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Heavy-quark spin symmetry and D mesons
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The implications of heavy-quark spin symmetry for P-state mesons with one heavy quark are dis-

cussed. In particular, we have derived the mass relation m ~
—m& = —'(I +

—m& ) for the four P-
Di 0 2 D2 1

state mesons. We have shown that the E1 transition decay D&(2420)~D+y is a prediction of the
above symmetry and as such should be tested experimentally. We predict m + =2.29 GeV and

1

m& =2. 19 GeV in the model in which the spin-dependent potential is taken to be a one-gluon-exchange

potential. In the second model, with the Cornell potential in the Dirac Hamiltonian, we obtain
m ~ =2.01 GeV and mz =1.91 GeV.

1

PACS number(s): 12.38.Aw, 11.30.Hv, 12.70.+q, 13.40.Hq

For hadrons containing a single heavy quark (Q), the
dynamics is simplified by the heavy-quark spin symmetry
of QCD [1,2] (for a review see, e.g., Ref. [3]). For a qQ or
Qq system, the spins S and S& decouple. The implica-
tions of heavy-quark spin symmetry for the mass spec-
trum and strong decay widths of such hadrons have been
discussed recently [4]. However, the heavy-quark limit
for the mass splittings of P-wave D mesons was first con-
sidered in Ref. [5].

The purpose of this paper is to discuss the implications
of heavy-quark spin symmetry for the masses of P-state
mesons with one heavy quark. We also discuss an impor-
tant consequence of their decay by E1 transition.

For a qq or QQ bound system, we first combine spins of
q and q (Q and Q) and then combine it with orbital angu-
lar momentum; i.e., we combine S =0 and 1 states with
angular momentum I = 1. In this way one obtains four P
states which are designated as 'P„P~ o & 2. The states
PJ decay to S, with the emission of y rays by E1 transi-

tion, whereas 'P, decays to 'So. If we follow the same
procedure in combining the spin and orbital angular
momentum for a qQ or Qq system, we again get the four
states discussed above.

However, if we impose heavy-quark spin symmetry,
then the spin of the heavy quark is treated separately and
it is natural to combine j=L+S with S&, i.e., J=j+S&.
For P states, j has eigenvalues j(j+1)with j=—,

' or —,'.
In this case, we get two multiplets [4]: one with
J=(—,'+ —,

'
) =2 and J=(—,

' ——') = 1 and the other with
J=(—,'+ —,')=1 and J=(—,

' —
—,')=O. For cd, we designate

these two multiplets as (D2,Di ) and (D i,Do), respec-
tively.

In order to discuss the mass spectrum for a qQ or Qq
bound system, we note that, in the limit m&~~, the
heavy quark or antiquark can be taken as a static source
of field in which the light quark or antiquark moves. The
situation is like the hydrogen atom. Therefore, we can

Thus for a qQ or Qq system, we may take the Hamiltoni-
an [7] as

~
+ 2S~.L — +&4 1 1 dV&

8m 2m r dr Sm

(2)

where

Ho P /2@+ V(r), (3)

d~i r
dr r

Note that p = —i P', L=r X p, I /p = 1/m + 1/M; m is
the mass of the light quark and M is the mass of the
heavy quark. The spin-dependent potential V& may or
may not be the same as V.

In the heavy-quark symmetry limit m + =mz,DII + =rn~ and I + =rn~. The mass diff'erence between
Di 0

the multiplets (Dz, D, ) and (Di, Do) arises due to the
spin-orbit term in Eq. (2). Noting that (S .L)
and (S~.L)1=i&2= —1, we obtain, from Eq. (2),

rn + =mz =M+ —,'g,
2 1

m +=m~ =M —g,
1

use the Dirac Hamiltonian for a hydrogen atom as a
guide. To order v /c, this Dirac Hamiltonian is given
by [6]

~2 r (4)
1II = + V(r) — — o.(EXp) — V'. E .

2m 8m 4m 8m
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where The mass difference between members of a multiplet
arises from terms of order 1/mM. Such terms for the S
wave and P wave can be added to the Hamiltonian (2)
[8,9,5]. Thus we can write the basic Hamiltonian as

~o 2
+

2 Sq ~ +
2

~ V1 + Sq SQ~ V2 +
Sm 2 2m 2 r dr 8m

' 3Mm ~ Mm r dr

1 1 dV2+ [12(S r)(S&.r) —4S S&]12Mm q ~ q ~ r dr

d V2

dr

)
~

3 1 )
(2+M)( 1+M)

2
—

22 12
(8)

where S=S +Sg.
In order to discuss the mass difference, we first write the four P states, showing their spin and angular momentum

content. According to the scheme outlined above, a P state can be labeled as JMjs& ). Thus we can write

1/2 1/2 1/2
4 —M p (2 —M)(1 —M)

Y1M 1++ + Y1M++ +
12 Y1M + 1++

~

D &
=

~
1M—'-') =—

22 12

1/2 ' 1/2
+i p (2+M)( 1 M)

YiM ix+ + —YiM(M&++2x —)+
6 12

YiM+iX+' r

(2 —M)(1+M)
6

1/2 1/2
+i p p (2+M)(1 M)

Y1M 1++ + Y,M™y+.—y )+
3

—1
1M+1++

~Dp &
= ~0o —,

'
—,
' ) =(1~&3)(Y) &X+' —YipX++ Ymir+'»

where g++', g+, y+' are spin triplet states and g is spin
singlet state. These states are eigenstates of S and S,
with S =1 and 0, respectively. Using Eqs. (8)—(11) and
the Hamiltonian (7), we obtain the masses of four P
states:

m .=M+ —,'g+g, —,'h,
2

mD =M+ —,'g —
—,'g2+ —', h,

1 9d
m + =M+ —g+

2 10Mm

1
mD =M+ —g—

2 6Mm

d
mD =M —g —3

0 Mm

(15)

m + —M —g ——', g2+ —', h,
1

mD =M —g —2g2 —4h,

&2 2&2„
m + g2+ h,

(12)
d

m
3&2Mm

Since the mixing angle is very small, the mixing gives a
small correction to the masses ma and m +. We will

neglect the mixing. In fact, it is a very good approxima-
tion (see below). Hence from Eqs. (15), we obtain

where
m g

—mD
1 0

(16)

"=-'-(-'"::)
h=

12Mm r dr

d~Vz

)
(14)

Taking V2 as a short-range Coulomb-like potential [5],
i.e., V2= —K'/r, we obtain g2=d/Mm, h =d/4Mm,
where d =K'(1/r ). From Eqs. (12), we obtain

m
2 1

This is a general result and holds for any meson with one
heavy quark. Thus the result (16) also holds for B
meson s.

In deriving Eq. (16), we have assumed that the poten-
tial V2 is a short-range Coulomb-like potential. The as-
sumption is supported by the fine structure of P states of
quarkonium (cc and bb ) systems, where V2 is taken to be
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a short-range Coulomb-like potential; it is the potential
V1 which has a long-range confining part in addition to a
short-range part [7,10]. Since our result (16) does not de-
pend on the structure of V1, it is on a sound footing.
Thus Eq. (16) can be taken as a definite prediction of
heavy-quark spin symmetry.

Another thing to be noted from the fine structure of
quarkonium systems is that the spin-dependent potentials
are not flavor independent [7,10]. Thus V, cannot be
determined from the quarkonium systems.

Using the experimental values [11],m ~ =2.460 GeV,
2

mD =2.420 GeV, so that m +
—mD =40 MeV, we ob-

1 D Di

tain from Eq. (15) m +
—mi, =100 MeV. In future ex-

D D0

periments, by measuring this mass difference, the heavy-
quark spin symmetry of QCD can be tested. Using
m =md =0.34 GeV, M =m, =1.52 GeV, we obtain,
from [cf. Eqs. (15)]

2pu(y) y=
1/3

for these states:
1/2

—1/2P&, y
ye (20)

0 1p

8P5

v"7r

1/2

2 1/2~1 y
y e (21)

Using b =2.34 GeV ', E =0.52 for the Cornell potential
and minimizing (Ho ), we find, for the cd system,
P„=0.809, E„=(HO)„, P, =0.703, E, =(Ho),„= 1.192 GeV.

Using the relations [13]

16 d
D (17) 2p 1 +~ 1

(22)

d =0.019 GeV .
To proceed further we have to specify the poteritial V, .

It is reasonable to use the following two models for the
spin-dependent potential V, . In the first model (to be
called model 1) we take V, = V2= K'/—r In t.his case
the spin-dependent potential is that given by the one-
gluon-exchange potential [5]. In the second model (to be
called model 2) we take V, =V=(1/b )r E/r. Note—
that V is the Cornell potential [12] which has been suc-
cessfully used to explain the mass spectra of quarkonia.

We first consider model 1. In this model, g =d/2m .
Thus in this model, the masses are given by

m ~ =M+ +9d
4m

and

2p =2p
2

+K

(23)

and the wave functions given in Eqs. (20) and (21), we can
easily calculate the matrix elements ( 1/r ) i &, and
(1/r ), . Thus from Eqs. (22) and (23), we obtain
~g„(0)~ =0.015 GeV, (1/r )i =0.031 GeV . Now,
using the relations

6 y„(0)~'
mD

mD =M+
4m' 6Mm

(18) d =K' =0.019 GeV
1

r
(25)

m ~=M-
D) 2m 3Mm

mD =M— —3
2m 2 Mm

Now using d =0.019 GeV, mD =2.420 GeV, mD

=2.460 GeV, we get M =2.385 GeV. Thus we predict
mD+ =2.29 GeV, mD =2. 19 GeV. The mixing angle is

1 0

given by

we obtain fD =217 MeV (in the norinalization f =93
MeV) and IC'=0. 62. IC' comes out to be 20% higher
than K =0.52 in the Cornell potential.

The mass splitting between S1 and 'So states is given
by the fifth term in the Hamiltonian (7), namely, the Fer-
mi term

( )
2S(S+1)—3

( 2V )F" 6Mm 2 1s

2&2m
tan2

9M +2m (19) 2S (S + 1)—3
4 It-,

~ ~ (() )
6Mm

(26)

Using m =0.34 GeV and M = 1.52 GeV, we find
P= —2 . Thus the mixing between Di and D i is indeed
negligible. In order to get other predictions of the model,
especially for the 1S state, we use the following pro-
cedure: we treat Ho as an unperturbed Hamiltonian. The
expectation value (Ho) is determined by minimizing it.
For this purpose we use the Gaussian wave functions for
1S and 1P states. Thus we write the reduced radial wave
function

From Eq. (26), we obtain m ~
—mD =148 MeV, remark-

ably close to its experimental value [11]of 145 MeV. The
Darwin term [the fourth term in Eq. (7)] is given by

1
( v &„=,(v'v, &„

Sm

, 4~x'~q„(0) ~'.
8m
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We find ( VD )„=124 MeV.
Hence we write

M=md+m, +E1 (29)

to be 2.332 GeV which is about 50 MeV less than the
value M=2. 38S GeV obtained from Eq. (18).

We now discuss the model 2. In this model, we take
V, = V=(1/b )r K/r. —For the 1S state, the only
difference is in the Darwin term. Here we get

1
( v &„=,(v'v, &„

Sm

+4~rC ~q„(0)~'
1 2 1

8m b
(30)

Equation (30) gives ( VD ) „=271MeV. Hence we obtain
A =0.866 GeV for this model. Here the Darwin term
also contributes to the 1P state. We obtain

(31)

m =m, +m +E„+( VD )„+( V~)„; „,—A,

where we have absorbed the term —(P /8m ) i, in the
constant A. Using m + =2.010 GeV as input, we find

A =0.719 GeV. Assuming —(P /8m ) i is about the
same as for the 1Sstate, we find

D, (2420) meson. In the conventional theory, D, is
identified with P1 state and it can decay to D* by E1
transition, the other state 'P, decays only to D. The mix-
ing between them can give only a small amplitude for
D, —+Dy. But the heavy-quark spin symmetry predicts
the same order of amplitude for D1~D *y and D1 —+Dy
decays.

We now discuss the predictions of heavy-quark spin
symmetry for E1 transition decay widths. The E1 transi-
tion decay width can be written in the form

I =(4a/3)~M '+~ k (34)

where superscripts zero and plus correspond to the
charge of the decaying particle. From Eq. (9), it is clear
that the radiative decays D1~Dy and D, ~D*y are
possible and that for these decays, the right-hand side of
Eq. (34) is to be multiplied by a factor of —', and —,', respec-
tively. Similarly, from Eq. (10), it follows that for
D*, —+Dy and D*, —+D*y decays, the right-hand side of
Eq. (34) is to be multiplied by a factor of —,

' and —', , respec-
tively. For Do and D2 only radiative transitions to D*
are possible as in the conventional theory and the decay
width is given by Eq. (34).

In order to make quantitative estimates of E1 transi-
tion decay widths, we use the nonrelativistic quark model
(NQM). However, in this model, we take into account
the recoil correction [14]. In the NQM, the amplitudes
M '+ are given by

Equation (31) gives ( VD ), =97 MeV. Hence we get

M=md+m, +E,„+(VD ),„—A =2.282 GeV .

In this model

1 1 d~1
T dT 1p

(32)

(33)

M =p I, +2 2

3m, ' 3m„

M+=p I, ——2 1

3m 3md

where I, or I„d is the overlap integral [14]

1I= — [jo(qr) —2j2(qr)]u, ~(r)u „(r)r dr .
3 0

(35)

(36)

From Eq. (33), we obtain g =263 MeV. Hence we obtain

mD =2.45 GeV, mD =2.41 GeV, mD =2.01 GeV, and
2 I 1

mD = 1.91 GeV.
0

It is clear that in this model, we get the masses of m
2

and mD in agreement with their experimental values.
1

But the predictions for the masses m ~ and mD are
1 0

quite different in the two models we have considered.
The existing experimental data do not distinguish be-
tween the two models. It is suggested that experimental-
ists should search the D1 and Do mesons in the regions
between 2.15—2.35 GeV and 1.85 —2.06 GeV. In the
second model the D1 and Do are almost degenerate in
mass with the D* and D mesons. Although this predic-
tion looks very much like the old parity-doubling realiza-
tion of chiral symmetry, here it is accidental.

There is another way in which the heavy-quark spin
symmetry can be tested in a clean way. From Eqs. (9)
and (10), we see that J =1 mesons Di and D i both con-
tain the spin singlet state g . Thus D1 and D1 can also
decay to D with E1 transition. Let us concentrate on the

Here jo and j2 are spherical Bessel functions and

q =m,„„,/mD k. Thus for u and d quarks (m„=md),J
q=m, /mD k and for the c quark q =md/mD k=0.
Thus I„=Id and using the wave function given in Eqs.
(20) and (21), we get [14]

I=Fe ' "~ (1 q'/2P'), —

where

P—(2 /b2)1/3P P 2 i (P 2 +P 2
)

(37)

—(2plb') ' '(P' P' )/P'1

V'2 1s 1p

Note that I, =F. Using the values of p„and p,~ ob-
tained from the analysis of D mesons, I, and Id can be
easily calculated from Eq. (37). Equations (34) and (35)
then give the E1 transition decay widths. These decay
widths are tabulated in Table I. In Table I, we also give
their estimates in the NQM without the recoil correction
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TABLE I. E 1 decay widths for P-wave D mesons in the nonrelativistic quark model (XQM).

Mode

D2 (2460) D* y
D g+ Dg+
D

&
(2420) ~D y

Di* (2290)~D y

D()(2190)~D y

k
(MeV)

409
409
492
375
492
375
386
263
386
263
165
165

Decay widths
r (KeV)

990
50

1150
255

59
13

280
170

14
9

65
3.3

Decay widths
with recoil correction

I (KeV)

510
7

410
143

0.69
2.6

140
130

1.8
4.1

57
2.4

(I, =I„=Id=F). It is clear from Table I that recoil
correction is important for those decays for which the
photon energy k is large.

From Table I, we get

1(D,'+ D ' y) =2.9(0.26),
r(D', + D*' y)

(38)

I (Dao, + DO, +y)
=1.1(0.49),

I (De0, + Dao, +y)
(39)

whereas in NQM without recoil correction this ratio is
1.6.

The decay D, (24 02)~ Dymay be easy to detect ex-
perimentally due to the following reason. The decay
D& —+Du is forbidden due to parity conservation and
only D

&

—+D *a is an allowed strong decay. Thus there is
no competing strong decay for the radiative decay
D, ~Dy. Hence detecting a D meson in the primary de-
cay product of the D& meson would give a clear signal for
this.

Similarly, D& —+D~ is forbidden due to the parity
selection rule. Thus a D meson in the primary decay
product accompanied by a monoenergetic y-ray with en-
ergy k &490 MeV but greater than 140 MeV would give
a clear signal for the existence of D *, .

In our second model the mesons D*, and Do are almost
degenerate in mass with D' and D mesons, respectively.
This has some interesting consequences.

We note that only the radiative decay D
&
~Dy is en-

ergetically possible. The strong decay D*, ~De. is for-
bidden by parity conservation and D

&
~D *~ is not ener-

getically possible. We find in the NQM

I (D& '+~D '+y=13(0.67) and 12(0.53) keV

without and with the recoil correction, respectively. Note
that for this case this is also the total decay width of D &.
Note also that Do is stable for strong and electromagnetic

whereas in the NQM without recoil correction this ratio
is 4.3. For D*, decays, using m + =2.29 as predicted by

1

our model, we get

r'~.'=r„(D* D y)+l, (D* Dy) . (40)

It is reasonable [14—16] to take

I ~,(D* + D +y)=18(0.61) keV .

If experimentalists do not take into account the spin pari-
ty of the decaying particle of a definite mass and do not
determine the spin parity of the final particle of a definite
mass in their measurement of the branching ratio, the
measured branching ratio D ~Dy would correspond to
the combination

I'r'= l, (D* Doy )+I,(D * Dy )

+ I E, (D*, Dy ) (41)

if D
&

and Do are almost degenerate in mass with D * and
D, respectively. Now our estimate gives

I o~~ ~ = 12+ 18+ 12=42 keV

and

I '+r'=0. 53+0.61+0.53=1.7 keV .

Recent CLEO data [17] give Br =36.4+2.3+3.3%.
Taking 33% ~Br 40%, and I ~r'=42 keV, we find

63 keV I (D* ~D rr ) 85 keV .

Using isospin symmetry for pionic decays, we get

189 keV+I (D*+~Dorr++D pro) ~255 keV .

interactions. Thus for this case, D* has another decay
channel available, viz. , D —+Doy. This is an E1 transi-
tion and for this case we find

l(D*~Doy)=I(D*, ~Dy) .

The strong channel D —+Doe is not allowed by parity
conservation.

We now discuss some experimental implications of
these predictions. First we note that due to an additional
decay channel available to D*, its radiative decay width
is given by
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To conclude we note that the mass relations

(m, —mD )/(m, —mD ) =—',
1 0 D2 1

and the decay D, (2420) —+D+y are two definite predic-
tions of heavy-quark spin symmetry. Other interesting
consequences of this symmetry regarding the radiative

decays of P-wave mesons are discussed above. In the end
we suggest that experimentalists should look into the
above predictions.
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