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Ten-dimensional SO(10) GUT models with dynamical symmetry breaking
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We discuss the derivation of SO(10) GUT models from higher-dimensional theories with inter-
mediate breaking scales. We then present models based on the coset space dimensional reduction
scheme with intermediate symmetry breaking induced by four fermion condensates.

PACS number(s): 12.10.Gq, 11.10.Kk, 11.15.Ex, 12.50.Lr

I. INTRODUCTION

The phenomenological advantages of grand unified the-
ory (GUT) models with quark-lepton unification are well
known. For example, the proton decay rate may be sup-
pressed. Also, the existence of a right-handed neutrino
may account for the missing mass problem in cosmology
and provide a mechanism for a light mass left-handed
neutrino to exist consistently in nature. GUT models of
this kind, such as SO(10) or SU(16), imply the existence
of an intermediate mass scale providing greater freedom
to incorporate other phenomenological features, such as
a reasonable value for sin 0~ [1].

The concept of grand unification can be extended into
the broader framework of superstring theory [2] and
superstring-inspired models. These models incorporate
the notion of an extended space-time and dimensional
reduction to the four dimensions observed in nature.
Much work has been done in this field, in particular
on models which realize E6 GUT models in four dimen-
sions [2, 3]. These examples arise most naturally due
to the properties of the underlying space-time manifold
and the relative ease with which a symmetry-breaking
pattern to low-energy physics can be incorporated, such
as with symmetry breaking by Wilson lines [4, 5]. This
is not the case with SO(10) models [we do not consider
SU(16) so that we do not have to assume the existence
of mirror families to cancel anomalies). The existence
of an intermediate symmetry [in particular incorporat-
ing SU(4) of color] is not easily accommodated within
such a framework [5,6]. Interestingly, exploiting these ex-
tended symmetry-breaking patterns by the assumed ex-
istence of nonrenormalizable higher-order operators aris-
ing from spontaneous compactifications can allow signif-
icant phenomenology to appear at low energies [7). For
instance, rare kaon decays could be accessible at cur-
rent machine energies and so be a signature of left-right-
symmetric models. These conjectures are supported by
only one particular example of reduction from a higher-
dimensional theory, formulated by Wetterich [8]. His ap-
proach generates chiral fermions by the dimensional re-
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duction onto a noncompact internal manifold of finite
volume. Starting from an 18-dimensional theory, a six-
dimensional model emerges with an SO(12) gauge sym-
metry. Considered as a gauge theory on M (3 S, the
model is reduced to a four-dimensional SO(10) GUT.
Higgs-boson fields required for symmetry breaking are
introduced into the model from six-dimensional SO(12)
representations which exhibit nonzero coupling to the
fermions.

While important in its own right, it would be useful
to have an alternate description of a higher-dimensional
model with intermediate symmetry breaking. Within
string-inspired models this would be particularly impor-
tant due to the naturalness with which SO(10) gauge
models emerge with the appropriate fermionic represen-
tations [2]. SO(10) models inspired from Es gauge the-
ories, arising from manifolds with SU(3) holonomy, have
been considered but contain a number of fermions within
the 2'F of E6 which are not realized in nature and rep-
resent a compromise solution to finding realistic SO(10)
models on appropriate manifolds [9]. It has also been
demonstrated that the existence of a low-energy super-
symmetry breaking could solve many phenomenological
problems but a mechanism to implement this remains
speculative [10].

A particular string-inspired approach to model build-
ing, which has been applied with some success to SU(5)
GUT models, is to impose space-time invariance condi-
tions on all the fields, known as coset space dimensional
reduction (CSDR) [11, 12]. This has the advantage of
producing a finite number of states in four dimensions,
as opposed to an infinite tower of states in the harmonic
expansion approach usually employed [13],as well as pro-
viding a possible origin for the Higgs-boson mechanism.
To date, considerations on SO(10) models within CSDR
have been "diagonalized" to the standard model or rely
upon imaginative applications of Wilson lines so as to
avoid the problem of the nonexistence of an intermedi-
ate Higgs-boson mechanism [12, 14]. However, there is
an alternative approach involving four fermion conden-
sates, breaking symmetries by a dynamical mechanism
[15]. Indeed, dynamical symmetry breaking has been
the direction taken in some SU(5) models within this
framework in order to avoid the problems of electroweak
symmetry breaking at the compactification scale [14, 16].
In this paper we will present realistic models which uti-
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lize this mechanism. We will show that the appropriate
fermionic representations can emerge from CSDR and we
will discuss the construction of such condensates within
the constraints of this scheme. By introducing discrete
symmetries onto the internal manifold we can produce
strong breaking of the SO(10) GUT and, more impor-
tantly, eliminate Higgs-boson fields of geometrical origin.

adj(S) = adj(R) + v (2.1)

II. COSET SPACE DIMENSIONAL REDUCTION
AND SO(10)

In models constructed on extended space-times, gauge
fields are introduced as a possible origin for the Higgs-
boson mechanism and also because they provide for the
existence of low mass Qavor chiral fermions in four di-
mensions by having nontrivial field configurations on the
internal manifold [13, 17]. While not in the spirit of a
purely gravitational model, this approach allows for an
interesting new approach to GUT's by beginning with a
larger, more generalized symmetry in higher dimensions.
Clearly this is motivated by the emergence of gauge sym-
metries as a natural part of superstring theory [2].

The space-time manifold in such a scheme is presumed
to have the form M4S/R, where M is four-dimensional
Minkowski space and S/R is a compact coset space.
Rather than set to zero the Geld dependence on the in-
ternal coordinates on S/R, CSDR provides a means by
which a field dependence can be maintained. The num-
ber of space-time dimensions can be consistently reduced
by imposing S invariance on all the Gelds, so producing
a Gnite number of Gelds in four dimensions. That is,
transformations under symmetries of S/R are compen-
sated by gauge transformations. Starting from a princi-
pal fiber bundle with bundle group G defined over S/R,
S invariant connections are characterized by linear maps
from the Lie algebra of S to the Lie algebra of G such
that 4;: R —+ G is a faithful homomorphism. Cor-
responding to such an embedding, the gauge fields car-
rying vector indices corresponding to the additional in-
ternal dimensions, which behave as scalar fields under
four-dimensional space-time transformations, transform
under R as a vector v specified by the embedding

4, , where i corresponds to a generator of v, then satisfy
the linear constraint condition

[4;,C, ] = f;, I,CI„Vj c B[adj(R)], (2.2)

where f;&I, are the structure constants of S, and have
arbitrary values. When i corresponds to a generator of
R 4; are not arbitrary and define a nontrivial R bun-
dle over S/R. The gauge symmetry which survives this
procedure, H, is the centralizer of the image of R in G.

It is found, by exploiting Schur's lemma, that an un-
constrained scalar field is obtained whenever the tensor
product of an induced representation of R over S/R and
a representation of R in the adjoint of G contains a sin-
glet. Similarly, the surviving fermionic fields in four di-
mensions are found by applying Schur's lemma, this time
with consideration to the branching rule of the spinor
representation of the coset space tangent group under R.
Starting from a vectorlike representation, Havor chirality
in four dimensions demands RankS =RankR [18]. This
places severe restrictions on the allowed coset spaces. Im-
posing the Weyl and Majorana conditions futher requires
that the total space-time dimensionality be D = 2+ Sn
when the fermionic representations are real. Thus the
smallest dimension from which we can construct a model
within this scheme is ten.

The scalar Gelds which emerge, identified with Higgs-
boson fields, form a potential in the effective four-
dimensional theory from the relevant terms in the ten-
dimensional gauge kinetic action. Importantly, it is found
that if S has an isomorphic image in G then the four-
dimensional symmetry group H breaks to K, the cen-
tralizer of S in G. This result is independent of whether
the coset space is nonsymmetric, in which case it is oth-
erwise possible to manipulate the radial parameters so as
to have a Higgs-boson potential with vanishing order pa-
rameter [19]. It turns out that in such cases all fermionic
fields become massive, at the order of the compactifica-
tion scale, after symmetry breaking. Thus, such models
are not phenomenologically viable unless these fields can
be otherwise eliminated.

For convenience, we list the six-dimensional coset
spaces with RankS =RankR [20]:

SO(7)/SO(6), SU(4)/SU(3) @U(1), SP(4)/[SU(2) Is U(1)]

SP(4)/[SU(2) g U(1)]

G2/SU(3), SP(4) SU(2)/SU(2) SU(2) Is U(1),

SU(2) I3 SU(2) SU(2)/U(1) U(1) U(1), SU(3) SU(2)/SU(2) U(1) U(1),

and

sv(3)/v(1) g v(1).

As we have mentioned, CSDR has been applied with
some success to generating SU(5) GUT models in four di-

j

mensions [21—23]. From the set of allowed coset spaces,
it is clear that if we wish to have an SO(10) model af-
ter dimensional reduction then we must consider gauge
fields in ten dimensions with rank at least seven. Fur-
thermore, we choose not to allow horizontal Qavor sym-
metries to emerge. This greatly restricts the range of
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groups that we can consider. For instance, unitary groups
have not played a large role in unified model building
within CSDR. In fact, only a G = SU(8) model di-
mensionally reduced on the manifold G2/SU(3), yielding
H = SU(5) U(1), has been considered [16]. Beside the
symplectic groups, this leaves E8 and E7. By considering
Es we are implicitly including SO(16) and SO(17), the
orthogonal groups of the correct rank which also have
real spinorial representations, via the maximal embed-
dings [24]

Es a SO(16), SO(17) Z SO(16). (2.3)

Indeed, it is sometimes more convenient to consider, for
example, SO(16) rather than Es since the next small-
est irreducible representation to the fundamental 248 of
Es is the $875. By considering SO(16) instead, there is
a greater range of choice of starting representations in
ten dimensions. Furthermore, in the particular case of
SO(16), this allows the scalar and fermionic representa-
tions to be separated, i.e., breaking supersymmetry by
the initial boundary conditions. This can be useful when
discrete symmetries are introduced and the transforma-
tion properties of the vector and spinor under such a
symmetry are considered [23].

III. INTERMEDIATE SYMMETRY AND
THE WILSON PLUX-BREAKING MECHANISM

This mechanism is related to the Aharonov-Bohm effect
in electrodynamics. The freely acting discrete groups
on all possible six-dimensional coset spaces satisfying
RankB =RankS have already been derived. These fall
into two classes corresponding to the center of S and
W = Ws/W~ where Wg and W~ are the Weyl groups
of S and R, respectively [14]. Under W, the S/R vector
and spinor have nontrivial transformation properties. By
appropriately embedding in H it becomes possible that
eigenstates of fields will not be invariant under the gauge
group and so are eliminated from the model. In particu-
lar, this provides a way to eliminate Higgs-boson fields of

The nontrivial Higgs scalars which arise from CSDR
have ~AI~

~

= 1/2 breaking components but are not suf-
ficient to break the four-dimensional GUT group. Strong
breaking of H can be induced, however, by the Wilson
flux-breaking mechanism [4, 5]. In this scheme, rather
than consider M Bp where Bp —S/R is a simply con-
nected manifold, we consider a gauge theory on M (3 B
with B = Bp/K ~ where K ~ is a freely acting sym-
metry on Bp. [A group K acts freely on Bp if for any
element k E K other than the identity, the equation
k(y) = y has no solution for y 6 Bp.] The space B is
not simply connected with its fundamental group vri iso-
morphic to K / . This means that there will be contours
not contractable to a point in the manifold. The result-
ing unbroken gauge group turns out to be the centralizer
of the homomorphic image, K, of K / in H. Further-
more it is found that the matter fields which survive have
to be invariant under the diagonal sum

Ks/R @KH

geometrical origin. On symmetric coset spaces, for which
symmetry breaking is guaranteed to occur at the com-
pactification scale, this becomes crucial [18]. Since we
wish to produce symmetry breaking by fermionic conden-
sates we will always require that the Higgs-boson fields
vanish. In this way we avoid the problem that S may
have an isomorphic image in G.

Rather than breaking symmetries dynamically, there
is an alternate way in which intermediate scale sym-
metry breaking may be introduced. This approach is
more closely related to that of Wetterich [8]. We could
introduce fundamental Higgs-boson fields transforming
in particular representations of the original gauge group
G. Those components which survive in four dimensions,
transforming under H, must be B singlets. Note, how-
ever, that most of the allowed coset spaces contain U(1)
factors in B. Being Abelian, these cannot be "centralized
away. " Although these factors can be essentially omitted
by setting the coupling strengths to zero since they re-
ceive separate renormalization from the others [25], they
will affect the allowed couplings. This is just a statement
of gauge invariance under G. Fermionic fields derived
from such manifolds will carry nontrivial U(1) quantum
numbers. The relevant tensor product of two such fields
with a Higgs-boson field with zero U(1) charge will not
produce a gauge singlet.

If we instead consider manifolds without U(l) factors
in R, only S SO(7)/SO(6) emerges as a candidate
[G2/SU(3) would yield an SO(10) model with an addi-
tional, unwanted, U(1) gauge symmetry which cannot be
omitted]. Indeed, this was the only example where ap-
propriate SO(10) Higgs-boson fields arose as R singlets,
particularly the 126 of SO(10). It is, also, on this sim-
plest example of an internal manifold that the natural-
ness with which SO(10) models emerge can be demon-
strated. Starting from an Es theory, the R = SO(6)
group is identified with the subgroup appearing in the
decomposition [12, 14]

Es D SO(6) S SO(10)

(3.1)

248 = (15, 1) + (1,45) + (6, 10) + (4, 16) + (4, 16)

The surviving four-dimensional gauge group will then be
H = CE, [SO(6)] = SO(10). The SO(6) content of the S
vector and spinor are 6 and 4, respectively [18]. Com-
paring this with (3.1), the surviving Higgs-boson fields
transform as a 10 of SO(10) and the left-handed fermions
as a 16, if we choose the ten-dimensional theory to be su-
persymmetric. Being geometrical in origin, with an order
parameter associated with the compactification scale, the
10 will produce electroweak symmetry breaking at a phe-
nomenologically unacceptable large energy. Turning to
the Wilson Bux-breaking mechanism, we note that this
manifold has a Z2 discrete symmetry in W [14]. Un-
der this discrete symmetry the SO(6) vector and spinor
transform as
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vector (6 ++ 6,

spinor ( 4 ++ 4
(3.2)

Thus, the Higgs-boson Geld is unaffected and so survives.
I

So while it is "very satisfying" that SO(10) with the cor-
rect fermion representation emerges in a natural way we
cannot rely upon this model.

Diagonalization to the standard model for this example
has been performed by embedding Z2 into a discreteS/R

subgroup of the U(l) appearing in the decomposition [14]

SO(10) z SU(2) g) SU(2) (y SU(4), SU(4) z SU(3) I3 U(1) (3.3)

The Wilson flux mechanism breaks the four-dimensional
gauge group H = CF, [SO(6)] = SO(10) down to H' =
CE, [SO(6) Z2 ] = SU(3) SU(2) SU(2) U(1). Since
S = SO(7) has an isomorphic image in G the symmetry-
breaking of H by the geometrical Higgs boson is known:
K' = CF, [SO(7)] = SO(9). Both symmetry-breaking
mechanisms acting together give a final unbroken gauge
group K = K' R H' = SU(2) U(1) SU(3), where the
SU(2) in K is the diagonal sum of the previous SU(2)'s.

Alternatively a more ambitious embedding of discrete
symmetries may be pursued [12]. For example, suppose
Ss is divided out by (Z2 x Z2)s~ where one Z2 is the

center of SO(7) and the other is in W. One Z2 isS/R

identified with a Z2 subgroup of the U(1) appearing in
the decomposition SO(10)&SU(5)U(1), for which the
Higgs bosons and fermions have the branching rule

10 = 5(2) + 5(—2),

16 = 1(—5) + 5(3) + 10(—1)

(3.4)

The Z2 subgroup is chosen to be Z2 ——exp[i(n + 1)7r],
n being the U(1) quantum number. The second Z2

S/R

is embedded in a Z2 subgroup of the hypercharge un-
der SU(5)DSU(2)SU(3)U(l), such that all the com-
ponents of the fundamental representation are invariant.
The result is a model yielding the standard model in
four dimensions with a family of fermions from the 16 of
SO(10) and no surviving scalars. Electroweak symmetry
breaking must now rely upon dynamical means in both
cases.

Both these approaches attempt to give realistic mod-
els in the absence of an intermediate Higgs-boson mech-
anism. Clearly many other similar examples could be
constructed depending on the choice of embedding for
the discrete symmetries.

As with this last example we could try embedding

Z2 into the U(1) subgroup appearing in (3.3) in such a
way as to yield an SU(2) SU(2)SU(3)U(1) model in
four dimensions where the 10 is odd under Z2 . However,
we note that the bidoublet component of the 10 is a sin-
glet under this U(1) and so cannot be odd. Consequently
we are still unable to eliminate this field. Any considera-
tions on eliminating this Higgs-boson field therefore rest
with Z

It should. be pointed out that, even if we start with a
supersymmetric model in ten dimensions, supersymme-
try will never survive to low energies within CSDR. On
symmetric coset spaces this is because the constraints ex-

IV. MODELS %ITH DYNAMICAL SYMMETRY
BREAKING

It is known from lattice calculations that it is possi-
ble to generalize the Higgs-boson phenomenon to a dy-
namical symmetry-breaking scheme, described in a gauge
invariant way [27]. The existence of a gauge symmetry-
breaking potential is associated with four-fermion con-
densates such that

(4.1)

where C is a four-fermion gauge singlet operator. Four-
fermion condensates are considered since for chiral gauge
theories a quadratic mass condensate does not exist. It
can be shown, under a set of general assumptions, that
an anomaly free set of fermions, including exotics, which
are capable of forming such condensates, has the form
[15]

Rg ——n16+ 144, where n = 2, 3, 4 (4.2)

for an SO(10) model. Clearly, two forms of gauge singlet
condensates can be constructed:

(C) = (LLLL) or (C) = (LLLL) (4.3)

It was argued [15] that only operators of the form (C) =
(LLLL) should contribute as such condensates will have
nontrivial flavor quantum numbers. No rigorous justiG-
cation was given but this did allow a systematic study
to be undertaken. We note, however, that this argument
breaks down when condensates with the 144 alone are
considered. Necessarily, such condensates will be flavor
singlets from the fact that the 144 itself is a flavor singlet.

plicitly break N = 1 supersymmetry [18]. While the con-
straints on nonsymmetric coset spaces preserve N = 1 su-
persymmetry, there exists a purely geometric term which
emerges from the ten-dimensional fermionic kinetic ac-
tion, written as V [26]. The nonvanishing matrix ele-
ments of V correspond to R singlets, so that gaugino
Gelds in four dimensions acquire superheavy masses. It
may be possible to overcome this by introducing torsion
onto nonsymmetric cosets but this has yet to be demon-
strated [12]. This, then, rules out implementing the gen-
eralized notion of the seesaw mechanism where the neu-
trino mass problem can be tackled by assuming a nonzero
vacuum expectation value for the scalar superpartner of
the right-handed neutrino [10].
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We have seen that higher-dimensional models in CSDR
constructed on internal manifolds without U(1) factors
are not phenomenologically acceptable. This means that
any gauge-invariant structures arising in acceptable mod-
els must be constrained by these factors. Clearly, this
will be important for constructing four-fermion opera-
tors. Ideally, fermionic states could be derived from ten-
dimensional representations with appropriate U(l) fac-
tors such that operators such as (C) = (LLLL) could be
formed. However, we note that intermediate symmetry
breaking is associated with four-fermion condensates of
the type

(C) = ((144 x 144) x (144 x 144)) (4.4)

Not all the 144 factors can carry the same additional
U(l) charge if this is to be a gauge singlet. But if we
have 144 representations with diB'ering U(1) quantum
numbers then strictly they belong to inequivalent fami-
lies; i.e. , we would have more than one such state. So,
while it may be possible, although it seems unlikely, to
construct condensates such as

(C) = ((16 x 16) x (144 x 144))

which could include family mixing among 16 s with dif-
ferent U(1) factors, states of the form (C) = (LLLL) will
not in general be gauge singlets. On the other hand,
condensates which can be written as (C) = (LLLL) can
be made to be gauge singlets without resorting to in-
volved family mixing prescriptions. Note that this U(1)
factor has arisen before with respect to SU(5) models in
CSDR where high color condensates were considered for
electroweak symmetry breaking only [16]. In the light of
previous discussion we will take these U(1) factors as a
model building constraint which binds us to condensates
of a particular type. Such a constraint could clearly not
arise in the original four-dimensional approach.

As we have mentioned, higher-dimensional models
yielding SO(10) in four dimensions have already been
demonstrated to exist. As with the S example,
many of these models fail to eliminate unwanted ge-
ometrical Higgs-boson fields in the presence of Wil-
son lines. For example, an E8 model on the mani-
fold CP SU(4)/SU(3)U(1) will have both 16's and
144 fermions arising from the 248 and 3875 as well
as 10's of Higgs bosons. However, this manifold has
no discrete symmetry in W [14]. Consequently, this
example is not viable. The manifold CP |3 S
SU(3) SU(2)/SU(2) C3 U(1) U(1) is also not suitable
since strictly CP2 cannot support a spinor structure [28].
SO(10) models have, however, been considered on this
manifold [12]. An example constructed on the mani-
fold SP(4)SU(2)/SU(2) CRSU(2) U(1) appears promis-
ing [12, 29]. Here an SO(10) model with 16's of fermions
emerges with the Higgs-boson fields transforming as 10's.
Unfortunately, the 10(0) Higgs-boson state [the number
in brackets corresponding to the U(1) charge] correspond-
ing to the vector component (2, 2)(0) of the 6 of SO(6)

V. CANDIDATE MODELS

A. Example on a symmetric coset space

We will consider a G = Es theory on the manifold
M Bo where Bo ——[SU(2)/U(l)] . A similar model
has been previously investigated but not in the context
of the dynamical symmetry-breaking scheme we are con-
sidering [29]. The R =[U(l)]s group is chosen to be iden-
tified with the [U(1)] subgroup of Es appearing in the
decomposition

Es 0 E7 SU(2)

~ E7 g) U(1)i

a Es U(1)i U(1) ii

D SO(10) U(1)i U(1)n @U(1)iii (5 1)

We consider fermions to be transforming in the 3875-
dimensional representation of E8. Note that now the
model is explicitly not supersymmetric. We decompose
the representations under (5.1) by employing the branch-
ing rules [24]

transforms to itself under Z2 ~ so the 10(0) Higgs-bosonS/R

state survives. The manifold SP(4)/SU(2) U(1) has re-
peatedly been applied successfully to SU(5) GUT models
[12]. In particular, a realistic model on the nonsymmetric
version of this manifold has been previously considered
[21]. However, SO(10) GUT models with this internal
space invariably contain exotic fermions in the 10, and
sometimes other representations, of SO(10). We could
attempt to eliminate these by an appropriate embedding
of Z2, such as with (3.3), so that all the fields do notS/R

transform evenly under Z2 . Eigenstates of such fermions
S/Runder Z2 Z2 may vanish when the Majorana con-

dition is imposed in ten dimensions [14]. However, as
mentioned earlier, the bidoublet component of the 10
of SO(10) is a singlet under this U(1) so such definite
eigenstates do not arise. While exotic fermions have in-
teresting properties within left-right-symmetric models
[30], we wish to remain as close as possible to the mini-
mal anomaly free set (4.2).

We are thus left with two examples, the symmet-
ric manifold [SU(2)/U(1)] and the nonsymmetric man-
ifold SU(3)/U(l)I3U(1). The interesting advantage of
manifolds where B contains more than one U(l) factor
lies in the added freedom to manipulate the embedding
4:B ~ G, corresponding to taking new linear combina-
tions of the U(1) generators. Thus we will present can-
didate models on these manifolds and demonstrate that
the required fermionic content arises with Higgs-boson
fields of geometrical origin being eliminated.
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E8
248

3875
SU(2)

2

3
E7
56

133
912

1539

27
78

351
650

E& SU(2),
(1,3) + (133,1) + (56, 2),
(1, 1) + (56, 2) + (133,3) + (1539,1) + (912,2)
U(1),
(1) + (—1)
(2) + (0) + (-2)
Es C3 U(1),
1(3) + 27(1) + 27( —1) + 1(—3),
78(0) + 1(0) + 27( —2) + 27(2),
78(3) + 78(—3) + 351(1)+ 351(—1) + 27(—1) + 27(1),
1(0) + 27(4) + 27(—4) + 27(—2) + 27(2) + 78(0) + 351(—2) + 351(2) + 650(0)
SO(10) C3 U(1),
1(4) + 10(—2) + 16(1),
1(0) + 45(0) + 16(—3) + 16(3),
10(—2) + 16(—5) + 16(1)+ 45(4) + 120(—2) + 144(1),
1(0) + 10(6) + 10(—6) + 16(—3) + 16(3) + 45(0) + 54(0) + 144(—3) + 144(3) + 210(0)

(5.2)

Thus the four-dimensional gauge group will be

H = CE, [U(1) ] = SO(10)[gIU(1) ]

The B = U(1) contents of [SU(2)/U(1)] vector and spinor are [18]

6 = (2a, 0, 0) + (0, 2b, 0) + (0, 0, 2c) + (
—2a, 0, 0) + (0, 2b, 0)—+ (0, 0, —2c),

4 = (a, b, c) + (—a, —b, c) + (—a, b, —c) + (a, b, ——c).

(5.3)

(5.4)

SO(10) z SU(5) II U(1)i
z SU(2)L, g) SU(3)c (g U(1)i CR U(1)ii (5.5)

and in such a way that all the fields transform evenly un-
der Z2 . We choose a solution for the symmetry-breaking
matrices U, arising from the homomorphism Z2 —+ G,
such that a maximal number of unbroken generators sur-
vive, resulting in the four-dimensional gauge group [5]

1~ =& .([U(1)] Z )
= SU(2) Cg SU(2) Cg SU(4)(ca[U(1)]') . (5.6)

We could alternatively have chosen the embedding given
in (3.3). Under the action of Z2 + Z2 eigenstatesS/R

of the scalar fields do not have definite transformation
properties under the four-dimensional gauge group and
so are eliminated. It is worthwhile pointing out, however,
that gauge singlet scalar fields can be very useful in phe-
nomenological model building. Recalling the Majorana
condition, the fermionic fields survive.

We see that we have two sets of ferrnions transforming
as 3 x 16+144 under SO(10). Since we do not wish to in-

Applying the CSDR rules with a = b = c = 1 we get (a)
scalar fields transforming as 1(2, 0, 0)+1(—2, 0, 0) and (b)
fermions transforming as 3 x 16(l, 1, 1) + 144(l, 1, 1) +
3 x 16(—1, 1, 1) + 144(—1, 1, 1).

This manifold has a (Z2) syinmetry in W, where each

Z2 changes the sign of a, b, and c [14]. We take Z2 CS/R

(Z2) and embed this into the U(1)iISU(1)ii subgroup of
SO(10) appearing in the decomposition

troduce any mixing between these sets we will choose to
identify them by an appropriate choice of discrete sym-
metry on the complex structure of the internal space such
that

Z2 .'(1, 1, 1) ++ (—1, 1, 1) (5.7)

Thus we have realized a model in four dimensions with
the appropriate set of fermions. Note that we need not
have necessarily embedded Z2 in 0 since we have cho-S/R ~

sen the fields to transform evenly under Z2 . In this case
we would have an SO(10) model in four dimensions with
the appropriate fermionic content.

B. Example on a nonsymmetric coset space

z SO(10) @U(1) i U(1)ii (5.8)

We take fermions to be transforming in two adjoint 133's
and one 1463-dimensional representation of E7. These
representations are decomposed under (5.8) by employing
the branching rules [24]

We will consider now a G = E7 theory on the manifold
M I3BO where Bo ——SU(3) jU(l)U(1). The B = U(1)
U(1) group is chosen to be identified with the U(1) U(1)
subgroup of E7 appearing in the decomposition

Ep z SO(12) C3 SU(2)

z SO(12) g U(1),
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E7 z SO(12) C3 SU(2),

13S= (1,3) + (S2', 2) + (66, 1),

1463 = (66, 1) + (77, 3) + (462, 1) + (352, 2)

SU(2) z U(1),

2= (1)+ (-1)

3= (2)+ (0) + (-2),

SO(12) D SO(10) C3 U(l),

32' = 16(—1) + 16(1),

66 = 1(0) + 45(0) + 10(2) + 10(—2),

77 = 54(0) + 10(2) + 10(—2) + 1(4) + 1(0) + 1(—4),

352' = 144(—1) + 144(1) + 16(—3) + 16(1)+ 16(—1) + 16(3),

462 = 126(2) + 126(—2) + 210(0)

(5.9)

Thus the four-dimensional gauge group will be

II = CE, [U(1) U(1)] = SO(10)[U(1) U(1)]

(5.10)

The B = U(l) g)U(1) content of SU(3)/U(1) U(1) vector
and spinor are [18]

6 = (a, c) + (b, d) + (a + b, c + d)

+(—a, —c) + ( b, —d)—+ (—a —b, —c —d),

4 = (0, 0) + (a, c) + (b, d) + (—a —b, -c —d) .

(5.11)

(1,0) ~ (2, —1),
Z2i = ~ (1, —1) ++ (—1, 1),

(—1, 0) ++ (—2, 1).
(5.12)

We can again embed this into the same U(1) subgroup
of SO(10) as before such that all the fields transform

We make a particular choice of embedding 4: B ~ t

by setting a = 1, c = —1, 6 = 1, d = 0. Applying
the CSDR rules we get (a) scalar fields transforming as
16(1,—1) + 16(—1, 1) and (b) fermions transforming as
3 x 16(1,—1) + 144(1,—1). We have neglected gaugino
fermionic fields as they all obtain masses on the order
of the compactification scale from the purely geometri-
cal term, V [26], which appears in the fermionic mass
matrix.

This manifold has a Z2 discrete symmetry in W [14].
Under this the B decompositions of the vector and spinor
transform as

evenly. Eigenstates of the scalar fields under Z2
S/R

Z2 do not have definite transformation properties under
the four-dimensional gauge group so they do not survive.
Recalling the Majorana condition, the fermionic fields do
survive.

Thus again we have realized a model in four dimensions
with the appropriate fermionic content. Note that in
both models the discrete symmetries can substitute the
Majorana condition which we consequently relax.

VI. THE DYNAMICAL SYMMETRY-BREAKING
SCHEME

As with Napoly [15], we will take all symmetry break-
ing from the four-dimensional gauge group down to
SU(3)c U(l)~ to originate from the existence of G-
symmetric four-fermion condensates. Decomposing Rz, x
Rr, we have [24]

16 x 16 = 10s + 120& + 126s,

(144 x 144)s = 10 + 126 + 126 + 210 + 320 + 1728

+2970 + 4950

16 x 144 = 10 + 120 + 126 + 320 + 1728

Since we are considering condensates of the form (C) =
(LLLL), the 4950-dimensional representation will con-
tribute even though it is complex. The symmetry-
breaking pattern can proceed along two possible direc-
tions depending on whether we (i) embed Z2 into the
four-dimensional gauge group or (ii) choose not to em-

bed Z2 . The resulting breaking schemes then have theS/R

form



48 TEN-DIMENSIONAL SO(10) GUT MODELS WITH DYNAMICAL. . . 2211

Mp) Mp)
(i) G = SO(10) SU(2)L, g) SU(2)~ (g SU(4)

Mp(
(ii) G = SO(10)

Mr Mr

SU(2)L, (g SU(3)c U(1)y. SU(2)L, (g SU(3)c (g U(1)~

Mrr Mrr

SU(3) g U(1) SU(3)c (g U(1)g,

where Mpr is the Planck scale and Mr and Mrr are mass
scales characterizing each level of symmetry breaking. It
is worthwhile emphasizing that all the symmetry break-
ing is induced either by condensates or topologically.
This is true even in case (i) where we employ Wilson
lines. It has been pointed out that Wilson lines are sim-
ilar to ordinary Higgs-boson fields transforming in the
adjoint representation of H [2]. However, it is not dif-
ficult to show that it is possible, by a more exotic em-
bedding of B into G, to achieve the breaking pattern
G —+ SU(2)L, SU(2)~ SU(4) directly by the CSDR
mechanism alone. It is not clear that a similar result
holds for SU(5) models. Thus, at the expense of a more

I

involved procedure, we could have arrived at similar con-
clusions without Wilson lines. We can, therefore, main-
tain the model building prescription without introducing
Higgs-boson fields outside those formed by condensates.

We will assume that only the 144-dimensional rep-
resentation is involved in forming Higgs-boson conden-
sates at the scales Mr and Mrr. In this way we will be
able to give these exotic fermions large masses relative to
the 16's. At the scale Mr, then, we need only consider
the 126, 126, 1728, 2970, and 4950 representations in
forming effective Higgs-boson fields as these contain a
SU(2)L, SU(3)c U(1)y singlet [24]. We can therefore
consider the condensates, in the notation of Napoly [15]:

(C,') = ([(144 x 144)ques x (144 x 144)~zs]q) (Mq),

(C&') = ([(144 x 144)qqzs x (144 x 144)$7+s]$) (My )

(C,"') = ([(144 x 144) o x (144 x 144) p ] ) - (M,"'),

(C,"")= ([(144 x 144)4ssp x (144 x 144)4ssp]q) - (M,"") (6.2)

Mr'=Mr =Mr =Mr &10' G V . (6.3)

If we choose to realize breaking scheme (i), however,
all the baryon-number-violating gauge fields will have

I

The energy scales corresponding to each condensate are
assumed to be approximately equal. Unfortunately, a
satisfactory topological mechanism to inhibit proton de-
cay has yet to be found within this higher-dimensional
scenario [22]. We are therefore moved to set the scale My
greater than about 10 GeV so that

been made superheavy at the compactification scale. In
this case then we could set the scale Mr to be signif-
icantly lower (10 —10 GeV for a light WR model).
Note that we could also have included the condensate
([(144 x 144)zzs x (144 x 144)zzs]r). With no com-
pelling reason to the contrary, we will simply take this to
be also characterized by the energy scale Mr.

An appropriate choice of four-fermion condensates at
the scale Mrr corresponds to eQ'ective Higgs-boson fields
transforming as 10, 210', and 320 which all contain an
SU(2)L, doublet. We therefore have the condensates

(C,', ) = ([(144 x 144)ip x (144 x 144)ip]i) (M,',),
(C,",) = ([(144 x 144)zgp x (144 x 144)zqp ]q) (M,",),
(Cg'T') = ([(144 x 144)szp x (144 x 144)szp]i) (Mi7)

(6.4)
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It is known that this symmetry breaking occurs at around
102 CeV so that

M)( M~I M)(' 10 GeV . (6.5)

As has been pointed out [15], the 210' and $20 also con-
tain Higgs representations, transforming as (4, l)(l) +
(4, 1)(—1) under SU(2)1, SU(3)c U(I)~, that can
induce breaking to SU(3)~ U(1)g. However, these rep-
resentations always appear with doublets, while doublets
can appear alone, so that it seems reasonable to postu-
late that symmetry breaking occurs by composite Higgs-
boson doublets only.

VII. THE FERMION MASS SPECTRUM AND
CHIRAL SYMMETRY BREAKING

We propose that the quark and lepton bare masses
originate from the condensates

(Cy) = ([(16 x 16) x (144 x 144) ] ) g 0,

(C&) = ([(16 x 16)ques x (144 x 144)~2s]q) g 0
(7.1)

while chiral symmetry breaking in the quark sector is
associated with

(C,) = ([(16 x 16)io x (16 x 16)go]g} (M~) )I (7.2)

where M is the symmetry-breaking scale such that
M (( Myy. Note that this approach divorces the chi-
ral symmetry breaking from the electroweak breaking at
M11 which the additional U(l) factors in H obstruct in
SU(5) models previously considered under CSDR which
utilize dynamical symmetry breaking [14]. The conden-
sate Cy couples fermions to the 10 composite Higgs boson
as in a Yukawa coupling. This mass scale is suggested to
occur at M, 10 GeV at which the 144 fermions are
decoupled. A large Majorana mass for the antineutrino
comes from coupling to the (144 x 144)~zs composite
Higgs boson at the Mj scale.

The 144 fermions attain masses at the scales My and
M11. The efFective SU(2)g symmetry above M11 protects
the 144 components associated with symmetry breaking
at this scale so that their masses are not larger than
Mp&. This gives rise to a TeV scale hadronic spectroscopy
as well as charged heavy leptons and neutrinos. Most
interestingly, a charge-two heavy lepton emerges.

It is important to note that, unlike the purely phe-
nomenological model, we do not have an exact U(3) fam-
ily symmetry. Originating from different representations
of G, a reduced family symmetry at best can exist. In-
deed, it may be possible to find a model in which all the

16 s originate in different representations in ten dimen-
sions. This would completely eliminate the existence of
exactly massless Goldstone bosons arising &om breaking
family symmetry. Interestingly, we can still eliminate
these fields by demanding that they be odd under the
Z2 discrete symmetry.S/B

VIII. CONCLUSION

%'e have presented models which realize an anomaly
free set of fermions necessary to yield realistic low-energy
theories by the formation of Higgs-boson fields from
fermionic condensates. As well as providing an origin for
this approach within phenomenological models, we now
have a means by which the desert region may be filled
in higher-dimensional theories. This is a major prob-
lem with SU(5) type models derived from CSDR. The
large gap separating the compactification scale, usually
taken as the Planck scale, and. the electroweak scale is
unnatural, yielding apparently no new phenomenology
in this region. While, as with the Wetterich model [8],
we have set the symmetry-breaking scales by hand we
have demonstrated that these symmetry-breaking struc-
tures can be associated with fields derived from higher-
dimensional models. Furthermore, the CSDR scheme has
provided an explicit model building constraint for the
form of condensates for which only heuristic arguments
could be previously used. It is compelling also to spec-
ulate that a nontrivial topological signature may arise
such that these condensates could have well-defined ex-
pectation values.

In the absence of manifolds with the appropri-
ate holonomy or compelling low-energy supersymmetric
symmetry-breaking schemes, the introduction of dynam-
ical symmetry breaking provides a consistent approach
to higher-dimensional SO(10) unified models. Indeed
it has been noted in left-right-symmetric models that
conclusions are unaltered if Higgs-boson fields are re-
placed by fermionic bilinears [31]. Outstanding ques-
tions, such as the hierarchy of scales may yet yield to a
more exotic geometrical approach, while interesting ex-
otic heavy fermions may provide the experimental signa-
ture for these symmetry-breaking mechanisims.
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