
u +5 d Qo. u d 75 u 7~

—S tr p5 CS Cp Sd+ Saa' t CSTbb C Scc (2.6)

where the quark propagator S„=S„(x,0) = T[u (x), u (0)] and similarly for other quark flavors. Here 0
represents the @CD vacuum.

Similarly, the A+ —+ p correlation function has the following form at the quark level

(2.7)

I t t I Tbb' I) e e e 2S„ t4p t4 CS„"C ps S„'—2S p4p t~ C'Sd C ps S"
I Tbb' I

+ Saa t CSTbb C
I Tbb' I—S tr p4p p4CSd Cp5 S (2.8)

Both of these two-point correlation functions vanish under SU(2)-isospin symmetry as required by the isospin
invariance of strong interactions. However with Sd replaced by S, as in Z+ there remains some overlap between
the interpolating fields. Unfortunately, this overlap is insufhcient to extract any useful information on the spin-—
component of the spin-2 interpolating field.

The corresponding connected three-point function may be constructed by replacing each of the three propagators
S, one at a time, by S denoting the propagation of a quark in the presence of the electromagnetic current. The
three-point function analogous to (2.6) is

( G ' "(t2, t, ;p', p) ) = ) e * "'e *( ) "'
( 0 T[y (z, )j"(zg)y"(0)] 0 )

X2 )Xy

(2 9)

—i p ' x2 abc a'b'c' 2Saa' CSTbb' C Scc' 2Saa' CSTbb' C Scc'
u +5 d +~ u d +5 u +~ u

X2

+ S tr p5CSd Cp S„"
+2S ~ CS "C~ S"—
+ S„tr p5 CSd Cp S„"
+ 2Saa' CSTbb' C Scc'

+ S tr PSCSd CP S„

—S tr p CS Cp

2S CS C S"
d +5 u +~ u

—S„-'tr q, CSTbb'C'q

2Saa' CSTbb' C Scc'
d ~5 u +~ u

Scc
d

Scc
d

S„tr P5 CSu C P~ Sd (2.10)

where S„=S„(z2,0;tq, q, p) and q = p' —p. The
three-point correlation function analogous to (2.8) fol-
lows a similar pattern. Using the interpolating fields of
(2.3) and (2.4), it is straightforward to verify the SU(2)-
isospin symmetry relationship for Z three-point transi-
tion correlation functions

Z++ K—
y0

2
(2.11)

It is useful to examine the symmetries manifest in these
correlation functions. First, it is apparent that one of
the doubly represented quarks cannot contribute to the
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transition moments when the masses of the remaining
two quarks are equal. In (2.10) the net contribution of
the first four terms vanishes under SU(2)-isospin sym-
metry. The contributions of the remaining two quarks
to the electromagnetic transition moments differ only by
the charges of the quarks and a minus sign. An immedi-
ate consequence of this is that all the transition moments
for p p m 4+ are equal and opposite in sign to the tran-
sition moments for n p ++ A . Differences between the
magnitudes of n and p transition moments reHect isospin-
symmetry breaking in the u-d-quark sector and the con-
tributions of diagrams in which the photon couples to a
disconnected quark loop interacting via gluons with the
nucleon and A. Under SU(3)-flavor symmetry, the elec-
tromagnetic transition moments for Z p ~ E* and for

p ++ =* vanish. This point was first discussed by
Lipkin [39].

Breaking SU(3)-flavor symmetry through the introduc-
tion of the more massive strange quark allows a non-
trivial result for the Z and:- transitions. How-
ever, the magnitudes of all the transition moments for

and:- are governed by the size of the u-s-quark
mass splitting. Furthermore, the transition moments of
Z p ++ Z* and:- p ++ =* will display an approxi-
mate symmetry analogous to the exact isospin symmetry
of p p ++ 4+ = —(n p ++ 4 ). The transition moments
of Z p ++ E*+ and:- p ++ =* will also display a
similar approximate symmetry.

The spin- —component of the spin-2 hyperon interpo-
lating fields is a source of possible contamination in Z and
:- transition moments. However, our lattice results for
decuplet baryon two-point functions give no evidence of
a low-lying spin-& excitation from the spin-& component
of the hyperon spin- 2 interpolating fields. The L baryons
are the lowest-lying baryons in the mass spectrum hav-
ing the appropriate quantum numbers and therefore any
spin- — excitations have a larger mass and. will be expo-2
nentially suppressed. The smallness of the two-point cor-
relation functions describing the overlap between octet
and decuplet hyperon interpolating fields further sup-
ports the absence of any significant octet baryon con-
taminations in the hyperon correlation functions.

While it may be desirable to use the spin-& projection
operator [40]

~3/2„'.'(P) = qP- —
3V~W-

—3, (V PW~P-+P~v W P)-,
3p

one must calculate additional elements of the matrix in
Dirac and Lorentz spaces of the three-point correlation
functions. Such a calculation would exceed our current
analysis of three Lorentz terms and two Dirac terms for
two components of the electromagnetic current by a fac-
tor of 16.

III. CORRELATION FUNCTIONS AT THE
BARYON LEVEL

A. Current matrix elements

In this section discussing correlation functions at the
hadronic level, the Dirac representation of the p matrices
as defined in Bjorken and Drell [41] is used to facilitate
calculations of the p-matrix algebra. It is then a simple
task to account for the differences in p-matrix and metric
definitions in reporting the final results using Sakurai's
notation. In the following we will label octet and decuplet
baryons by N and A, respectively. However, the results
may be applied to any of the octet to decuplet baryon
transitions.

The electromagnetic transition moments of N p ++ A
have been thoroughly examined and as a result the cur-
rent matrix element for even parity transitions is well es-
tablished. In this investigation we adopt the form which
expresses the current matrix element directly in terms
of the Sachs transition form factors [6,42]. This matrix
element is the most general form required for the descrip-
tion of on-shell nucleon and A states with both real and.
virtual photon momentum transfers. The current matrix
element for N p ~ 4 transitions has the form

(A(p', s')~j" ~K(p, s)) = i
i/2

N
(3.1)

with

" = &Mi(q')KM", + &~2(q')Krz+ &~2(q')KC2, (3 2)

where

3 (M~ + M~)
((M~ + Miv)2 —q2) 2M~

K&2 ———K~~ —6 0 (q ) e P q~ e"q (2P~ + q~) qg its
2V

(3.3a)

(3.3b)

K "=—60 '( ) ( P~ —q Pq") its(
N

(3.3c)
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O(q ) = ((M~ + Miv) —q ) ((M~ —Miv) —q ) .

48

(3.4)

Momentum is denoted by p, p', spin by s, s', and u (p, s) is a spin vector in the Rarita-Schwinger formalism [43].
Here q = p' —p and P = (p+ p') /2. The form factors QMi, /~2, and /~2 are referred to as the magnetic dipole Ml,
electric quadrupole E2, and electric charge or scalar (time component of the electromagnetic current) quadrupole C2
transition form factors [44].

The current matrix element for the inverse reaction 4 ~ N p is defined by the Hermitian conjugate of (3.1),

(~(p' s')lj" l&(p s)) —= (&(p s)lj"l~(p' s')) = —~

1/2

E E,
"

I
u(p' s')& "u-(p s)

N ) (3.5)

where we have used the symmetry

0 (gvp)t 0 g~p (3.6)

B. Correlation functions

To isolate and extract the form factors we consider the following ensemble averages of two- and three-point Green
functions at the hadronic level

(G~~(t;p, r) )= ) e '& "r~- (n T[y (x)y~(0)] n), (3.7)

(G (t p I))=) e * "r~ (0 T[y (x)y~(0)] 0), (3.8)

( G ~ (t2, ti, p, p;I) ) = ) e ' '"'e+' '"'r~ (0 T[y (x2)j"(xi)y (0)] 0),
X2)Xg

(3 9)

and

( G ' (t2, t, ;p', p; I ) ) = ) e * "*e+*( ) "'r~ ( 0 T[y (x2)j"(zi)y~(0)] 0 ) .
X2 )Xy

(3.1o)

Here, I' is a 4 x 4 matrix in Dirac space and n, P are Dirac indices. The subscript cr (and r) is the I orentz index of
the spin-2 interpolating field. At the hadronic level one proceeds by inserting a complete set of states B(p, s) ) and
defining

( 0 y (0) A(p', s') ) = Z~, u (p', s'),E( o' ) (3.11)

where Z~ represents the coupling strength of y(0) to the baryon 4 which may be any baryon resonance having the

quantum numbers of the A. E& ——(p' + M&) and Dirac indices have been suppressed. Similarly, the overlap
between the octet interpolating field and the physical states is defined as

(0 y(0) K(p s) )= Z~ u(p s).
EN

(3.12)

Using the Rarita-Schwinger spin sum

) u-(p s)u-(p s) =— p + M~ 1 2p~p~ p~p~ —p
gcTT 3 Qc7QT 3M2 3M (AT ) (3.13)

the Dirac spinor spin sum,

) (p )(p )=
2M~

(3.14)
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our usual definitions for I',

=2(0 0&
0 I

(3.15)

and p = (p, o, o), the octet and decuplet two-point functions take the large Euclidean time limits

(G (t;p, r) ) =Z e 'tr r~
@N 2

1/2
Z~ ~~E~+Miv ~ z~i—

2E

(3.i6)

(3.17)

and

(G (t p 1))=Z e 'tr[rA ].H @
(3.iS)

Similarly, for large Euclidean time separations t~ —t~ )& 1 and tq &) 1 the three-point function at the hadronic level
has the limit

( G~'"~(t„t,; p', p;r) )

=) .— -~"-"l.— -' r~-(n &.- ~(&', .') )(~(p', .') j N(„,,) )(N(&, .) &~ n), (3.ig)
s, s'

where the matrix element of the electromagnetic current is defined in (3.1)—(3.4) and the matrix elements of the
interpolating fields are defined by (3.11) and (3.12). Furthermore

( G~'"~(t„t„p',p;r) )

= ) e ~ ' " e ~ 'r~ ( n y N(p', s') )( N(p', s') j" A(p, s) )( A(p, s) y~ n ), (3.20)
S)S

where the current matrix element is defined in (3.5).
To isolate and extract the Sachs form factors we construct the ratio

(( G~~"~(t„t,; p', p; I') )( G~~"~(t„t,; —p, —p', rt) ) )

1/2 1/2

a.(
' .r )) 2E, ~ P ~p»P)

(3.21)

where we have defined the reduced ratio A (p', p; I'; p). Note that there is no implied sum over 0 in (3.21). For
large time separations B (p, p; I'; p) becomes constant and independent of time. In our decuplet baryon analysis
we stressed the importance of maintaining the lattice Ward identity when selecting the two-point functions to be
used in the analogous ratio. In this case, however, there is no identity to maintain and so we are free to choose any
combination of decuplet two-point functions in the ratio. In practice we use the sum of two-point functions which
provides the minimal statistical uncertainties. The optimum combination of decuplet two-point functions used in
place of —gi'"G+&+(tq,'p ', I'4) in (3.21) throughout this analysis is

(E~+ M~~

(3.23)

(3.24)

In determining the appropriate forms suitable for calculations using Sakurai's conventions the definitions of the
p matrices used in the interpolating B.elds and electromagnetic current are taken into account. The charge form
factor is associated with the time component of the electromagnetic current and therefore does not contribute to
photoproduction processes. By selecting the time component of the current and g = (q, o, o) the electric charge
transition form factor may be extracted in three ways
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Ex+ Mx
c2 = 2&3 M~+ M~

I EN+MN
c2 ——4~3

M~+ M~

M M
EN+ MN

6+ N

M~MN

q 2

M~MN

q 2

M~MN
g2

Bq(q, o; i—I q, 4),

B,(q, o;tr„.4),

B,(q, o;tr, ;4),

(3.25a)

(3.25b}

(3.25c)

where the Green functions at the quark level appearing in B, are defined in terms of Sakurai s notation. While each
of (3.25) produces values for &~2 which are in agreement, the statistical uncertainties are relatively large. We will
report values for @~2 taken from a flt to the sum of these three ratios.

Similarly, by selecting the spatial component of the current and q = (q, o, o), the Ml and E2 transition moments
may be isolated. The magnetic Ml transition moment may be extracted in two ways:

EN+ MNMl- M. +M.
g, =2~3

M~+ MN

MN-
B2(q, 0;i I'4, 3),

q

"(A,(q, o;r, ;3) —B,(q, o;r„3))
q

(3.26a)

(3.26b)

Values for gMq taken from either of these ratios are in agreement within statistical uncertainties. Optimum results
are obtained from a fit to the sum of these ratios and are reported in the following.

Finally the electric E2 transition moment may be obtained from

(Rs(q, o;I g, 3) B,(q, o;rs;3)) .6+ N q
(3.27)

C. Lattice techniques

Here we briefly summarize the lattice techniques used
in the following calculations. Additional details may be
found in Ref. [I]. Wilson's formulation is used for both
the gauge and fermionic action. SU(2)-isospin symmetry
is enforced by equating the Wilson hopping parameters

We select three values of v. , which we de-
note vq ——0.152, r2 ——0.154, and r3 ——0.156. To make
contact with the physical world, the form factors calcu-
lated at our three values of v are linearly extrapolated
to r, where an extrapolation of the squared pion mass
vanishes. The di8'erences between linear extrapolations
to m = 0 as opposed to the physical pion mass are small
and are neglected. in the following. To account for the rel-
atively heavy strange quark we fix r, = v~, the smallest
of the three values of K considered. This allows an ac-
ceptable extrapolation of the light quarks to the chiral
limit through values of quark mass less than or equal to
the strange quark mass. Our calculations of octet and
decuplet baryon masses indicate that this selection for

r, gives a reasonable description of the strange quark
dynamics. Table I summarizes the lattice hadron masses
for the pion and the baryons under investigation.

The conserved electromagnetic current is derived from
the fermionic action by the Noether procedure:

j"(x) = ) QyKf [g (x+ p) (I + p") U" (x) Q (x)

-0 (~) (I —~") U'(~) @'(*+~)]
(3.28)

where Qf is the charge of the quark of flavor f. In the
limit of the lattice spacing a ~ 0, j~ reduces to the
continuum current. The lattice Ward identity guaran-
tees the lattice electric form factor reproduces the total
baryon charge at q = 0. The quark propagators coupled
with fixed momentum qz

——(q, o, o) to j~ are calculated
using the sequential source technique (SST) [45—47].

To minimize noise in the Green functions we exploit
the parity symmetry of the correlation functions, and the

TABLE I. Hadron masses in lattice units (Ma).

Baryon r i ——0.152
0.62(1)
1.09(3)
1.09(3)
1.09(3)
1.13(3)
1.13(3)
1.13(3)

m2 ——0.154
0.53(1)
0.96(3)
1.01(3)
1.05(3)
1.02(4)
1.05(4)
1.09(4)

r3 = 0.156
O.43(1)
0.84(3)
0.92(3)
1.00(3)
0.90(5)
O.98(4)
1.05(4)

m„=0.1598(2)
0

0.61(5)
0.76(4)
0.91(4)
0.70(7)
O.84(5)
0.98 (4)
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equal weighting of (U) and 1U*) gauge configurations in
the lattice action. Defining s~ as

G(p ', p, q; I') = s~ G(—p ', —p, —q; I'), s~ = +1,

(3.29)

and 8c as

r = 8~ CrC-' 8c = +1) (3.30)

where C = Cp5, the correlation functions are real pro-
vided

(3.31)

This condition is satisfied with the selections for I" indi-
cated in (3.25a)—(3.27). While this approach requires an
extra matrix inversion to determine an additional SST
propagator with momentum —qi, inclusion of both (U)
and (U*) configurations in the calculation of the cor-
relation functions provides an unbiased estimate of the
ensemble average properties which has substantially re-
duced Huctuations [48].

Twenty-eight quenched gauge configurations are gen-
erated by the Cabibbo-Marinari [49] pseudo-heat-bath
method on a 24 x 12 x 12 x 24 periodic lattice at P = 5.9.
Dirichlet boundary conditions are used for fermions in
the time direction. Configurations are selected. after 5000
thermalization sweeps from a cold start, and every 1000
sweeps thereafter [50]. Time slices are labeled from 1
to 24, with the b-function source at t = 4. A symmet-
ric combination of the current [j"(xi —y) + j~(xi)]/2
is centered at time slice tq ——12. The spatial direction
of the electromagnetic current is chosen in the z direc-
tion. The following calculations are done in the labora-
tory frame p = 0, p' = qi ——(2vr j24, 0, 0), the mini-
mum nonzero momentum available on our lattice. Using
the nucleon mass, the lattice spacing is determined to be
a = 0.128(11) fm, a = 1.54(13) GeV.

Statistical uncertainties are calculated in a third-order,
single elimination jackknife [51,52]. A third-order jack-
knife provides uncertainty estimates for the correlation
functions, fits to the correlation functions, and quanti-
ties extrapolated to the chiral limit.

Ideally, we would like to calculate the form factors at or
very close to Q = 0, allowing a direct comparison with
the more commonly referred to transition moments. For
the decay of our lattice L at rest, energy-momentum con-
servation requires a photon momentum of approximately
130 MeV, whereas the minimum momentum available on
our lattice is 404(35) MeV. Since the minimum momen-
tum available on the lattice is inversely proportional to
the longest physical spatial dimension, calculations at
Q = 0 will require lattices with much larger physical
volumes. This diKculty is further compounded by prob-
lems associated with tuning the physical lattice size to
reproduce the desired momentum or alternatively, using
a very Gne lattice spacing and much larger lattice vol-
umes to reduce the need. for tuning the lattice length.

The momentum transfer at which the form factors are

calculated is approximately independent of the baryon
under investigation. For p, Z, and:- transitions the Q
is 0.15(4), 0.16(2), and 0.16(1) GeV, respectively. A
similar independence is seen over the three values of v
and r„under consideration. Therefore variation of the
form factor momentum transfer in the extrapolations is
not a source of concern.

To make contact with the transition moments at Q
0 we will follow the usual procedure of describing the Q
dependence of the three transition form factors by a com-
mon function [6]. In addition we will assume that the
momentum transfer dependence of the transition form
factors is the same as the momentum dependence of the
decuplet baryon charge form factor g@. The decuplet
baryon elastic form factors are determined at a similar
Q of 0.16(3) GeV . This allows a simple scaling of the
transition form factors to Q2 = 0 without specific refer-
ence to the functional dependence on Q

As in our octet and decuplet baryon analyses the scal-
ing is done separately within each quark sector. The Q2
dependence of the individual quark sector contributions
can be quite difFerent, particularly in hyperons. Con-
sider, for example, the magnetic transition form factor
for hyperons. The strange and light quark sectors are
scaled separately by

&Mi(o) &z(0)
&~i(&') &z(&')

' (3.32)

and similarly for the light quarks, such that the magnetic
transition moment of a hyperon is given by

&Mi(0) = &Mi(0) + &~i(0)

where l labels the light quarks. For N p E-+ A transi-
tions it is not necessary to separate the u- and d-quark
sectors due to the SU(2)-isospin symmetry of the corre-
lation functions. The increase in the form factor value in
going from our finite value of q to q = 0 is typically the
order of 15%. This approach was used in our previous
octet and decuplet baryon analyses and is preferred over
extrapolations in q to g = 0 which suer from large
statistical errors.

One might argue that an average of the octet and decu-
plet baryon charge form factors should be used in scaling
the transition moments to Q = 0. However differences
in the quark charge distribution radii in octet baryons
depending on whether the quark is singly or doubly rep-
resented would induce an asymmetry in the quark sector
contributions to the transition moments at Q2 = 0. This
contradicts the symmetry manifest in the three-point cor-
relation function of (2.10) which demands the u- and
d-quark contributions to the p p ++ 4+ transition mo-
ments to be equal and opposite in sign for equally charged
quarks. As a result we choose to use the decuplet baryon
charge form factors alone which preserve this symmetry.
The difference in the scaled transition moments using the
two di8'erent approaches is small as the u-quark distribu-
tion in p is approximately equal to that in A+, while the
d-quark distribution radius is only slightly larger in A+.

In our decuplet baryon analysis we found that the
charge radius of L+ may actually be smaller than that of
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the proton [2,36]. This might seem to contradict evidence
from the Q dependence of transition form factors which
suggests the size of the A resonance is larger than the
proton [53—55]. We note however, that the predominant
difference between the quark charge distributions of the
proton and A is the broader distribution of the d quark
in A. For charge radii the negative charge of the d quark
acts to decrease the charge radius of A. However, for the
transition moments of p p ~ A+ the d quark contributes
in a positive manner. Therefore the distribution radius
associated with the transition moment is larger than that
associated with electric charge in A+.
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IV. CORRELATION FUNCTIONS

In this section we examine the lattice calculations of
the correlation function ratios used to extract the elec-
tromagnetic transition form factors. Let us first consider
the correlation function ratios used to extract the charge
transition form factor, gcq. Figure I displays the sum
of ratios P, z R, for u- and d-quark contributions to
p p ++ L+ charge transitions. The arguments of R, are
as indicated in Eqs. (3.25). Quark charge factors have
not been included. At r-i all quark masses are equal
and therefore Fig. 1 illustrates the quarks contributions
to any of the octet to decuplet baryon charge transi-
tions provided doubly represented quarks are identified
with the u-quark contribution and the singly represented
quark with the d-quark contribution. The charge transi-
tion form factor is small and by time slice 18 the signal is
lost in the noise. Correlation functions for lighter quark
masses have larger uncertainties.

Quark correlation function ratios for the magnetic
transition form factor @MAL of p p ++ 4+ are illustrated
in Fig. 2. The ratios displayed correspond to the sum of
the ratios B, of (3.26a) and (3.26b). Taking results from
a sum of all three ratios reduces the statistical uncertain-
ties particularly for larger values of v. The time evolution

0.02

FIG. 2. Quark correlation function ratio sum for the mag-
netic transition form factor g~q of p p ~ A+ at Kq. Argu-
ments of R, are as indicated in Eqs. (3.26).

of the correlation function is as follows. At time slice 4,
a baryon with the quantum numbers of the proton or A
is created. After excited states are exponentially sup-
pressed relative to the baryon ground state, the quarks
interact with the electromagnetic current at time slice
12. After a number of time steps, the alternate baryon
is annihilated. For large time separations between the
electromagnetic current interaction and annihilation, the
correlation function ratios are to become constant and
independent of time. The correlation function ratios il-
lustrated in Fig. 2 for our intermediate value of v display
small statistical uncertainties. However, the central val-
ues do not form as Bat a plateau as in our elastic form
factor analyses of octet and decuplet baryons. Similar
results are seen for each of (3.26a) and (3.26b).

Figure 3 displays the analogous ratios for the mag-
netic transition form factor of:" at the lightest u- or
d-quark masses considered. The strange quark correla-
tion function ratio forms a convincing plateau for time
slices greater than or equal to 17. The central values of
the light quark correlation function ratio do not form a
similar plateau. However for times slices greater than or
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FIG. 1. The ratio sum g. R, for u- and d-quark contri-
butions to the p p ++ A+ charge transition form factor. Ar-
guments of R, are as indicated in Eqs. (3.25). Quark charge
factors have not been included. The d-quark contributions
have been offset in time for clarity.

10 12 14 16 18 20 22

FIG. 3. Quark correlation function ratios for the magnetic
transition form factor g~q of:- p ++ =* at r = rd, = K3.
Arguments of R, are as indicated in Eqs. (3.26).
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equal to 17 it is easy to fit the ratio with a horizontal line.
This drift in the central values of the light quark correla-
tion function ratios is typical of other baryon transitions
such as % p ++ A.

The form factors are determined by fitting the correla-
tion function ratios by a horizontal line for times t2 )) 12
and t2 (( 24. We consider fits of the ratios from time slice
15 through 21 in intervals including 4 to 7 points. The re-
sults selected for presentation come from fits in the time
slice interval 17 to 20 or 21. These fits are chosen using
a covariant Fitting procedure. The y /KDp ranges from
0.4 to 1.5 for M1 transition form factors, 1.0 to 2.3 for
E2 form factors, and 0.1 to 0.7 for C2 form factors. The
selection of these intervals provides a balance between
statistical uncertainties and the systematic uncertainty
due to drift in the correlation function ratio. This inter-
val differs from our study of octet and decuplet baryon
elastic form factors where the optimal interval was 16
through 20.

Electric quadrupole transition form factors are deter-
mined from the sum of correlation function ratios Bq and
R3 as indicated in (3.27) . Figure 4 displays Rr, Rs, and
the sum Bi + B3 for the u-quark contribution to the
p p ++ A transition at K„=vr. In determining @~2
one can fit both Ri and Ba and combine the result or
alternatively fit the sum Bq + R3. The extracted values
agree within statistical uncertainties. Since both Ri and
R3 should become constant and independent of time we
choose to enforce this condition by fitting both Bi and
R3 and we refer to these results in the following.

Correlation function ratios for larger values of K have
larger statistical uncertainties and therefore the extrac-
tion of a clear nonzero value for the electric quadrupole
transition moment in this analysis is not possible for
most baryons. However a combination of fIavor symme-
try breaking and the symmetry manifest in the three-
point correlation functions allows a prediction for the
negatively charged hyperon electric quadrupole moments
that differs from zero by 2 standard deviations.

The negative charge baryons are unique in that the
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charge factors multiplying the quark three-point correla-
tion functions are equal (—s). Moreover the quark cor-
relation functions are equal and opposite in sign in the
SU(3)-flavor limit. Thus fluctuations in the correlation
functions are anticorrelated and to a large extent cancel
when added to construct the negative charge baryons.

Figures 5 and 6 display the correlation functions for 8-
and u-quark contributions to the = E2 transition mo-
ment at, v„=v3. A comparison with Fig. 4 for the
p p ~ A+ transition in the SU(3)-flavor regime where
v„=v, = vr reveals that SU(3)-flavor symmetry break-
ing in = p ~ =* has caused the strange quark contri-
bution to largely vanish while the u-quark contribution
remains finite. Addition of the quark contributions with
anticorrelated fIuctuations gives a finite result different
from zero by 2 standard deviations. Similar results are
seen for the transition moments of Z p ~ Z* where
the singly represented strange quark contribution is once
again seen to largely vanish. The finite E2 transition
moment has its origin in the light quark which is less
localized and more sensitive to the periodic boundary
conditions and spatial asymmetries of our lattice.

0.15

FIG. 5. Correlation function ratios for 8-quark contribu-
tions to the electric quadrupole transition form factor of

at K„=K3. The strange quark contribution
has largely vanished as the u quark has become light.
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FIG. 4. Correlation function ratios for u-quark contribu-
tions to the electric quadrupole transition form factor of
p p ~ A+ at K = K, = Kj. The arguments of the ratios
Br and Rs are as indicated in (3.27).
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FIG. 6. Correlation function ratios for u-quark contribu-
tions to the electric quadrupole transition form factor of
~o ~~op++ = at K„=K3.
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TABLE II. Quark model predictions for transition moments.

Transition

pp++ A+
nymph'
z+~ ~ z*+

E pm'*
~Q ~gQ

p ++

'QM 1

(S n)
2.15

—2.15
2.61
1.10

—0.40
—2.86

0.44

202
—202

151
64

—23
—158

24

Units of (10 GeV )
—101

101
—75
—32

12
79

—12

—175
175

—131
—55

20
137

—21

r
(keV)
330
330
100

18
2.4
137
3.2

V. SIMPLE QUARK MODEL PREDICTIONS

Before proceeding to the lattice results we present
here the transition moment predictions of a simple quark
model. We have generalized the model calculations of
Darewych, Horbatsch, and Koniuk [9] to include the en-
tire baryon octet to decuplet transitions. The model is
simple in that no attempt has been made to account for
configuration mixing [8] in the spin-fiavor wave functions
or the inclusion of explicit pion dressings of the nucleon
[7]. For the baryon transitions under examination here,
the general result of their model may be written

(5 1)

transition moments in this simple model are zero. The
magnetic dipole transition moments g~i are summarized
in Table II in units of natural magnetons. Helicity ampli-
tudes, decay widths, and transition moments using the
more widely used conventions of the Particle Data Group
[22] are also given. Relationships among these quantities
are summarized in the Appendix.

For the proton transition moment (5.1) reduces to the
well-known relation [56]

(5.2)

provided one neglects the kinematical factors. For tran-
sition moments this is not always a good approximation.

where M and M are octet and decuplet baryon masses,
respectively, and pD and p, s are the intrinsic moments
of the doubly and singly represented quarks, respec-
tively. The parameter K is defined as K = q /6n& where

q = (M* —M ) /2M* and nh, is the harmonic-oscillator
strength parameter taken to be 0.41 GeV. For more de-
tails of the model calculation, the interested reader is
referred to the original publication [9].

It is interesting to note the similarity between (5.1)
and (2.10). In the SU(3)-fiavor limit, both indicate an
equal and opposite weighting of the singly and doubly
represented quarks. However with additional information
from (2.10) it has become apparent that it is possible to
identify one of the doubly represented quarks whose net
contribution to the transition moment vanishes in the
flavor symmetric limit.

For E, the eff'ective moment for pLi is (p„+pd) /2. In
the spirit of the original paper [9] we take p„=—2pd =
2pz/3 and p, /pg = 0.6. Since configuration mixing in
the baryon ground state has not been included, the E2

VI. RESULTS

A. Magnetic dipole transition form factors

Bar yon transition moments

Magnetic dipole form factors calculated at Q 0.16
GeV are reported in Table III at each value of v. consid-
ered, along with the values obtained from a linear extrap-
olation to r„.Quark sector contributions are reported in
Table IV. Extrapolations of the M1 transition moments
for a few representative baryons are illustrated in Fig. 7.
The dependence on v is particularly weak for % p ++ A
transitions. SU(3)-flavor symmetry breaking is clearly
evident in the E and:" extrapolations. However, the
symmetry of the three-point function (2.10) holds to a
good approximation even in the broken flavor symme-
try regime as the transition moments of Z and:- are
roughly equal and opposite in sign. Extrapolated tran-

TABLE III. Baryon magnetic dipole (Ml) transition form factors in units of natural magnetons
(pn = e/2Mii).

Transition

pram

A+
np++ aQ
z+ ~++ z*+
Z'p m Z*'
Z p++ Z*
~Q ~sQ

'y ~ ~

v. i ——0.152
1.66(7)

—1.66 (7)
1.66(7)
0.83(4)
0.00

—1.66(7)
0.00

r 2
——0.154
1.62(8)

—1.62(8)
1.67(9)
0.80(4)

—0.068'(8)
—1.69(7)

0.067(7)

r 3 ——0.156
1.61(11)

—1.61(11)
1.67(11)
0.77(5)

—0.137(23)
—1.72(8)

0.132(15)

r„=0.159 8(2)
1.55(17)

—1.55(17)
1.68(15)
0.71(6)

—0.258(37)
—1.77(11)

0.252(29)
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TABLE IV. Quark sector contributions to the Ml transition form factor. Quantities are nor-
malized to unit charge and are reported in units of natural magnetons (ye = e/2 Mz).

Transition
pp~a+

Z+~ ~ Z*+

~p ~scp

Quark

d

v y
——0.152
1.66(7)

—1.66(7)
1.66(7)

—1.66(7)
—1.66(7)

1.66(7)

Kq ——0.154
1.62 (8)

—1.62(8)
1.73(9)

—1.53(8)
—1.76(8)

1.56(7)

K3 ——0.156
1.61(11)

—1.61(11)
1.81(12)

—1.40 (9)
—1.85(8)

1.45(8)

tc„=0.159 8 (2)
1.55(17)

—1.55(17)
1.94(19)

—1.16(10)
—2.02(12)

1.26(12)

sition moments for the other baryons may be found in
Table V.

In the octet baryon analysis it was found that the
magnitudes of the lattice results for magnetic moments
were consistently smaller than the experimental measure-
ments. It was argued that at P = 5.9 some deviations
from asymptotic scaling may occur. A more recent anal-
ysis [34] determines nucleon form factors at P = 6.0 on
a cubic lattice with physical spatial dimensions roughly
equal to our smaller y and z dimensions. Some improve-
ment is seen in the magnitudes of the magnetic moments
which are still 10—15 % low compared to experiment. Chi-
ral dressings of the nucleon may cause our linear extrap-
olation in 1/r, to underestimate the magnetic transition
moments in the physical regime [57]. Finite volume ef-
fects may also give rise to the underestimation of the
magnetic transition moments as the baryon is restricted
by its periodic images. The proton rms electric charge
radius at v3 indicates the proton largely ills the lattice
in our smaller y and z spatial dimensions. Photon in-
teractions with disconnected quark loops and other non-
quenched corrections may also provide additional contri-
butions [58].

To reduce the efFects of these uncertainties, ratios of
the lattice results to the lattice proton result are used
when making comparisons with experimental measure-
ments or model calculations. Table VI reports the ratio
of the extrapolated baryon magnetic dipole transition
moments to the proton magnetic moment scaled to re-
produce the proton magnetic moment. Values are given
for the Sachs form factor, g~i ——p/p~, where y~ is the
unit of natural magnetons (e/2M~, M~ is the mass of the
octet baryon). Values are also reported for the Particle
Data Group [22] convention, fMi, calculated from @~i
using the physical baryon masses [59]. Relationships for
the Sachs form factors and the conventions of the Parti-
cle Data Group are summarized in the Appendix. The

SU(3)-Ilavor symmetry relationships (2 p m P* )—(:- p ++ =*
) and (E+ p e+ Z*+) = —(:-o p ~ =*o)

are seen to hold to a good approximation. This suggests
the quark contributions to the transition moments do not
depend strongly on the baryon in which the quarks re-
s&de.

In Fig. 8 the lattice predictions of the Sachs form factor
PMi are compared with those of the simple quark model
reviewed in the previous section. Remarkable agreement
is seen throughout the baryon octet to decuplet transi-
tions. A similar agreement was seen between the lat-
tice results and the simple quark model in our decu-
plet baryon analysis. Further examination revealed that
the agreement was largely due to an approximate baryon
independence of the quark efFective magnetic Inoments.
This was in contrast with our octet baryon analysis where
it was found that the electromagnetic properties of a
quark have a strong dependence on the baryon in which
it resides.

2. Effective quark moments

3~2 (M~ &
'~' ('Miv )

(6.1a)

It is interesting to examine the electromagnetic con-
tributions of the quark sectors individually. The baryon
transition moments are composed of a sum of quark sec-
tor contributions and interesting phenomena may remain
hidden in taking the sum. To define an efFective quark
moment we turn to the quark model reviewed in the
previous section. Defining Qadi (g~~i) to be the dou-
bly (singly) represented quark sector contribution to the
transition moment, we define the efFective quark mo-
ments to be

TABLE V. Baryon Ml transition form factors at Q = 0.

Transition
pp~ a+
np++ ap
Z+ p++ Z*+
E'p m Z*'
Z pm'*
~p ~sp

v i ——0.152
1.94(8)

—1.94(8)
1.94(8)
0.97(4)
0.00

—1.94(8)
0.00

r 2
——0.154

1.95(8)
—1.95(8)

1.98(10)
0.94(4)

—0.099(13)
—2.02(8)

0.098(11)

v3 ——0.156
1.97(12)

—1.97(12)
2.03(14)
0.92(5)

—0.20(4)
—2.10(8)

0.202(28)

r.„=0.159 8 (2 )
1.99(20)

—1.99(20)
2.11(21)
0.86(8)

—0.38(6)
—2.24(11)

0.37(5)
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TABLE VI. Baryon Ml transition moments. The lattice
results have been scaled to reproduce the proton magnetic
moment.

Transition

pp m A+
np++ ap
Z+p ++ E*+
Z'p ++ Z*'
Z p++ Z*
~p ~gp

QM1

(v~)
2.46(43)

—2.46(43)
2.61(35)
1.07(13)

—0.47(9)
—2.77(31)

0.47(8)

fMt
(Gv '

)
0.231(41)

—0.231(41)
0.151(20)
0.062(8)

—0.027(5)
—0.153(17)

0.026(4)

3v2 r'M~) '~' f'M~)
4 gM~p (M~) (6.1b)

2.5
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where M~ and M& are the masses of the octet and de-
cuplet baryons under transition. The second mass ra-
tio M~/M~ expresses the form factor g~q in units of
nuclear magnetons. For the central values of the lat-
tice masses, the factor exp( —K) appearing in (5.1) takes
the values 0.986 + 0.003. Since this factor is approx-
imately one and has an obvious model dependence we
have dropped this factor from the definition of the effec-
tive quark moment.

The three-point correlation function of (2.10) indicates
the quark sector contributions to the transition moment
are equal and opposite under SU(3) symmetry. A similar
symmetry was seen in the decuplet baryon three-point
correlation functions. Hence an interesting question to
ask is whether SU(3)-flavor symmetry is broken in the
same manner in the magnetic transition moments as in
the magnetic moments of the decuplet baryons. This
question may be answered with minimal model depen-
dence by taking a ratio of the effective quark transition
moments and comparing the result with a similar ratio
of effective quark magnetic moments in decuplet baryons.
In this way the mass ratios appearing in (6.1) and other
factors neglected in the effective quark transition moment
definitions are eliminated from the SU(3)-flavor symme-
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FIG. 8. Lattice predictions for the Sachs form factor QMq.
The dashed lines are predictions based on the simple quark
model reviewed in Sec. V. Remarkable agreement is seen
throughout the baryon octet to decuplet transitions.

try breaking measure. To compare SU(3)-flavor symme-
try breaking we calculate the ratio

(&s/I n)transitions / (I s/&n) decuplet (6.2)

~ 3.0

gg 2.5
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~ 0.0

YxYÃ3
@~1111+

Of course a simple quark model defines this ratio to be 1.
The lattice results indicate that SU(3)-flavor symmetry is
broken in a different manner for the transition moments
compared to the decuplet elastic moments. For the tran-
sition Z p ++ K the ratio of (6.2) is 0.82(10). Similar
results hold for = p ++ = transitions where the ratio is
0.83(9).

To discover whether it is a suppression of the strange
quark or an enhancement of the u-quark contributions to
the transition moments that is responsible for the devi-
ations from the simple quark model description of flavor
symmetry breaking, we turn to the actual values of the
effective quark moments. Figure 9 illustrates the effec-

—1.0
6.8 6.4 6.5

FIG. 7. Extrapolation of M1 transition moments for a few
baryons representative of baryon octet to decuplet transitions.
The dependence on m is particularly weak for N p ~ A tran-
sitions.

FIG. 9. Effective quark moments determined from the
quark sector contributions to radiative transitions of octet
and decuplet baryons. The quark moments are defined in
(6.1) and are normalized to unit charge. To a good approxi-
mation, the effective quark moments are independent of the
environment in which the quark resides, with the possible ex-
ception of the u quark in =.
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FIG. 10. Effective quark moments determined from the
quark sector contributions to decuplet baryon magnetic mo-
ments. Approximate baryon independence of the quark mo-
ments is displayed. However, some decrease is seen in the
effective quark moments as strangeness is added.

tive quark moments defined in (6.1) normalized to unit
charge. To a good approximation, the efFective quark mo-
ments are independent of the environment in which the
quark resides, with the possible exception of the u quark
in =. The ratio of efFective u-quark transition moments
for = and p indicate a 15(7)% suppression of the efFective
u-quark moment in = p ++ =* transitions. A similar
ratio for the 8 quarks in Z and:- transitions indicates s=
may be smaller by 10(10)%.

In our decuplet baryon analysis a similar gentle en-
vironment sensitivity of the quark moments was seen.
Figure 10 summarizes the efFective quark moments for
quarks in decuplet baryons. Here, the quark moments
decrease as strangeness is added. This may be attributed
to the role the baryon mass plays in setting the scale at
which the quarks contribute to the magnetic moment.

Similar conclusions could be drawn for the transition
moments if it were not for the lack of suppression in the
u-quark moment in Z+ transitions. However the u quark
in Z+ is doubly represented and SU(3)-flavor symmetry
is broken. Terms of the three-point transition correla-
tion function of (2.10) which cannot contribute to nucleon
transitions can now provide additional contributions to
the u-quark sector of Z+ transitions. Similar efFects may
be occurring in the efFective quark transition moment 8=.
However, the inHuence of an additional strange quark in
the baryon appears to be playing a stronger role, and
decreases the magnitude of the magnetic moment contri-
bution.

FIG. 11. Ratios of the effective quark moments from tran-
sitions to the effective quark moments from decuplet baryons.
The light quark transition moments are more consistent with
the values defined by decuplet baryon magnetic moments than
the strange quark transition moments.

Figure 11 displays ratios of the efFective quark mo-
ments from transitions to the efFective quark moments
from decuplet baryons. The light quark transition mo-
ments are more consistent with the values defined by de-
cuplet baryon magnetic moments than the strange quark
transition moments. Hence, it is a suppression of the ef-
fective transition moments of strange quarks relative to
their values in decuplet baryons that is largely respon-
sible for the deviations from the simple quark model
predictions of Havor symmetry breaking. The efFec-
tive strange-quark transition moments are suppressed by
20(9)% and 26(10)% relative to their decuplet baryon
values for Z and:- transitions, respectively.

In our previous analyses we have found the efFective
moment of the u quark in the proton to be equal, to a
good approximation, to the u-quark moment in the L.
Similarly the efFective u-quark moment determined from
transitions of% p ~ L is in agreement with the efFective
u-quark moments in p and A. Given the similarity of u-
quark properties in p and L, this is as one might expect.
Therefore the drift in the central values of the three-point
correlation functions may simply be an indication of the
need for better statistics as opposed to a signature of the
correlation functions failing to reach the plateau region
before the lattice boundary is encountered.

Finally it is worth commenting on why the lattice re-
sults suggest values for the M1 transition moments of
N p ++ A that are somewhat larger than that antic-

TABLE VII. Scalar quadrupole (C2) transition form factors.

Transition
@pm'+
np++ ap
Z+ p++ Z*+
Z' p++ Z*'
Z p++ Z*
~p ~~p

r i ——0.152
o.o4(7)

—0.04(7)
o.o4(7)
0.02(3)
0.00

—0.04(7)
0.00

r 2 ——0.154
—0.02(16)

0.02(16)
0.02(9)

—0.04(7)
—0.11(12)

0.01(12)
0.09(12)

K3 ——0.156
—0.04(26)

0.04(26)
0.15(31)

—0.05(15)
—0.25(30)

0.00(15)
0.25(11)

r„=0.159 8(2)
—0.13(41)

0.13(41)
0.06(38)

—0.17(14)
—0.44(54)

0.06(19)
0.46(33)
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TABLE VIII. Quark sector contributions to the C2 transition form factor. Quantities are nor-
malized to unit charge.

Transition
pp++ A+

~p ~gp

Quark ~i ——0.152
0.04(7)

—0.04(7)
0.04(7)

—0.04(7)
—0.04(7)

0.04(7)

r 2
——0.154

—0.02(16)
0.02(16)
O.13(16)
0.19(24)

—0.08(8)
—0.20(35)

Kq ——0.156
—o.o4(26)

0.04(26)
o.4(5)
0.4(5)

—o.26(17)
—0.51(29)

K„=0.159 8(2)
—0.13(41)

O.13(41)
0.5(8)
0.8(7)

—0.34(27)
—1.o(8)

4 1
pp = 3pn 3pd ~ (6.3)

our octet baryon analysis indicates that the d-quark con-
tribution is suppressed in the lattice results by a fac-
tor of approximately 2 froin that anticipated by SU(6).
Since the effective u-quark moment in the proton is ap-
proximately equal to the effective u-quark moment in
p p ++ 4+ transitions, the difference in lattice and quark
model predictions for the p„~/p,„ratiomay be attributed
to the smallness of the d-quark moment contribution to
the proton magnetic moment.

B. Electric charge transition form factors

Electric charge form factors calculated at Q 0.16
GeV are reported in Table VII. The statistical uncer-
tainties are large and prevent us from drawing any strong
conclusions. However, it interesting to note that the cen-
tral value of the charge form factor for the p p ++ 4+
transition has the sign and magnitude anticipated by
multipole analyses [53,54] at about —10% of the mag-
netic form factor.

The lattice results suggest the charge form factor may
be large for the negatively charged hyperon transitions.
This is due to an addition of the quark sector contribu-
tions which are illustrated in Table VIII. Examination
of the correlation functions for the hyperons reveals that
the correlation functions are somewhat noisy and do not
form a convincing plateau. A future high statistics anal-
ysis may provide some interesting insights into the charge
form factor.

ipated by the simple quark model. The main source of
the difference stems from the manner in which the quarks
contribute to the magnetic moment of the proton, which
has been used to set the overall scale of the magnetic
moments. While SU(6)-spin-flavor symmetry predicts

C. Electric quadrupole transition form factors

As discussed in Sec. IV only two of the octet to decu-
plet E2 transition form factors are statistically different
from zero. Figure 12 illustrates the extrapolation of these
E2 transition form factors for Z and:- transitions. At
the largest value of quark mass considered, SU(3)-flavor
symmetry is exact and the transition moments vanish
for these baryons. The symmetry of the three-point cor-
relation function continues to hold even in the broken
flavor-symmetry region as the E2 transition form factors
are seen to be approximately equal and opposite. Val-
ues for the E2 transition form factors at each value of
K considered as well as at K„aresummarized in Table
IX. Quark contributions to these form factors are given
in Table X.

The quantity that has captured the attention and ex-
citement of the field is the E2/Ml ratio of electromag-
netic form factors 7ZEM = f~2/f~i ———@~2/g~i. Anal-
yses of experimental data place this ratio at —(1.57 +
0.72)% [3,60]; —(1.5 +0.4)% [61]; —3.1% [5]; and +(3.7+
0.4)'% [21]. The reader is directed to the original papers
for a complete discussion of the uncertainties reflected in
the numerical error bars given here. Details of the lattice
determinations of 'REM are reported in Table XI. A sum-
mary of the lattice ratios 'REM is given in Fig. 13. Unfor-
tunately the statistical uncertainties in the lattice results
are relatively large. All the results from the experimental
analyses lie comfortably within our determination from
erst principles of +(3 6 8)%.

The interesting feature, however, is that the lattice
approach can make predictions for the E2 transition mo-
ments of Z and:- transitions which will provide vital
information to those developing models. Still, the present
values must be taken with some caution. The nonvanish-
ing contribution to these E2 moments has its origin in
the light d-quark sector. This quark has a broad distri-
bution radius which may be sensitive to the asymmetry

TABLE IX. Baryon electric quadrupole (E2) transition form factors.

Transition
pp++ A+
np++ A'
z+~ ~ z*+
Z'p++ Z*'
Z pm'*
~p ~~p

p ++

Ki ——0.152
—O.O21(21)

0.021(21)
—0.021(21)
—0.011(11)

0.000
0.021(21)
0.000

Kq ——0.154
—0.032 (45)

0.032 (45)
—0.034(37)
—0.014(18)

0.006(3)
0.026(27)

—0.005(2)

r 3
——0.156

—0.03(9)
0.03(9)

—o.o6(6)
—0.02(3)

0.016(11)
0.032(35)

—0.014(6)

K, , = 0.159 8(2)
—0.05(13)

0.05(13)
—0.08(10)
—0.03(5)

0.024(12)
0.04(5)

—0.022(9)
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TABLE X. Quark sector contributions to the E2 transition form factor. Quantities are normal-
ized to unit charge.

Transition

pram

A+
Quark

d

KI ——0.152
—0.021(21)

0.021(21)
—0.021(21)

0.021(21)
0.021(21)

—0.021(21)

vq ——0.154
—0.032(45)

0.032(45)
—0.040(38)

0.022(36)
0.032(28)

—0.016(26)

K3 ——0.156
—0.03(9)

0.03(9)
—0.07(7)

0.02(7)
0.05(4)

—0.00(4)

K, = 0.159 8(2)
—0.05(13)

0.05(13)
—0.11(10)

0.03(10)
0.07(5)
0.01(5)

of our elongated lattice. Interactions with periodic im-
ages may induce an E2 moment. It is clear that a future
calculation on a cubic lattice will provide much needed
insight into the E2 transition form factor.

VII. MODEL COMPARISONS

Lattice predictions for ratios of octet baryon magnetic
moments to the lattice proton moment are in excellent
agreement with experimental measurements when the
baryon moment is positive. Ratios for baryons with neg-
ative magnetic moments are more sensitive to contribu-
tions from disconnected quark loop contributions which
are not included in present form factor calculations [58].
Since the transition moment for p p ++ L+ is positive,
the lattice approach should provide reliable estimates of
the magnetic transition moment ratio p,„~+/p„.

Figure 14 summarizes many calculations of the mag-
netic transition moment fMq. The need for a calculation
of this quantity from first principles is rejected in the
wide range of values for this quantity. The calculations
have been categorized into six different approaches in-
cluding analyses of experimental pion photoproduction
data (Expt. ), our lattice QCD calculation (Latt. ), non-
relativistic quark model (QM) determinations, hedge-
hog models including the Skyrme and Hybrid models
(Hedge. ), bag models (Bag), and a Bethe-Salpeter cal-

0.06

culation (BS). In the following we discuss each of these
approaches in relation to our new lattice determination,
and give specific references to the model determinations.
These results are by no means exhaustive, but are rep-
resentative and indicate the breadth of interest in the
determination of the transition moment.

The analyses of experimental data include (from top
down) the Davidson-Mukhopadhyay-Wittman investiga-
tion using an effective Lagrangian with a number of dif-
ferent unitarization methods [3], the Amdt-Workman-
Li-Roper energy-independent partial wave analysis [4],
the Nozawa-Blankleider-Lee calculation invoking off shell
modeling of mK interactions [5], and a similar approach
by Tanabe and Ohta where additional parameters are
optimized by a y fit [21].

The result of Tanabe and Ohta for the M1 transition
moment is relatively small compared to the other calcula-
tions reported in Fig. 14. They note, however, that they
have calculated the bare coupling and, as such, their re-
sult should be compared to the MIT bag model (the lower
of the two entries in the bag column of Fig. 14), as op-
posed to the chiral bag model, for example. They argue
that their model explicitly takes into account the pion
cloud effect separately. Similar arguments hold for the
calculation of Nozawa, Blankleider, and Lee.

In this lattice calculation the A is stable and as a re-
sult the problems associated with defining the proper-
ties of a baryon unstable to strong interactions do not
arise. In the lattice simulations, three quarks are created
and allowed to propagate along paths in space-time de-

0.04 20

0.02—
Q
gl

0.00

0~—0.08
CQ

—0.04

15

j.0

5

0

—0.06
6.8 4

FIG. 12. Extrapolation of the E2 transition form factors
for Z and:- transitions. The symmetry of the three-point
correlation function continues to hold even in the broken fla-
vor-symmetry region as the E2 transition form factors are
seen to be approximately equal and opposite.

—20

FIG. 13. A summary of lattice calculations of the E2/Ml
ratio REM. Statistical uncertainties in the lattice results are
too large to favor any particular model calculation.
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TABLE XI. The E2/Ml ratio 7@EM at Q = 0.

Transition
pp++ a+
np++ A'
Z+ p++ Z*+
Z' p++ Z*'
Z p++ Z*
~O ~~0

p ++

Kj ——0.152
0.013(13)
0.013(13)
0.013(13)
0.013(13)

0.013(13)

r q
——0.154

0.019(27)
0.019(27)
0.021(22)
0.018(23)
0.076 (34)
0.016(16)
0.067(27)

K3 ——0.156
0.02 (5)
0.02 (5)
0.03 (4)
0.03 (4)
0.10(7)
0.019(20)
0.087(37)

~„=0.159 8(2)
0.03(8)
0.03 (8)
0.05 (6)
0.04(6)
0.08(4)
0.024(27)
0.074(30)

termined by the QCD Lagrangian before they are later
annihilated. The possible paths the quarks can take in-
clude paths such as Z graphs where a quark emits a gluon
and scatters into a negative energy state, etc. At inter-
mediate times there are three quarks and, any number
of quark-antiquark pairs in the 4 wave function. Pre-
sumably, these quark wave functions may be described
in a Fock-space expansion of meson-baryon intermedi-
ate states, including 7rN intermediate states. Baryon-
antibaryon pairs may also play a role. In essence, the
A baryon simulated on the lattice is dressed. However,
it is not completely dressed since some diagrams corre-
sponding to pion dressings are not included in making
the quenched approximation.

The quark model calculations include (from top down)
the calculation of Guiasu and Koniuk in which mesonic
dressings of the nucleon are explicitly included [7],
Capstick's calculation in which confi.guration mixing in
the baryon SU(6) wave functions is accounted for [8],
and a calculation based on the simple quark model of
Darewych, Horbatsch, and Koniuk [9].

It is often argued that the simple quark model does
not include the physics of mesonic dressings. However
we have seen remarkable agreement between the lattice
calculations and simple constituent quark models in the
decuplet baryon analysis and now in the transition mo-

.40

.35

.10

Expt. Latt. Q. M Hedge. Bag B S

FIG. 14. Calculations of the magnetic transition moment
f~q. The calculations have been divided among six cate-
gories including analyses of experimental pion photoproduc-
tion data (Expt. ), our lattice @CD calculation (Latt. ), nonrel-
ativistic quark model (QM) determinations, hedgehog models
(Hedge. ), bag models (Bag), and a Bethe-Salpeter (BS) cal-
culation.

ments under investigation here. It is important to ask
what physics is represented by the constituent quark. In
simple quark models, nonperturbative gluon interactions
with current quarks (which naturally includes physics as-
sociated with quark-antiquark pairs and thus mesons)
are approximated through the use of a constituent quark
with an effective mass. In fact, the constituent quark
masses are determined predominantly by reproducing
nucleon properties such as the magnetic moment. Of
course, proton properties re8ect physics which may be
ascribed to the associated pion cloud. Therefore con-
stituent quark model predictions of magnetic moments
and magnetic transition moments implicitly include the
physics of mesonic dressings. As a result, it is not ap-
propriate to directly compare the results of Tanabe and
Ohta or Nozawa, Blankleider, and Lee with the quark
model.

Guiasu and Koniuk have attempted to explicitly in-
clude the physics of the pion cloud in a quark model
calculation of the helicity amplitudes of K p ++ A tran-
sitions. Of course, if one wishes to explicitly include pion
dressings in the quark model, one must recalculate the
constituent quark parameters. To do this, Guiasu and
Koniuk recalculated the octet baryon magnetic moments
in their new model. Perhaps it is not too surprising that
their new result is largely unchanged from the simplest
quark model. Their approach simply took some of the
pion cloud physics implicitly contained in the constituent
quarks and moved it to an explicit pion cloud.

Hedgehog models appear to predict values for f~q
which are generally larger than the lattice prediction.
The results presented here are obtained by taking the ra-
tio of transition to proton moments and scaling the result
such that the model calculations reproduce the proton
moment. This approach eliminates, to some extent, the
sensitivity of the hedgehog results to differences in the
parameter sets of different authors. From the top down,
the calculations include the hybrid model of Cohen and
Broniowski [11]; an early SU(2) Skyrme model calcula-
tion by Adkins, Nappi, and Witten [12]; SU(2) Skyrme
model calculations by Kunz and Mulders [13]; and an
SU(3) Skyrme model calculation by Chemtob [14].

The bag models include an old MIT bag calculation
of Donoghue, Golowich, and Holstein [16] and a chiral
bag calculation of Kalbermann and Eisenberg [17]. The
uncertainty region for the chiral bag calculation reBects
the sensitivity of f~z on changing the bag radius from
0.8 to 1.0 fm. Finally the Bethe-Salpeter determination
indicated in the final column of Fig. 14 is that of Mitra
and Mittal [18]. A QCD sum rule result has not been
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TABLE XII. Lattice predictions for resonant contributions to the helicity amplitudes and radia-
tive decay widths. Lattice results have been normalized to reproduce the proton magnetic moment.
Experimental estimates of the radiative decay widths are also given.

Transition

pp++ a+
np++ ap
z+~++ z+
Z'p++ Z*'
Z pe+ Z
~p ~~p

p ++

(G V —1/2)
—0.125(41)

0.125(41)
—0.086(15)
—o.o34(7)

0.017(3)
0.082(11)

—o.o16(2)

Lattice predictions
A3(2

(G V-'~')
—0.195(34)

0.195(34)
—0.125(20)
—o.o52(8)

0.021(5)
0.130(15)

—0.021(4)

r
(MeV)

0.43(15)
0.43(15)
0.100(26)
0.017(4)
0.0033(12)
0.129(29)
0.0038(12)

Experiment
r

(MeV)
0.66(17)

(0.38

Value calculated from the analysis of Davidson et aL [3,60].
Values calculated from radiative branching ratios [62].

included here because the approach is not able to provide
a prediction for fMi that is free of unknown parameters
[19].

Lattice predictions of the resonant contributions to the
helicity amplitudes and radiative decay widths are sum-
marized in Table XII. The values are determined from
the Sachs form factors using the relationships reviewed
in the Appendix. Values for radiative branching ratios
estimated using heavy baryon chiral perturbation theory
[20] span a range which is consistent with our lattice pre-
dictions. Experimental estimates of the radiative decay
widths are also given in Table XII. The experimental
limit for the =' ~ = p decay width is relatively close
to our prediction. A nonvanishing experimental measure-
ment of this decay width may be possible in the not too
distant future.

VIII. SUMMAB.Y AND OUTI ODK

We have presented a fully relativistic formalism for iso-
lating and extracting the electromagnetic multipole form
factors of spin-

&
to spin-2 transitions in lattice Beld the-

ory. Results of the first lattice @CD analysis of SU(3)-
Havor octet to decuplet baryon transitions have been sys-
tematically examined to reveal new aspects of the under-
lying nonperturbative quark-gluon dynamics.

The M1 correlation functions for baryon transitions
show statistical uncertainties similar to that seen in our
octet baryon analysis. The central values were seen to
drift to some extent in the plateau region for the light
u- and d-quark three-point correlation functions. How-
ever, this is more likely an indication of the need for
better statistics as opposed to a signature of the correla-
tion functions failing to reach the plateau region before
the lattice boundary is encountered.

I attice calculations of the baryon octet to decuplet
M 1 transition moments agree with simple quark model
predictions when the lattice results are scaled to repro-
duce the proton moment. Surprisingly, the manner in
which the quarks contribute to the moments in the lat-
tice calculations is quite different from that anticipated
by the quark model. Ultimately, a high statistics calcula-

tion will reveal differences between the lattice and quark
model results. However, differences in the results of the
two approaches are small relative to the more dramatic
effects seen in our octet baryon analysis. Here the ef-
fective quark moments indicate corrections to the simple
quark model description of transition moments the order
of 10—20%. In contrast, 50% corrections were seen in our
octet baryon study. We look forward to an experimen-
tal determination of the hyperon M1 transition moments
which will test these predictions.

Quenching of the eff'ective quark moments in hyperons
is seen in the M1 transitions. The quenching is larger
in = than K. This is similar to our results for decuplet
baryons. However, effective strange quark moments de-
termined from transition moments are found to be sup-
pressed relative to the values determined from decuplet
baryon magnetic moments.

The lattice results prefer values for the ratio p„~/p,
„

which are larger than simple quark model predictions.
This is largely due to differences in the manner in which
the quarks contribute to the proton moment.

The lattice prediction for the M1 transition moment of
K p ++ A is in agreement with multipole analyses, non-
relativistic quark models, and a Bethe-Salpeter model
approach, and suggests values smaller than that of the
chiral bag model and typical values produced in hedge-
hog models. The statistical uncertainties in the lattice
results for 'REM are relatively large. All the results of
the experimental analyses lie comfortably within our pre-
diction from first principles of +(3 + 8)% for JV p ++ A
transitions.

The C2 correlation functions become noisy at large
time separations and a thorough examination of this form
factor will have to wait for higher statistics calculations.
The lattice results are consistent with expectations of
multipole analyses.

The spatial asymmetry of our elongated lattice pre-
vents us from drawing any strong conclusions on the E2
form factors. However, an important discovery is the
manner in which statistical Buctuations are compensated
in combining the quark contributions to negative charge
hyperon transition moments. Calculations on a cubic
lattice will provide precise estimates of the E2 transition
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moments for Z and:- hyperons which will be indis-
pensable in model development and testing.

A high statistics analysis of hadronic electromag-
netic form factors would provide considerable insight to
hadronic structure. Our present understanding of the
essence of the underlying quark dynamics may be con-
firmed and refined. For example, the E2 moment of 6
is particularly interesting since it provides a glimpse into
the shape of the baryon ground state. In general, hedge-
hog models such as the Skyrmion predict a large E2 mo-
ment. Our lattice results agree with hedgehog model
predictions mainly due to the presence of large statisti-
cal uncertainties in the lattice predictions. The central
value of the distribution suggests a smaller E2 moment.
A high statistics lattice calculation would be able to con-
firm or reject the hedgehog ansatz.

Statistically significant predictions for all the higher
order multipole moments would be useful in the develop-
ment of model hypotheses and evaluation of model pre-
dictions. A nonperturbative QCD determination of the
E2/Ml ratio from first principles for the electromagnetic
transition moments of p p ++ L+ with statistical uncer-
tainties on a par with the experimentally based deter-
minations is anxiously awaited by those working in this
field.

It is encouraging that ab initio lattice QCD calcula-
tions of electromagnetic multipole moments are already
competitive with hadronic models which use adjustable
parameters. With further investigations to reduce sta-
tistical and systematic errors, lattice studies of hadronic
electromagnetic form factors will continue to provide new
insight into nonperturbative QCD. The strong signals
for magnetic dipole transitions for all octet baryons and
for the electric quadrupole transitions of Z and:"
bode well for future lattice calculations of these quan-
tities being able to further discriminate among models of
hadronic structure.

APPENDIX: TRANSITION MOMENT
PHENOMENOLOGY

e ((q(M~ l
fM1= 2M ( M I ~M1~

N ( N

)

(A1a)

(A1b)

where e = /4acr. In the rest frame of A at q = 0,
energy-momentum conservation sets 2 ~g[M~ = M&
N~ and

fMt = e (M~2 —M~2 l
2M~ ( 2M' )

e (M~2 —M„'l '~'

)I

(A2a)

(A2b)

The ratio of E2 to M1 form factors is defined by

fx2
EM =

fM1 QM1
(A3)

In this section we make contact with other observables
and formalisms associated with the phenomenology of
electromagnetic transition moments. The following rela-
tionships are well established in the continuum. However,
these relationships may not strictly hold for quenched
lattice QCD. Since there are good reasons for calculating
the Sachs form factors (gMq, g~2) in the lattice approach
[59] as opposed to f~z and f~2, we will use the contin-
uum relationships with their parameters determined by
experimental values. With this approach, the following
relationships may be simply regarded as a form of "unit
conversion. "

The relationships between the Particle Data Group's
[22] electromagnetic transition amplitudes fM& and f~2
and the Sachs form factors investigated here are [5]
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Resonant contributions to the helicity amplitudes are
given by simple linear combinations of f~t and f~2

&i). = —(fMi+ 3f~.) /2,

Aspic

= —~3 (fM g
—f~2) /2 .

(A4a)

(A4b)

r (M~2 —M~)
M~'

lV

r 3n (M~2 —Mg, )
16 M2 Ms

N

(A5a)

(A5b)

Partial widths may also be inferred from the Sachs form
factors assuming continuum dispersion relations:
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