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Novel strong interactions in the electroweak bosonic sector are expected to induce efFective inter-
actions between the Higgs doublet field and the electroweak gauge bosons which lead to anomalous
WWZ and WWp vertices once the Higgs field acquires a vacuum expectation value. Using a linear
realization of the Goldstone bosons, we consider a complete set of dimension-six operators which
are SU(2)xU(1) gauge invariant and conserve C and P. This approach allows us to study effects
of new physics which originates above 1 TeV and the Higgs boson mass dependence of the results
can be investigated. Four of the dimension-six operators afFect low energy and present CERN LEP
experiments at the tree level. Another five inQuence neutral and charged current experiments at
the one-loop level and three of these lead to anomalous WWZ and WWp vertices. Their loop
contributions are at most logarithmically divergent, and these logarithmic divergences can be un-
derstood as renormalizations of the four operators which contribute at the tree level. Constraints
on the remaining five operators can be obtained if one assumes the absence of cancellations between
the tree level and one-loop contributions. The resulting bounds on anomalous triple gauge boson
couplings are modest, which emphasizes the importance of direct measurements of the triple gauge
boson vertices, e.g. , in W+W production at LEP II.
PACS number(s): 12.15.Cc, 12.15.3i, 12.50.Lr, 14.80.Er

I. INTRODUCTION

Many aspects of the standard model (SM) have been
beautifully confirmed by the recent experiments at the
CERN e+e collider (LEP) and SLAC Linear Collider
(SLC), in particular the gauge theory predictions for
the couplings of the vector bosons to the fermions. On
the other hand the precise dynamics of the spontaneous
breaking of the SU(2) xU(1) gauge symmetry remains
one of the major open questions. The search for the
Higgs boson or the measurement of longitudinal weak
boson scattering cross sections at the Superconducting
Super Collider (SSC) or the CERN Large Hadron Col-
lider (LHC) will be crucial to shed light on the Higgs
sector. More generally we need to determine experimen-
tally whether the SM predictions for the interactions in
the bosonic sector are adequate descriptions of nature.
This includes the measurement of, e.g. , the W WZ and
WWp triple vector boson couplings in e+e ~ W+W
at LEP II [1, 2] and in vector boson pair production at
future hadron colliders [3].

While the production of electroweak gauge boson pairs
will test the SM predictions for the gauge boson self-
interactions at the tree level, one would expect that some
new physics which leads to large deviations from the SM
in these production experiments would also give indirect
effects (virtual corrections) in precision experiments at
energies below the pair production threshold. EfFects on
the anomalous magnetic moment of the electron or the

muon [4, 5] and deviations &om the SM predictions in
four fermion amplitudes as measured, e.g. , in deep in-
elastic scattering, atomic parity violation, or in W and
Z production and decay have been analyzed in the past
[6—8]. Usually the deviations from the SM were intro-
duced in such a way as to violate SU(2) xU(1) gauge in-
variance when the scale of new physics, A, is taken to
be large. As a result the one-loop contributions from
anomalous WWV (V = p, Z) interactions to observable
oblique parameters [9] such as bp [10], the S, T, U pa-
rameters of Peskin and Takeuchi [11], or other related
parameters [12, 13] turn out to be quadratically or even
quartically divergent [6]. Because of these divergencies
the new physics at the high mass scale does not decouple
and for sufIiciently large values of A quantum corrections
become much larger than the lowest order effects [14].
These problems simply indicate that the assumed effec-
tive Lagrangian becomes inconsistent for a large scale A.
In order to avoid such an unphysical situation, significant
deviations from the gauge theory W WV couplings should
imply either a low new physics scale (A m~) [15] or
the existence of an extra contribution to the oblique pa-
rameters which exactly cancels the apparent quadratic
and quartic sensitivity to A [16]. In both cases, we need
to know details of the model in order to find a constraint
on the WWV couplings from low energy precision exper-
iments.

In a previous Letter [17] we reanalyzed the low energy
bounds on the anomalous triple vector boson couplings
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Av~ and AK, z in a &amework which manifestly respects
the SU(2) xU(1) gauge invariance of the SM and which
uses a linear realization of the symmetry-breaking sector.
We found that contributions to observable quantities de-
pend at most logarithmically on the cutoff scale A and
present low energy bounds are rather weak, in particular
for small values of the Higgs boson mass. These mild
constraints on the new interactions are universal to all
models which possess SU(2) xU(l) gauge invariance and
a light Higgs boson originating from a single doublet field.
They do not depend on other details of the underlying
model.

In this paper we consider more general observable
effects at low energy, due to some new interactions
which involve the Higgs sector and the electroweak gauge
bosons. We assume that the weak vector bosons and the
photon are indeed the gauge bosons of an SU(2) x U(1)
local symmetry which is broken spontaneously because
some order parameter, which transforms as an SU(2)
doublet, acquires a vacuum expectation value (VEV). In
order to allow for the possible existence of a light Higgs
boson (which might be a composite object as, e.g. , in
top-quark condensate models [18]) we choose a linear re-
alization of the symmetry-breaking sector in the form of
the conventional Higgs doublet field 4. The new inter-
actions lead to the opening of new thresholds at a high
energy scale A. At low energies their effects are described
by an effective Lagrangian which we approximate by con-
sidering operators up to dimension six only. The building
blocks of this effective Lagrangian are the Higgs doublet
field and the gauge fields [14, 19, 20], while any efFects on
the known quarks and leptons are assumed to be induced
by SM gauge boson exchange.

We present a complete analysis of four-fermion ampli-
tudes including all dimension-six operators in the gauge-
boson —Higgs-boson sector which are SU(2) xU(1) gauge
invariant and which are even under charge conjugation
and parity. Of these operators, four (to be called G~~,
OD~, OD~, and Oc, i) affect the neutral current (NC)
and charged current (CC) amplitudes at the tree level [21]
and another five induce effects at the one-loop level. Of
these five, three operators lead to anomalous triple vec-
tor boson couplings, as shown in Sec. II. We explicitly
calculate the quadratically and logarithmically divergent
contributions of the latter five operators to CC and NC
amplitudes and demonstrate that these divergent contri-
butions are equivalent to a renormalization of the four
operators Og~, ODg, Og)~) and 0@ 1 which contribute
at tree level, and of the SM parameters (which we take to
be n, the Z-boson mass mz, and the Fermi constant as
measured in p decay, G~). These one-loop calculations
are described in Sec. IV.

Because the leading one-loop contributions can be un-
derstood in terms of the tree level effects of 0~~, 0~~,
OD~, and 0@ 1, we have inserted in Sec. III a discus-
sion of the low energy efFects of these operators [21]. We
consider in this paper new physics in the gauge-boson
Higgs-boson sector that affects low energy experiments
only via a virtual gauge boson exchange. Hence only
oblique corrections to the SM appear and all results can
be described in the improved Born approximation [9]. In

Sec. III we review the results of a recent analysis of the
oblique correction parameters [22] which will be used in
Sec. V to derive bounds on the various operators. We
adopt the formalism of Ref. [22] since it allows for the
running of the oblique form factors between zero mo-
mentum transfer and the Z boson mass scale, as caused
by some of the dimension-six operators that we study.

The tree level bounds on Og~, 0~~, OD~, and 0@ 1
can be translated into constraints on the other five op-
erators (at the one-loop level) and hence on anomalous
triple boson vertices if we assume that there are no can-
cellations between the contributions of different opera-
tors. This is done in Sec. V. For the anomalous WWZ
and WTVp couplings A and LK one finds that deviations
as large as A = +0.5 or LK, = 0.5 are not excluded
by the present precision experiments. We also discuss
the Higgs boson mass and top-quark mass dependence of
these bounds. Because of the assumptions which need to
be made to establish any constraints, these bounds must
be considered as order of magnitude estimates only, and
they are about as stringent as constraints derived from
tree level unitarity considerations [23]. A final discussion
of our results is given in Sec. VI.

Some of the technical details are relegated to two Ap-
pendixes. Appendix A lists the dimension-six operators
which we consider and decomposes them into operators
with two, three, or four fields, which allows us to im-
mediately read ofF the Feynman rules for the various
non-standard-model vertices. We also show the SM La-
grangian in the same notation in order to fix all sign con-
ventions. In Appendix B we have collected the full formu-
las for the new physics contributions to the gauge boson
two-point functions and the Vff gauge boson fermion
vertex functions. IIi addition, results are given for mod-
els in which no light Higgs boson exists.

II. EFFECTIVE LAGRANGIAN DESCRIPTION
OF NE% PHYSICS IN THE BOSONIC SECTOR

oo (~)) ) fi ~(~+4) (2.1)

We are concerned with the low energy effects of
new strong interactions in the electroweak symmetry-
breaking sector. Denoting by A the characteristic scale of
the new physics, we are interested in the residual interac-
tions between the light degrees of freedom, i.e., the parti-
cles of mass M (( A. These are taken as the SU(2) x U(1)
gauge bosons and an SU(2) doublet field 4, which ac-
quires a vacuum expectation value v/v 2, and thus gives
rise to the three Goldstone bosons which are absorbed as
the longitudinal modes of the W and the Z. The fourth
real field contained in 4 is the Higgs boson, which may
be light compared to the scale A. We use this linear re-
alization of the Goldstone bosons in order to be able to
discuss Higgs mass effects and the decoupling of the new
physics for A )) e. Integrating out the heavy degrees
of freedom, the residual interactions between the gauge
bosons and the Higgs doublet field are described by an
effective Lagrangian
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Oiiw = Tr([D„,W„p] [D",W ~]),
I2

O» = —,(~.B-.)(~"B")
Ogw = C'tBp TV+ C',

(2.2a)

(2.2b)

(2.2c)

We will assume that the new physics respects the local
SU(2) xU(1) symmetry and that this symmetry is bro-
ken spontaneously only, by the vacuum expectation value
of C. As a result the operators in l.,~ must be invari-
ant under the full gauge symmetry. In addition we only
consider operators which separately conserve parity and
charge conjugation invariance.

A general analysis of the allowed operators with energy
dimension d = n + 4 ( 8 can be found in Refs. [19,24].
Operators which difFer by total derivatives only can be
identified with each other and the classical equations of
motion provide additional relations. Nevertheless, sev-
eral dozen independent operators remain when taking
into account operators which involve fermions as well as
bosons. Here we are interested in low energy efFects of
the electroweak symmetry-breaking sector only. We thus
expect operators involving fermions to be suppressed by
powers of my/A, making them negligible except, per-
haps, when involving the top quark. Dropping all terms
involving fermions requires that we do not use the equa-
tions of motion for the gauge fields since their equations
of motion give the fermionic parts of the isospin and hy-
percharge currents which are not suppressed for small
fermion masses.

With these restrictions eleven independent operators
remain. Four of them, namely,

and of the weak mixing angle [21]. These effects will be
considered in more detail in Sec. III.

Of the remaining seven operators two solely afFect the
Higgs self-interactions at the tree level

O~ 2 ———8„(Ct4)0"(@t4),
1

Oc, s = —(@'t@)'

(2.6a)

(2.6b)

= zgww g (W+ W "—W+ "W )V

+Kv W+R' V"

They do not enter in our subsequent analysis, since at the
one-loop level their efFects can be absorbed into a change
of the Higgs potential and hence into a renormalization
of the SM parameters.

The other five operators are

Owww = Tr[W„„W"~Wp "], (2.7a)

Oww = CtW„TV" (2.7b)

OI3I3 ——4tB„„B"C, (2.7c)

Ow = (D„C')t W" (D„C), (2.7d)

O~ = (D„4)tB" (D 4) . (2.7e)

As we shall see they all contribute to four-fermion am-
plitudes at the one-loop level. In addition Owww, Ow,
and O~ give rise to nonstandard triple gauge boson cou-
plings. Conventionally the WWV vertices (V = Z, p)
are parametrized by the effective Lagrangian [2]

O@ i ——(D„@)t@4t(D"4), (2.2d)

afFect the gauge boson two-point functions at the tree
level [21]. Here 4 denotes the Higgs doublet field. The
covariant derivative for an isospin doublet with hyper-
charge Y =

2 is

a
D„=8„+—g'B„+i g

2 " 2
(2.3)

and W„„and B„denote the full (non-Abelian) field
strengths of the W and the B gauge fields:

[D„,D„] = B„+W„= i —B„+i g —W„ (2 4)

2 I2

l'iv=fLiw W 0 W ~ + fg)g B~ 0 B~
2A2 2A2

m2 V2
+ fzwsc W B + f@ i mzZ„Z" (2 5)

to the kinetic energy part of the Lagrangian. O~w intro-
duces B-R' mixing and hence gives a contribution to the
S parameter. O@ i contributes to the g boson mass but
not to the TV mass and hence leads to deviations of the
p parameter from 1. Finally, ODw and OD~ lead to an
anomalous running of the @ED fine structure constant

When replacing 4 by its VEV, (0, v/v 2), and keeping
terms bilinear in the gauge fields only, one finds a contri-
bution

Av W+ W ~Vp", (2.8)
mw )

where the overall coupling constants are defined as
gww~ ———e and gwwz ———e cotow. Within the stan-
dard model, the couplings are given by g&

——gi ——Kz ——

v~ = 1, and Az ——A~ = 0. While the value of gi is
fixed by electromagnetic gauge invariance, the presence
of the operators Owww, Ow, and O~ in the efFective
Lagrangian of Eq. (2.1) will change the other values to

z=1 mz

m2
~z =1+ [fw —s'(fa+ fw)] 2A2,

2

~, = 1+ (fa+ fw)

(2.9a)

(2.9b)

(2.9c)

3mwg
&, =&z= fwww =&,

2A2 (2.9d)

with 8 = sinew.
At first sight it would appear that the operator Oww

would also give rise to anomalous values of r~ or Kz
when 4 is replaced by its vacuum expectation value,
(O, v/v 2)+, and, hence, @t4 ~ v /2. One immediately
finds, however, that the resulting term and the analogous
one from the operator O~~ are directly proportional to
the SM kinetic energy terms of the SU(2) and U(1) gauge
bosons and they can be absorbed into a finite renormal-
ization of the TV and B fields, respectively. In addition
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they give rise to processes such as H + pp and Z ~ Hp.
However, they will not change the SM three boson ver-
tices and they affect the gauge boson propagators at the
one-loop level only.

In addition to the three operators O~~~, O~, and
O~ the operators O~~ and OD~ also give rise to anoma-
lous triple gauge boson couplings [25]. Because they af-
fect the gauge boson propagators in addition, their effects
are not equivalent to any of the terms in Eq. (2.8) when
describing processes such as e.g. , e+e -+ W+W [14].
Instead of considering modifications of the gauge boson
propagators one can use the equations of motion for the
gauge fields to rewrite the operators O~~ and OD~ in
terms of O~ or O~ and O~~~, respectively, p/us addi-
tional anomalous gauge boson-fermion interactions [14].
A parametrization of deviations from the SM, which only
considers anomalous values of gq, K, or A, is thus valid
only when the coefFicients of the four operators O~~,
OD~, OD~, and O@, z are substantially smaller than the
coeKcients of O~~~, O~, or O~. Given the stringent
constraints on the former (see Refs. [14,21] and results in
Sec. V) this is exactly the interesting situation for vec-
tor boson pair production experiments at LEP II and
at hadron colliders. Consequently we have neglected the
contributions from O~~ and OD~ to the triple gauge
boson couplings.

A remarkable feature of the anomalous triple gauge
boson couplings in Eq. (2.9) are the relations

82
g, = z+ —,( —1),
A~ =Az ——A.

(2.10a)

(2.10b)

(s)
(D 4) (D C) 4t[D", D ]C (2.12)

lift the degeneracies of Eq. (2.10). One finds that Az and
A~ are no longer equal,

Az —A,

f (s)

fwww + i2 (~) (1+ 4,.)

(2.13)

and that Kz (but not K~ or gi ) gets an extra contribution

2 2V mz (8) (2.14)

While the relations of Eq. (2.10) are no longer valid at
the dimension-eight level, deviations from these relations

These relations result from our restriction to gauge
invariant dimension-six operators in the effective La-
grangian. At the dimension-eight level, operators such
as

g(8) k
= i" e* " W*"W~ C [Dp, D"]4 (2.11)

2
or

are naturally suppressed by factors of v /A and only
for very small scales A may one expect an appreciable
violation of, e.g. , the relation A~ = Az.

In our discussion we have emphasized the use of a linear
realization of the Goldstone boson sector. For the case of
a very heavy Higgs boson (or in models without a scalar
resonance) the use of a chiral Lagrangian is more ap-
propriate. Effectively the chiral Lagrangian is obtained
by the replaceinents 4 -+ exp(io y /v)(0, v/~2)+ and
A —+ 4vrv. As a main effect our counting of the operator
dimensions no longer holds, and, e.g. , the dimension-six
arid dimension-eight operators which contribute to K~
formally appear at the same level. Hence the relations of
Eq. (2.10) between the various anomalous couplings are
lost, as has been emphasized in Ref. [16]. Clearly these
relations are not due to the imposition of SU(2) xU(l)
gauge invariance, but rather they follow from neglecting
dimension-eight and higher operators in the effective La-
grangian. We believe that the ordering implied by the
use of the linear realization should nevertheless be kept
in mind. Even in models where new thresholds open at 1
TeV, the suppression factors v /A may be small enough
to lead to the relations of Eq. (2.10) up to corrections
which are smaller by more than a factor 10. This pos-
sibility combined with the ability to discuss Higgs mass
effects strongly motivates us to prefer the formulation
with a linear realization of the Goldstone boson sector.

In what follows we shall neglect operators of energy
dimension larger than six.

III. PRECISION TESTS OF FOUR-FERMION
AMPLITUDES AND CONSTRAINTS

ON NEW PHYSICS

To a large extent our knowledge of electroweak inter-
actions stems from precise measurements of four-fermion
S-matrix elements. This includes the recent LEP data,
neutrino scattering experiments, atomic parity violation,
p decay, and the TV-mass measurement at hadron collid-
ers. We are interested in experimental constraints, due
to such precision experiments, on the coefFicients of the
dimension-six operators which were discussed in Sec. II.
Contributions of these operators will be considered at the
lowest level at which they appear. Thus the operators of
Eq. (2.2) will be considered at tree level only, while the
one-loop contributions of the operators (2.7) will be dis-
cussed in Sec. IV. In this section we describe the general
framework for including the dimension-six operators in
the four-fermion S-matrix elements and study the tree
level contributions of ODw ODa Oaw and O@,~ as
an example. Constraints on the operators are obtained
by subtracting the SM contributions to the amplitudes.
Since present experiments are sensitive to one-loop ra-
diative corrections involving SM physics, the derivation
of experimental constraints on new physics must include
these one-loop effects. Our analysis, which is based on
the work of Ref. [22], considers the full one-loop SM ra-
diative corrections, including vertex and box diagrams.

The new physics effects which we consider are universal
for all external fermion species, they respect SU(2) x U(1)
gauge invariance, albeit in the spontaneously broken
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~(P1 P2 P3 P4) I(q ) J (Pl P2)J (P3 P4) (3.1)

Here the J~ only depend on the wave functions of the

phase of the theory, and they do not yield box contri-
butions at the lowest level. Hence they satisfy the con-
ditions of generalized universality [9, 21] and they can be
fully described within the improved Born approximation
(IBA), in which four-fermion amplitudes for massless ex-
ternal fermions are given by

, (,,)
.-' (")/

g —m~ + 2m~I gr
(3.2)

for CC amplitudes of left-handed fermions. For NC am-
plitudes we may write

external fermions and the helicity dependent I(q2) are
given by

2 2

iNc(v') =, Qr, Qf +,. ; . (T" — '(v')Qy, ) (T" — '(v')Qf ), .
q —~z + ~mzI'z (3.3)

II~T~(q ) = e IIT~~(q ),
II~~ (q ) = egz IIT~(q ) —3 IIT~~(q )

IIT (q )=gz IIT (q ) —23 IIT (q )+s II~ (q )

(3.4c)

(3.4d)II~~w(q2) = q211Ti (q') .

The couplings (e = gs = gzsc) and the propagators are
renormalized in the modified minimal subtraction (MS)
scheme and the SM one-loop contributions are calculated
in the 't Hooft —Feynman gauge. We separate the SM and
new physics contributions to the propagators as

IIAB( 2) IIAB( 2) + ~IIAB( 2) (3.5)

The explicit forms of the SM parts, 11$B(q2) sM, are
found in the Appendix of Ref. [26]. The contributions
of the four dimension-six operators are

where Qf, denotes the electric charge of fermion f, in
units of /4mn = e(0) and the helicity dependence is in-

corporated by setting T3' ——+2 for left-handed fermions

and. T3' ——0 for right-handed fermions.
The eKects of the four operators ODw& &DI3& &Jaw&

and 0@ i on the oblique correction form factors e2(q2),
gw (q ), gz(q ), and 3 (q ) arise solely from their contri-
butions to the four electroweak gauge-boson propagators.
In order to extract information on these new physics con-
tributions we consider the one-loop SM radiative correc-
tions at the same time. For notational convenience, we
express the transverse parts of the gauge boson propaga-
tors as

2
~II'~(q2) = 2',

2

EIIT (q ) =2
2

~II"(q') = 2',

mw1
I fDWq —fBW 2, [2g )

2 2m~ v
fDW'q f4', 1 A2 2g2

fDw'q

(3.6b)

(3.6c)

(3.6d)

The form factors n(q ) = e (q )/4vr and 32(q ) can be
expressed in terms of the above two-point functions as

1

n(q2)

32(q2)

n(q2)

= —+ 4z. ReIIT~~(q ) + 8~
W

4' II~~to&+ 4vr Re IIT~ (q ) + 87r

(3.7a)

(3.7b)

which are explicitly renormalization group invariant at
the one-loop level. We adopt the shorthand notation

„~B, 2, IIT (q') —114 (mv)
T,v(M J—

q —mv2 2 (3.8)

1

n(mz) sM
—4vr Re AIIP(m2 )n m2z

for the propagator factors after the gauge boson mass
renormalization (m~ = 0). Our definition of the run-
ning parameters n(q2) and s (q ) agrees with the ones
adopted by the LEP working group [27]. We note here
that the parameter n(q ) is measured accurately only
at q = 0 [n(0) = n = 1/137.036], whereas s (q2) is
measured most accurately at q = m&. We therefore
introduce a theoretical quantity n(m2z)sM,

2 m2
&IIT (q') = 2&, ~

(fDw + fDB)q' —fBw
g

(3.6a)

—&II/~(o)

whose numerical value is known precisely [28]:

(3 9)

1 8= 128.73 6 0.12 + —1 + ' Re [B3(mz, m|, mq) —B3(0;m&, mt)]
n(m2z) sM

(3.1o)

The top-quark contribution in the last term is uncertain but its numerical value is found to be smaller than 0.03 for
mq ) 100 GeV and hence is negligible. Our conventions for the B functions [29] are those of Ref. [26]. The running
of the s (q ) parameter between q2 = 0 and q = mz is then obtained from
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s (0) = s (mz) —47rcxRe IIT (mz) —IIT p( )n mz
(3.11)

Within the SM the main uncertainty in the running of s2 (q2) arises from the ambiguities in the hadronic contributions,
which we estimate along with Refs. [28] and [30]:

s (0)sM = 0.93939s (mz) + 0.02217 + 0.00024

1 ——s (mz) 1 + —' Re Bs(mz' m6, m~) —Bs(0; m6, mt)3 7r
(3.12)

The top-quark contribution in the last term is at most —0.00003 for mt & 100 GeV, and hence is negligible.
The remaining effective couplings that are associated with Z and R' propagators are most conveniently parametrized

as

167r 4s (m2z)c (mz)
z'(q') n(m2z)

16~ 4s'(m2z)
gw2 (q2) n(m2z)

in terms of the Sz and Siv form factors [22]. At q2 = 0, they are expressed as

Sz(0) = 16z (Re IIz (mz) —IIz, z(0) —Z (mz)e (mz) Re XIII (mz) —iIIIz (0)

(3.13a)

(3.13b)

(3.14a)

Siz(0) = 16z (Re IIz (mz) —IIz iz(0) —I (mz) Re iIIIz (mz) IZIIze( ) (3.14b)

where the second terms reflect the difFerence (3.9) between the actual n(m2z) and the calculated quantity n(mz)sM
that is used in the definitions (3.13). The above form factors can be regarded as possible exact definitions of the S
and U parameters of Ref. [11],which may be expressed as

Sz(0) = S,
Siv(0)—:S+ U .

(3.15a)
(3.15b)

By dropping the new physics contributions to the running of c).(q ) and by replacing the operation (3.8) by differen-
tiation, the expressions for S and U reduce to their original definitions. Within the SM they depend on the as yet

2
unknown masses of the Higgs boson and the top quark. For m, ) mz/2, i.e. , z6 —— ,' ) —,this dependence is givenm2 4~

by

1 (m2II l 1 n,
SsM = 0.010+ —h

~ 2 ~

+ —1+ —'
22zq —lnzq —(1+ llzq) [a(zq) + ir/4z6 —1]

4m- g m2z ) 6ir 7r

1 (m~) t'm~) 1 n, 1 1
UsM = —0.010+ —h

~ 2 ~

—h
~ 2 ~

+ —1+ —' —i()q+io, + (1 —i()6) (2+iU&) ln 1 ——
4vr qm2~) ( m2z ) 2~ vr 2 ~t

(3.16a)

—2zq + ln zi —(1 —zq) [a(zi) + vr+4zi —1] (3.16b)

2
Here m6 —— ,' and the two functions a and h are given bymw

and

—2+4x —1 arctan /4x —1 for x ) 4,
a(x) =

2/1 —4x ln + ~ for 0 ( x (—2~+ 4 )

79 3 x' ( x' 3 ( 2~2 ~s ') /'1 )
~(*) = ——+ — ——+

I
3 —*+—+ +—

18 2 3 6 1 —x) 3 6) q )

(3.17)

(3.18)

While the functional dependence on mt and m~ is shown explicitly, a numerical value for the contributions due to
the gauge boson loops is given for both S and U. Present measurements of mz and m~ leave little uncertainty in
these contributions.

The effective W coupling g~(q ) is measured accurately only at ~q ~
&& m~, e.g. , in )(6 decay and in low-energy

charged current processes. The efFective Z coupling gz2(q2) is measured both in low energy neutral current experiments
(~q ~

&& mz) and at q = mz. We therefore need the difference
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16m

y,'(mz)
= Sz(0) Sz(mz) = 167r Re IIT,z(mz) IIT,Z(0) 2s ( z) R IIX z(mz) T,z( )

gz 0

+.-'( 2,)R. II)~( ', ) —II@(o) (3.19)

Within the SM the running of Sz is given by

Sz(mz) sM = Sz(o) sM + 0.988+ 0.020,

for m~ & 100 GeV and mH & 50 GeV.
Finally, in theories with a custodial SU(2) symmetry,

(3.2o)

A

g z
2 "2

~z m~
(3.21)

where m~ and mz are the vector boson masses in the MS scheme. This yields one additional constraint among the
effective parameters and one obtains the relation

1 y~2(0) m2z

p gz(0) m2

where

(3.22)

n(l+ h~)
(3.23)

2 2

GF = 1.16639 x 10 GeV is the Fermi couPling and h~ = sg, 3 —(4, —1) ln,~ 0.0071 is the extra vertex

and box correction to the muon decay lifetime. Within the SM the T parameter shows the well-known quadratic
top-mass dependence:

3GF s
TSM ———0.1115+ 1+—'

m,
8~2vr2n(1+ b~)

( mz m& m~ m&) 7mz —m~2 2 2 2 2 2

+m~
~

ln — n +-
(mz —m& mz m~ —m& m~) 6 mz

(3.24)

where again the gauge boson contribution is given by its numerical value. Finally, the above expressions for S and T
together with the definition of the Fermi constant GF allow us to express s (mz) as

1 1 2 (S (1 —nT)(1+ 6~)s (mz) = ——n(mz)sM + vr
2 4 ( 4 2GFmz )

(3.25)

In particular we obtain the SM value s (mz) sM by using
this identity and the SM expressions for S and T.

The above parameters suKce to describe the existing
precision data on four-fermion amplitudes. An analysis
in terms of these parameters has recently been performed
in Ref. [22] and here we merely cite their results. The
LEP and SLC data can be summarized in terms of

2

gz(m, z) = 0.5520 + 0.000224
~ ~

+ 0.0017,
(100 GeV)

(3.26a)

2

s (mz) = 0.2318 —0.00004
~ ~

+ 0.0011,
gloo GeV)

(3.26b)

2

;„(mi) = 3.430 —0.180
~( 100 GeV)

4

+0.153
i(100 GeV)

(3.27)

The top-mass dependence of the Gt is mainly due to the
dependence of the Zbb vertex corrections on m&. Since
the data must be corrected for the vertex contributions
prior to the extraction of the oblique parameters, a slight
dependence on mz results. The quoted errors already
contain the uncertainty in the determination of the strong
coupling constant, for which n, (mz) = 0.12 + 0.01 has
been taken.

In a similar fashion the low energy data on neutrino
scattering and atomic parity violation can be summarized
by

with a correlation of p = 0.315 and a minimal y of gz(0) = 0.5462 + 0.0035, (3.28a)
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s (0) = 0.2359 + 0.0048, (3.28b) measurement of gw(0):

with a correlation of p = G.531. These results are ob-
tained in Ref. [22] after process dependent vertex and box
contributions of the SM have been corrected for in the
't Hooft —Feynman gauge. Finally, the W-mass measure-
ment at hadron colliders together with the input value
of G~ as measured in p decay can be translated into a

gw (0) = 0.4217 + 0.0027 . (3.29)

These data must then be compared to the predicted
values which are a sum of the SM contributions given
earlier, and the new physics contributions. For the four
dimension-six operators which contribute at tree level the
latter can be summarized by

V
Abp = nAT = — fg, g,

m2 V2 2 —m2
&~z(q') = —32~, (c'few + s'fva) —4~, faw —32&, (& fDw + s'fDB)

2 —m2
&+w(q') = &~z(mz) —32~

2 —m2
As (q ) = —ASz(0) —c s Abp + 8mn (c f~w —s f~~)c2 —s2 4 A2

= —8~nA, (fDw + fDB) .
n(q') —n(0) q'

n 0

(3.30a)

(3.30b)

(3.30c)

(3.30d)

(3.30e)

Numerical results for the constraints on the four coeFi-
cients fDw, fD~, f~w, and f@ q will be given in Sec. V
together with the constraints on the remaining operators
which only contribute at the one-loop level.

4m@
i

+1 i=A2 (
E' —1

——p@ + 1n(4vr p ) + 1 = ln A

(4.1a)

(4.1b)

y, z

IV. NEW PHYSICS CONTRIBUTIONS
AT THE ONE-LOOP LEVEL

W W

W

7, Z z, z

The five operators OWWW & &WW y +BB) +W y
and

OB affect the four-fermion amplitudes at the one-loop
level only. Contributions can arise either &om corrections
to the gauge boson two-point functions or from correc-
tions to the fermion —gauge-boson vertices. For the CC
amplitudes the relevant Feynman graphs are shown in
Figs. 1 and 2. We are neglecting dimension-eight opera-
tors, which would enter with a coeKcient A, and are
hence suppressed by an additional factor m2z/A2 in the
low energy observables. For consistency we must also
drop contributions with two anomalous vertices which
formally are of the same order. In the vertex correc-
tions only the anomalous triple gauge boson couplings
enter. The two-point functions, on the other hand, de-
pend on the new gauge-boson —Higgs-boson and the re-
lated Goldstone-boson —Higgs-boson vertices in addition.
As we shall see these Higgs contributions are essential.

The calculation has been performed in a general Bg
gauge which allows us to check the calculation by verify-
ing the gauge invariance of the four-fermion amplitudes.
In turn this requires the use of a gauge invariant regu-
larization scheme for which we have chosen dimensional
regularization. Working in d = 4 —2e dimensions, we
identify the poles at d = 2 with quadratic divergencies
and the poles at d = 4 with logarithmic divergencies.
These are related to the cutoff scale A in a momentum
cutoff regularization by the identification

(b)
W ~ ' W

X

(c)

X', H

I \~ f

W ' ./' W

x

X, H
r

I

W '~ '
W

X

W

(e)

', H

W, Z
'e +
: C, Cg

I

,
' H

(g)
W, Z, 7

,'H

W W

'ix X H
/

,' H

FIG. 1. Feynman graphs for the anomalous contributions
to the WR two-point function. The vertices carrying a blob
represent the anomalous boson interactions as described by
the dimension-six operators of Eq. (2.7). y+ and y de-
note the Goldstone boson propagators while c+, cz label the
Faddeev-Popov ghosts.
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i" W Vertex corrections appear for left-handed fermions only
because in all graphs a virtual R' is coupled to the
fermion line. Neglecting any fermion mass efFects, the
vertex functions are given in terms of a scalar form fac-
tor:

~r„f f (q) = ~„-(1—~,)ar, "(q') (4.2)

FIG. 2. Feynman graphs for the new physics contributions
to the Thud vertex. For massless fermions, only the anomalous
triple gauge boson couplings affect the fermion —gauge-boson
vertices at the one-loop level.

~l, »(q') = g T,'~I, (q'), (4.3)

where q denotes the momentum of the virtual gauge bo-
son V. For the couplings of the Z or p to fermions the
antisymmetry of all anomalous triple gauge boson cou-
plings in the W+ and the W fields ensures that up- and
down-type fermions receive vertex corrections of opposite
sign. In addition we find that the divergent parts of the
vertex corrections are independent of the fermion charge.
Hence we can write, for both V = p, Z,

where p denotes the unit of mass of the dimensional reg-
ularization. The above identification is found by evalu-
ating appropriate tadpole diagrams in the two regular-
ization schemes.

We have calculated all divergent contributions of the
dimension-six operators to the four-fermion amplitudes.

where T3 denotes the third component of the fermion's
isospin and the form factor AI'zv(q ) is independent of
the fermion Havor.

For the R coupling to fermions an explicit calculation
of the Feynman graphs depicted in Fig. 2 yields the Bavor
independent result

~l "(q') = ' ~Iw(q')

g n m2w A q 33g'fwww, + fw ((w—+(z+ 2)28ws2 A2 P2 ( mw 4 (4 4)

The vertex corrections induced by the operator Ow depend on the gauge parameters (w and (z. Vertex corrections
induced by the operator O~ on the other hand are finite and do not appear in Eq. (4.4). The gauge dependence of the
vertex functions is exactly canceled by corresponding terms in the gauge boson self-energies. For CC amplitudes we
need to consider the transverse part of the W vacuum polarization tensor, AIIT (q ), as shown in Fig. 1. Retaining
the fwww and fw terms only, the result is

++T (q') =—,, (fw (2q' —3m~) A

+ fw l
+ —(21mw + ~z mH) + (9mw —6mz + 3~a)

l

~ (q ) 'q 2 2 2 w' 2 2 2

3 2 2

2

2
fwmw(q ——mw)((w + (z + 2) —6g fwww q (q —6mw) ln

p2
(4.5)

The general result, including all nine operators of Eqs. (2.2) and (2.7), is given in Appendix B.
Any charged current amplitude only depends on the linear combination

AII (q ) = AII (q ) —2(q' — ' )AI' (q ) . (4 6)

In this combination the gauge dependent terms in EI'&w and EIIT w exactly cancel, as is explicit from Eqs. (4.4) and
(4.5). In the same fashion the NC amplitudes only depend on gauge invariant combinations of vertex and vacuum
polarization functions:

(4.7a)

QIIT, (q ) = QIIT (q ) —s q EI'L, (q ) —c (q —mz) +I~i(q )

AIIT (q') = AIIT (q') —2c (q' —mz) AI'L, (q') .

(4.7b)

(4.7c)
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We have explicitly verified that the four combinations in Eqs. (4.6) and (4.7) are indeed independent of the gauge
parameters (w and (z, which constitutes an important check of our calculation. i

Explicit formulas for all vertex functions and the efFective vacuum polarization functions AIIT (q ) including the
effects of all operators are given in Appendix B. Here we are interested in the observable effects on the CC and NC
four-fermion amplitudes only. As shown in Sec. III these effects can be summarized in terms of four form factors
and by the W to Z mass ratio. We express these quantities in terms of the p parameter as measured by the ratio of
NC/CC neutrino scattering, Sz(q2), Sw(q ), the weak mixing angle s(q ) as defined in Sec. III, and by the running
oF the @ED fine-structure constant. When including the contributions of the four operators O~w, OD~, O~w, and
Oc, z which already entered at the tree level, the new physics contributions to these five quantities are given by

V
2

E8'p= nAT = — fc, i, (4.8a)

m2 V2

&Sz(q ) = —32~
2 (c few + s fL~a) — ~&, f~w

I
c fLw+s G)B+ 7 2(f~+fw)»

q2 —mz f 4 4 1 m2~ ')

l 768vr 2 mw)
(4.8b)

8 m m2 ~ —m, 2 1 m2
&Sw(q') = &Sz(mz) + —', (fw —fa)» 2" —»~ A, I few +

7 2(fa+ fw)»
m2w )

(4.8c)

2 —m2
r, ss(qs) =, —68z(0) —c s s88p) + 8zcs, (c'fcscz —s fssz)c2 —82 4

(4.8d)

= —8&~A, (fL w + fna) .(r(q') —a(0) q'
n 0

(4.8e)

e Four parameters f', f", f&w, and f@ i which enter in Eq. (4.8) are indePendent of q . They can be written
in terms of the coefficients of the nine operators which contain electroweak gauge fields:

fB fwfew=few —,
I
fw» +

192vr2 ( m2w 4 m2w)
ln (4.9a)

1 ( A f~ —fw mH ')

mw
(4.9b)

mH m~
faw = f~w+, 3 2 (f~+ fw) I », + —

I

—5
I

—,—2
I (fa —fw)»96+82 m~~ m~ 2) (c2 ) m~

7l f 31 A2
+

I
20+ —,

I fa —
I
12+ —,

I fw +30(j'fwwwc') m~
s'—24

I fww + 2 f» I

l"—
l c ) m~

(4.9c)

fc, , ——fc,+, , f~
I
ln, + —I+3, (f~+fw)in, —I, f~+, fw I

ln
3n m~ ( A' 11 mw A2 f m2z m2w ) mH

8~c2 v2
q mH 2) mw ( v' v ) mw

(4.9d)

(1ncidenta]]y, the &eading (q2)~ terms arising from the operator Qurwtv exactly cancel as well in the gauge independent
coinbjnations of Eqs. (4.6) and (4.7). As a result we find no contribution to the running of n(q ) due to Dwww, in apparent
confijct to Ref. []4]. The discrepancy is due to our use of the gauge invariant combinations s") IIT when defining the ob»que
parameters and we found complete agreement of the full four-fermion amplitudes. We thank M. B. Gavela and E. Masso for
their help in establishing agreement of our results.



2192 HAGIWARA, ISHIHARA, SZALAPSKI, AND ZEPPENFELD 48

In addition to the divergent terms (proportional to ln A)
we also have included all terms which depend quadrat-
ically or logarithmically on mH for large values of the
Higgs mass (mJr ) mz).

The above equations constitute the main result of our
work. Their interpretation is straightforward: the one-
loop effects involving the insertion of single dimension-
six operators yield logarithmic divergencies which can be
absorbed completely into the renormalization of those
dimension-six operators which already contribute to the
four-fermion amplitudes at tree level. The parameters
fDw, fD&, f&w, and fc, i are the renormalized coeffi-
cients of the four operators ODw, OD~, O~w, and O@ i
at the mass scale of the weak bosons. The logarithmic
terms in Eq. (4.9) describe the mixing of these four oper-
ators with Owww, Oww, O~~, Ow, and O~ due to the
evolution between the boson masses and the new physics
scale A, as governed by the renormalization group equa-
tions.

In intermediate steps of the calculation we actually
encounter quadratic divergencies as well. One example is
the first term in Eq. (4.5). The q independent part of the
quadratic divergence is absorbed into a finite mass shift
for the R' boson. The cutoff scale A and the A factor
from the normalization of the dimension-six operators
cancel and yield a mass shift which is independent of the
scale of new physics:

bmw = AIIT (mw) = fw mw+
8m82

(4.10)

Additional terms due to other operators can be inferred
from the complete expressions in Appendix B. Because
the Z boson mass receives an analogous shift, these lead-
ing effects of the new physics cancel in the mass ratio or
the p parameter.

The remaining quadratically divergent pieces in the TV
self-energy vanish for q = mw and give a constant con-—WW 2tribution to IIT w (q ). They are absorbed into the renor-
malization of the W coupling gw(0) or, equivalently, into
the renormalization of the Fermi constant G~. In the
same fashion all quadratic divergencies merely lead to a
renormalization of the SM parameters o. , mz, and G~,
no quadratic divergencies appear in the observable form
factors Sz(q ), Sw(q ), s (q ), n(q ), and bp, once these
are expressed in terms of the renormalized SM parame-
ters. As a result any observable effects of the new inter-
actions vanish for large A at least as fast as A, ln A and,
hence, the new physics decouples in the limit A —+ oo.

These results were to be expected: the one-loop correc-
tions involving dimension-six operators lead to quadratic
divergencies multiplying all allowed dimension-four op-
erators, logarithmically divergent terms multiplying the
allowed dimension-six operators, and additional finite
terms, which we have not calculated completely. Preserv-
ing SU(2) x U(1) gauge invariance at all stages of the cal-
culation, only gauge invariant operators can appear mul-
tiplying the divergencies. Since the SM Lagrangian con-
tains all gauge invariant dimension-four operators, the
quadratic divergencies necessarily can be absorbed into
a renormalization of the SM parameters. Similarly, since
only the dimension-six operators ODw, OD~, O~w, and
O@ i can contribute directly to the four-fermion ampli-
tudes at tree level, all logarithmic divergencies are equiv-
alent to a renormalization of the coefficients of these four
operators.

In order to achieve the cancellation of quadratic diver-
gencies in the oblique correction form factors, the contri-
butions from Feynman graphs involving the Higgs boson
are essential. In these Higgs boson graphs quadratic di-
vergencies as well as mH terms only arise from the scalar
integral

dx[~m~ + (1 —T)m —q ~(1 —x)j
1

B22(q; mIr, m) = — I'(e —1)(4vrp, )'
327r2

1 1 f q2) f A 1)—A + —/m~+m ——
/

/1n
32vr2 2 q 3) q

M2 2) (4.11)

The scale M appearing in the argument of the logarithm is the larger of m and m20 and the el-
lipsis represents terms which remain small as mH becomes large. As we have seen before, the lead-
ing quadratic divergencies disappear in all observable quantities when including the graphs with Higgs
boson propagators. According to Eq. (4.11) dropping these graphs is analogous to the replacement
—m2~(ln, + —) ~ A, as far as the quadratic divergencies are concerned. With this replace-mQ

We thank M. Luscher for making us aware of this point. For a related discussion, see Refs. [5, 31].
Following the identification of the poles at e = 1 and e = 0 with the quadratic and logarithmic dependence on the cutoK A

as in Eq. (4.1), we define the finite (A-independent) terms of a function f(e) via

1f =11 f() —B(1)~~ +1
~

—B(0) ——p +1 4 +1)c—+0 e —1 E

where R(1) and B(0) are the residues of the poles at e = 1 and c = 0, respectively.
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ment in Eqs. (4.9c) and (4.9d) we qualitatively recover
the quadratic divergencies in S and bp = nT which were
obtained in earlier analyses that did not include Higgs ex-
change contributions [6, 7]. At the same time we find that
these quadratic divergencies are indeed physical: they
correspond to strong enhancements in the mixing of the
dimension-six operators in the absence of a light Higgs
boson. In Appendix 8 we also give the expressions for
the renormalized parameters f&w, f&&, f&w, and fc, i
when dropping the Higgs exchange graphs completely.
These results are directly related to the ones one would
obtain by using a nonlinear realization for the symmetry-
breaking sector.

V. CONSTRAINTS FROM PRECISION
EXPERIMENTS

The existing data on four-fermion amplitudes as sum-
marized in Sec. III provide experimental constraints on
the new physics contributions to the oblique correction
form factors. Apart from the "finite terms" in Eqs. (4.8b)
and (4.8c) which are proportional to ln ~ and which are
small numerically, all the new physics contributions con-
sidered in this paper can be described in terms of the
renormalized coefficients fDw, fD&, f&w, and f@ i of
the four operators which already contribute at tree level.
This implies that complete cancellations between the op-
erators are possible in principle and no rigorous bounds
can be derived from the low energy data alone. One
immediate example is given by the operators O~~~,
Oww, and O~~ which only contribute via f&w and can
therefore cancel each other.

Low energy constraints can only be derived if one as-
sumes that cancellations between different new physics
contributions do not occur at a serious level. The re-
sulting bounds directly re8.ect the degree of cancellation
which is still considered "natural. " In the following we
shall first consider the situation where one operator only
has a nonzero coeKcient, i.e. , we do not allow for any
cancellations between the various operators. Using the

coefFicients of the operators at the scale of new physics
as the free parameters (i.e. , the unrenormalized fDw,
fw, etc.), this procedure provides bounds for all nine
operators which contribute up to one loop. The tree
level contributions due to the four operators O~~, O~~,
O~~, and O@ i are then analyzed in the more general
context, allowing for cancellations. This second analy-
sis is essentially equivalent to a determination of model-
independent constraints on the renormalized coefFicients
f&w, f&&, f&w, and f@ i from existing data.

We have performed a y analysis of the data, which
is given by the experimental results on gz2(m2z), s2(m2z),
gz(0), s (0), and gw(0) as summarized in Eqs. (3.26)—
(3.29). The SM and the new physics contributions are
added linearly in 8p = nT, Sz(mz), Sz(0), Sw(0), and
s (0). The theoretical expectations for the five data
points are obtained from these via Eq. (3.25) to deter-
mine s (mz) and by then using Eq. (3.13) to determine
gz(mz) yz(0), and gw(0).

In Table I the values and lo errors of the coefficients f,
are given for all nine dimension-six operators assuming
that one f; at a time difFers from zero. The columns cor-
respond to four different Higgs mass values. A top mass
of 140 GeV and A = 1 TeV are assumed. The coeKcient
of O~~~ is scaled such that the value given in the ta-
ble corresponds to the extracted value of the anomalous

3 2 2
WWV coupling A = z&w, fwww The ot. her coeffi-
cients of the one-loop operators are rescaled with a fac-

2

tor &w2. The entries for f~ and fw thus correspond to a
determination of r~ from the low energy data. One finds
that for those operators which contribute at the one-loop

2
level only, values of

~
f;

~ 2A, larger than —0.2 require can-
cellation between the various new physics contributions.
For the tree level contributions this level is reached al-
ready for values of

~ f;i which are smaller by two orders
of magnitude.

The bounds given in Table I assume a fixed value for
the top mass. Large cancellations are possible, however,
between the quadratic mz dependence of bp = nT and

TABLE I. Low-energy constraints on the coefficients of the nine operators which contribute to
the oblique corrections up to one-loop order. Only one f, at a time is assumed to be different from
zero. 1' errors are quoted, assuming m& ——140 GeV, A = 1 TeV. The couplings which occur at one
loop only are scaled such that the entries correspond to a determination of r~ —1 for f& and fw

60 200
m~ (Gev)

400 800

0.52+0.51
—0.54+1.9
—0.17+0.33

0.05+0.05

0.46+0.51
0.6+1.9

0.06+0.33
0.01+0.05

0.39+0.51
1.3+1.9

0.22+0.33
—0.01+0.05

0.31+0.51
2.0+1.9

0.39+0.33
—0.04+0.05

& = fwww3g
2

71Lw
H pemWfw ~Ay

2
7TL w

TV%V ~2
mw

—0.08+0.16
0.06+0.10

0.043+0.056

0.037+0.071
0.12+0.24

0.03+0.16
0.042+0.061

0.009+0.087
—0.022+0.124
—0.08+0.41

0.10+0.16
0.008+0.031
0.10+0.21

—0.14+0.22
—0.47+0.72

0.19+0.16
—0.005+0.020

0.087+0.077
—1.0+0.9
—3.5+3.0
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the operators OB and Ow which mix into the opera-
tor Q@ z at the weak scale [Eq. (4.9d)]. This behavior
is demonstrated in Fig. 3 where 90% C.L. contours are
shown in the Ar~ mt-plane for nonzero values of fw and
fB, respectively, setting all other f, = 0. For small values
of the Higgs mass one finds a strong positive correlation
between fw and mq which is due to the contribution of
fw to f@ z. For large Higgs masses the contribution of
fw to fBW is enhanced by a factor of mB and the con-
straint on the S parameter dominates the bound on fw.
As a result the positive correlation is lost. The reverse
is true for fB g 0: for large Higgs masses the contribu-
tion to f@ z dominates and a strong correlation with the

7

top-quark mass results. Figure 3 clearly demonstrates
the dependence of the f; bounds on assumptions about
the top-quark mass and the Higgs boson mass. While
the mq dependence is due to cancellations between new
physics and SM contributions, the mH dependence can
largely be traced to the presence of the Higgs G.eld in
the dimension-six operators, namely to Higgs exchange
graphs contributing to the gauge boson two-point func-
tions.

Experiments at the Fermilab Tevatron are sensitive to
anomalous values of v~ and A~ via the TVp production
process. Hence correlations in the Kz-A& plane are of
particular relevance. In Fig. 4 we show the 90% C.L.
contour lines in this plane for three representative top
mass values and for A = 1 TeV, m~ ——100 GeV. In
addition, the choice fB = fw has been made. Anomalous
W'TVp couplings of order 0.5 are clearly allowed by the
present low energy data, which raises the possibility of
observable efFects at the Tevatron [32].

Apart from small contributions proportional to fB and
fw, all other logarithmically enhanced one-loop contri-
butions to the oblique parameters only arise via the

running of the four operators which contribute at tree
level. As a result complete cancellations are possible in
principle. In addition one 6.nds strong correlations be-
tween the tree level operators ODw) ODB) OBw) and
Oc, t. For small enough values of the f, the y function
is just a quadratic polynomial in these four coeKcients
f = (fi, f2~ fS, f4) = (fDW 1 fDB1 fBW 1 fe, l):

~' = ~', + ) (f, —f;) v„-' (f, —f, ) . (5 1)

One Ands that the minimum of y is slightly dependent
on mB and m& (via the corresponding dependence of the
SM oblique correction 'parameters) while the covariance
matrix V shows a negligible m~ and mq dependence.
Instead of V ~ in Eq. (5.1), we here give the extracted
central values (f;) and lo errors (gV;, ) of the f, and
the correlation matrix. The central values depend on the
top-quark and Higgs boson masses which we parametrize
in terms of

mq —140 GeV
100 GeV

fDH

200 GeV

(5.2a)

(5.2b)

Within better than 5% of the 1cr errors, and in the ranges
90 GeV & mq & 250 GeV and 60 GeV & m~ & 800 GeV,
this dependence is given by

fDw = 0.56 —0 32 x~ 6 0 79 (5.3a)
fDB ———8.0 k 11.9, (5.3b)
fBw ——1.9+ 0.132 x~ + 0.077 ln xB + 2.9, (5.3c)
fc. , = 0.105 + 0.100x, + 0.319x, —0.029 ln xH 6 0.20,

(5.3d)
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FIG. 3. Low energy constraints on An~ and the top-quark mass for (a)

fear

g 0 and (b) fB g 0. The coefficients of all
other dimension-six operators are set to f; = 0. The curves are 90'%%uo C.L. contour lines assuming A = 1 TeV and three difFerent
values of the Higgs boson mass: m~ ——60 GeV, m~ ——200 GeV, and m~ ——800 GeV.
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0.6

1 ~ ~ ~

mt = 200 GeV hold for all the other coeKcients of the dimension-six
operators.

0.4
mt = 150 GeV

VI. DISCUSSION AND CONCLUSIONS

02

8
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FIG. 4. Correlations in the K~-A~ plane for three values
of the top-quark mass. Shown are 90% C.L. contours for
f~ = f~ and A = 1 TeV, m~ = 100 GeV. The anomalous

2
couplings are given by r~ = 1+ (f& + fw)™~and A~

A = ~+~ f~ww All ot.her coefficients of the dimension-six
operators are set to f, = 0.

assuming A = 1 TeV. The correlation matrix C is found
to be

V,~

QV;, V

—0.206
1

0.014 -0.317 i—0.963 —0.763
1 0.892

)
(5.4)

A = 0.89+ 1.35, (5.5)

when the correlations with f~~, f~~, and f~, q are taken
into account. This may be compared to the error AA =
+0.16 as given in Table I. If we allow a cancellation in

f&~ between the tree-level term f~gr and the one-loop
contribution proportional to A, then no rigorous bound
on either of these quantities is possible. Similar results

Both the 10 errors and the correlation matrix elements
are independent of mH and mq to high precision.

Obviously, strong correlations exist in the allowed re-
gion. In particular, cancellations between fD~, f~gr, and
f@ q are possible. This results in substantially increased
errors for these three parameters as compared to the en-
tries in Table I, where no correlations were considered.
Neglecting the small "finite terms" in Eq. (4.8), the re-
sults of Eq. (5.3) can be taken as a measurement of the
corresponding renormalized tree level parameters. These
may then be used to analyze the bounds on the one-loop
operators in the presence of correlations. As one exam-
ple consider f~~, whose error has increased by a factor
9. Since anomalous values of A only enter via their con-
tribution to f&~, see Eq. (4.9c), the measurement of A

weakens to

The appearance of anomalous triple gauge boson cou-
plings constitutes only one possible consequence of new
physics in the bosonic sector. As we have seen, a consis-
tent discussion of low energy effects of such new physics,
in particular at the loop level, must allow for deviations
from the SM in the gauge boson propagators as well as
in the interaction terms involving the gauge bosons and
the Higgs boson. We have shown that the leading one-
loop effect of anomalous triple gauge boson couplings is
the renormalization of new physics contributions to the
gauge boson propagators. Therefore low energy bounds
on the three gauge boson couplings cannot be obtained
without making assumptions on how the new physics will
alter the propagators.

In more precise terms we have analyzed the effects on
four-fermion amplitudes of a complete set of SU(2) x U(l)
gauge invariant dimension-six operators which can be
constructed from the electroweak gauge bosons and the
Higgs doublet field. Of the five operators which first con-
tribute to NC and CC amplitudes at the one-loop level,
three induce anomalous WWV couplings at tree level.
The divergent (cutoff dependent) contributions of these
five operators to four-fermion amplitudes amount to a
renormalization of the input parameters of the SM (n,
G~, and mz) and of the four operators (OD~, O~~,
O~~, Oc, q) which affect the gauge boson propagators
already at tree level. Our calculation explicitly demon-
strates the well-known fact that a consistent calculation
within a nonrenormalizable theory leads to finite and
cutoff independent results, albeit at the price of hav-
ing to introduce additional free parameters to describe
the predictions of the theory [33,31, 5]. Because we lim-
ited ourselves to a single insertion of dimension-six op-
erators, only a finite set of such additional parameters
was needed: f~~, f&» f&~, fc, z. Going beyond this
approximation (as would be needed when extrapolating
our results to higher energies where E2/A2 is no longer
small) additional parameters will appear.

Previous analyses of these one-loop effects (including
our own) have generally been incomplete as only small
subsets of the possible higher dimensional (nonrenormal-
izable) interactions were considered [4, 6—8, 14, 17, 34].
This partial analysis of the problem led to logarithmi-
cally divergent results. In addition, quadratic divergen-
cies were observed in some previous calculations, which
can be identified [17] with a quadratic Higgs mass depen-
dence for large values of mII (see also Ref. [34]). We have
discussed how the neglect of Higgs exchange diagrams,
which naturally accompany anomalous WWV vertices
in our gauge invariant formulation of the problem, leads
to the appearance of these quadratic divergencies.

Low energy bounds on nonstandard WTVV couplings
which exploit the enhancement arising from a quadratic
cutoff dependence (A /m~ terms) can consequently only
be valid for models without a light Higgs boson of mass
mH & A. In addition, the appearance of the quadratic



2196 HAGIWARA, ISHIHARA, SZALAPSKI, AND ZEPPENFELD 48

cutoff dependences implies that the quantum corrections
are sensitive to details of the physics at and above the
cutoff scale, and hence no reliable constraints are ob-
tained without specifying the model [16]. The logarith-
mic cutoff dependence of previous results [ln(A /mw)
terms] are now understood as operator mixing betw'een
the scale of new physics, A, and the weak boson mass
scale. To very good approximation, only the coefFicients
of the four operators that modify the gauge boson prop-
agators at tree level are measurable at low energy. Con-
tributions of the other operators are observable through
their mixing with these four operators. As a result it
is practically impossible to derive rigorous low energy
bounds on the coefIicients of those operators which first
contribute to four-fermion amplitudes at the one-loop
level. The anomalous WWV couplings which arise from
these operators are hence only very weakly constrained
by the present precision experiments at and below the Z
mass scale.

One may argue that it is "unnatural" that large can-
cellations appear between the tree level and the various
one-loop contributions in the running coefficients fDw,
f&» f&w, f@ i, as measured at the weak boson mass
scale. Negating such cancellations we have derived 90%
C.L. bounds, which roughly translate into

Eq. (6.1) or of Table I are not free of naturalness as-
sumptions. Naturalness arguments can never substitute
for the direct measurements, which are possible in vec-
tor boson pair production experiments. Clearly these
measurements must be carried out in order to exclude
anomalous triple gauge boson interactions. The natural-
ness arguments highlight the fact, however, that a posi-
tive signal in these experiments would point to an intri-
cate dynamics in the bosonic sector.
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(6.1a)
(6.1b)

for vnII ——100 GeV and 100 GeV( mg ( 200 GeV. A
substantial dependence on the values of the top-quark
mass and the Higgs boson mass remains. These bounds
may be compared with present experimental bounds as
determined by the UA2 Collaboration [35],

r~ = 1+,", , —3.5 & v~ & 5.9 at 95% C.L. , {6.2a)

A~ = 0+i's, —3.6 & A~ & 3.5 at 95% C.L. , (6.2b)

and are comparable to the sensitivity expected in the
Tevatron experiments [32].

A stronger "naturalness" assumption has recently been
advocated by De Rujula et aL [14]. The four operators
which contribute to the four-fermion amplitudes at tree
level are very strongly constrained, even when consid-
ering full correlations between them. Since there is no
apparent symmetry distinguishing between these four op-
erators and the other five, which we found to contribute
only at the one-loop level, one should expect that all co-
efficients f; are of the same order of magnitude. Given
the constraints

~ fDw~,
~
fgy ~w& 1, as derived f'rom Ta-

ble I for a new physics scale A = 1 TeV (and hence, by
the strong naturalness assumption,

~ fw~ & 1,
~ f~~ & 1),

one must expect, e.g. ,

(6.3)

APPENDIX A: ELECTROWEAK LAGRANGIAN
WITH DIMENSION-SIX OPERATORS

In this appendix, we present details of the standard
model Lagrangian augmented by the eleven gauge in-
variant dimension-six operators which involve the gauge
bosons and the Higgs doublet field. The electroweak part
of the complete Lagrangian is expressed in the general
covariant renormalizable gauge as

l:@w = l:i + l.@+l:GF+ l:Fp+ l:y + 2; C7;, (Al)

where l:v denotes the SU(2) and U(1) gauge boson ki-
netic and self-interaction terms, 8@ denotes the Higgs
boson kinetic term and the Higgs potential, C~F is
the covariant gauge fixing term and ZFp the associated
Faddeev-Popov term. C~ contains the fermion kinetic
terms and their couplings to the gauge bosons and the
Higgs bosons, which do not play an essential role in our
loop calculation and hence are omitted below for brevity.
The additional dimension-six terms 0, are scaled by the
common dimensionful parameter A with dimensionless
coefficients f, , which may be difFerent for each operator.

We first list the eleven gauge invariant dimension-six
operators [19] which contain the gauge boson fields and
the Higgs doublet field. Three of them are independent
of the Higgs doublet field:

a value too small to lead to any observable effects, either
in W+W production at LEP [1] or in Wp production
at future hadron colliders [36].

While this estimate may well be correct, it is in no ways
rigorous. Even the less stringent low energy bounds of

&www = Tr[W&~W ~~p "],
ODw = Tr([D„,W„p] [D",W"~]),

/2

Og)~ = — (O„B p)(8"B ~).

Five of them are bilinear in the Higgs field 4:

(A2a)

(A2b)

(A2c)
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&~w
+BB
&a~

Ggy

4t W„W~"4,
4tB„B"4

C B W" 4

(D„C)
t W""(D„4),

(D~@')'B""(D-C').

Finally, two operators contain four
last one has six:

Oc, i ——(D„4)t@@t(D"4'),

O~ z ———cj„(@t4)B"(@t@),
1

Og, ,s ———(4't 4)

(A3a)

(A3b)

(A3c)

(A3d)

(A3e)

Higgs fields and the

(A4a)

(A4b)

(A4c)

4B~) ( '') i A~) (A6)

Q = T + Y is the electric charge, gz = g/cosow and
e = g sin 0~ ——g' cos 0~ are, respectively, the Z and the
photon (A) couplings. The SU(2) generators are normal-
ized as Tr[T Ts] = zb, T+ = T +iT, and the charged
weak boson fields are defined as

W„+ = (W„' p i W„'),
2

(A7)

where g and g' are the SU(2) and U(1) gauge coupling,
respectively, c = cos 0~ and 8 = sin 0~ are the weak
mixing factors

Ainong the above eleven operators, four (ODw, O~~,
O~w, 0@ i) contribute at the tree level to the elec-
troweak precision experiments at low energies (~s
mz) [21], and five (Owww, ODw, Oaw, Ow~ Oa)
give rise to nonstandard weak boson self-interactions. All
of them contribute to the low energy processes at the one-
loop level.

The covariant derivative of the standard SU(2) x U(1)
electroweak theory is expressed as

[D„,D„] = W„+B„„, (A8)

with

igT W„
B„=ig'YB„ (A9)

accordingly. The operators with carets are obtained as

D„=0„+igT W„+ig'YB„

=8„+i (W+T++ W„T )
2

+igz(T —s Q)Z„+ ieQA„ (A5)

The use of the above operators with carets automatically
takes account of the associated gauge coupling factor and
the Hermiticity of each operator. In terms of the stan-
dard tensors, the first eight operators (A2) and (A3) are
expressed as

~ 3 3 +&w ww = —i —g W+ W "~W
2

ODw ———g (D„W„p)+(D"W ~) + —(D„W„p) (D"W ~)
1

(A10a)

(A10b)

/2

Og)~ = — (B„B„)(B"8" ),
2
2

0 = ——(Ct@) W+ W " + —W' W'"
TV R' Pv 2 Pb'

&2

0g g = — (4't 4)B„B"",
4

I

O~w = — [v 2(@tT+4)W+„+V 2(4tT 4)W„„+(Cia 4)W„]B"",

Ow = —[~2(D+4)tT+(D"4')W+„+ ~2(D+4)tT (D O)W „+(D+4)ter (D"C)W „J,
2

I

O~ = (D"C )t(D 4')B„„.

(A10c)

(A10d)

(A10e)

(A10f)

(A10g)

(A10h)

Here the field operators without carets are

A fourth operator, 0@4 = 4 t@(D„C)t(D"4), which was listed in Ref. [19], is equivalent to —0+, ,2 and contributions to the
Higgs potential ( V'4)t4as can be shown by a partial integration of 8~(4'tC')8" (4't4) and the use of the Higgs equation of
motion. Here the Higgs potential V(4 4') also contains cubic terms which are proportional to the operator 04,3.
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W„+ = O„W„+ —O„W„+ + ig(W„W„+ —W W„+),

W„„=O„W„—8 W„+ ig(W+W —W+W„),
(Alla)

and

Bg~ = pBv —~By)

(D„W p)+ = B„W„+Rig(W„W„+ —W„+W ),

(Allb)

(Allc)
(D„W„p) = B„W + ig(W+W„—W„W+ ).

The standard Higgs field 4 is a doublet with hypercharge Y = 2, which has the form

( H+,.-,-~ (' &4= /1+
( 'x'+x'

~~ (v+H —iX3)

( ix+

e+H —i~
(A12)

in the renormalizable gauge. Here 0 are the Pauli matrices (T = 0 /2 for doublets) and X are the Goldstone
bosons. The charged Goldstone boson fields are defined as X+ = —(X p iX ). We also note

( [imp
—(2 —s2)gzZp —eAp]X+ + i)W+ (v + H —i X ) )

( ~(B„—i~ Z„)(v+ H —iX3) —~gW„X+
(A13)

It is useful to express all the operators in terms of the component fields y and the physical Higgs boson H. The
following expressions are suKcient to obtain all the Feynman rules. The scalar terms

V2 H2 + (X3)2etc = + vH+
2 2

+x x
V H2 + (X3)2

@to. 4 = ———VH- + x+x
2 2

~2~'T~~ =+'(.+ H) x~ —x'x~,

appear in the operators O~~, O~~, O~~, and O@ 3. Four-vectors

(A14a)

(A14b)

(A14c)

4'tD„4 = —(O„H —iB„X ) + [HB„H+ x—B„x —iHg„x ]+x B„x+

+i Z ———vH — +X X +i[—s gzZ +eA ]X
~ gz v H2 + (X3)2

+
2 " 2 2 P

+—W+ x [v + H —ix'] ——W x+ [v + H + ix'],
2 2

0„(et@)=v(B„H) + HO„H+ x B„x + (B„x+)x + x+(B„x ),

(A15a)

(A15b)

appear in 0@ i and 0@2. Here AQ„B = A(B„B) —(B„A)B. The Feynman rules are then obtained by inserting
(All) —(A15) into (A10) and (A4).

Although the complete expressions for the operators O~ and O~ are rather lengthy, those terms which contribute
to the vector boson propagators iri the one-loop order are relatively simple. We find

Q~ = —[W+""C„+W ""C„* + W ""(D„—E„„)],
I

O~ = B" (D„+E~ )—,2

where

C„=—i(mii W„+B„X )(m,zZ„+ 8 X + iO„H) + W(HO„H + X —O„X + 2X+O„X ) +
2

D„=i(m~W„+ B„X )(m~W+ + 0 X+)

(1+
I

——"igzZ. + A. [ ~(x+W. +x W.+)+x+~.x +x ~.x']+
)

(A16a)

(A16b)

(A17a)

(A17b)
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E„„=(O„H) (mz Z. + O.X') —" —Z„(HO.H + X'a.X') +P

with

(A17c)

A 1m~ —2gv,
mZ = —,gZv. (A18)

The operators &w~ and OBB are found simply by inserting (A14a) into (A10d) and (A10e), respectively. The
relevant part of O~~ is found to be

I

Qgg~ = B" [iv(W+ x —W x+) + W (C'to 4)]. (A19)

Finally, we present the standard model Lagrangian in our notation since the signs of all the terms are relevant for
cancellation of divergencies and for gauge independence. The sum of the gauge boson term, the Higgs term, and the
gauge fixing term is

r~+C~+Z~, =w+ (a'+m~)g- +
~

—1
~

a a W~-+ -Z (a'+m~)g- +
~

——1
~

a-a Z~

+-~. a g- +
~

——1~@-a ~, —X (a +g~m~)X- —-X (a +g~m, )X
~ .P & &. P + ~ - ~ 13

E&~ 2

—-H(a +m~)H+ —v —()v + p ) X x-+1 2 „2 A 4 2 2 + (X ) (v+H)
2 4 2 2

H3 H4 (x3)4 (x3)2
—6A v + + —2AVH y+y

3I 4f 4f 2

PH2 ( 3)2 ) H2 (x3)2
+ ~x'x +,2 2

+—W "[H&,x++ ix'&,x+]+ —W+"[H~~x —ix'&pa ]

+ Z"HB„X'+ i
1

——s'
~

gzZ" + e&" X+ & X

2
Z~ — X~ [(W+X-+ W„-X+)X'+ i(w+X- —W„-X+)(v+ H)]

2 A„A"+ —W+W ~ + 2
~

——s
~ g&

" + (1 —2s )g~eZ~A~ + 2e " X+XP

2 2 Z Z"W+R' "+-
P 2 2

H2 (x3)2

ig[g (W+g'WZ )W,—'+ g»(W& g-W3)w++ g& (Wsg~w+)W ]—
+g (g ~g~ +g g~~ —2g ~g~ ) —W+W&W Wss ——W+W& W+W8 ~ 3 — 3

(A20)

Note the tree level constraints

Av +p =0, (A21)

and

mH ——2AV . (A22)

It is easy to read off the Feynman rules directly from the above expression. The Lagrangian including all eleven
dimension-six operators is invariant under the Becchi-Rovet-Stora (BRS) transformation
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bW„+ = (ct„+ igW„)c+ ~ igW„+c,
bZ„= B„cz+ ig cos Ow(W+c —W„c+),
bA„= B„c~+ ie(W+ c —W„c+),

bH= -(x+ +x +)+ —x'
2 2

bx = i —{x+c —x c+) — (v + H)cz,
2 2

v+H ~iX' ~ . ~ (I
2

c gix
l

——s
l
gzcz+ ec~

)
The associated Faddeev-Popov term is

CFp = —c {8 + (wmw)e —c (0 + (wmw)c —cz(0 + (zmz)cz —c~B c~
+ig(B"c )[W„c+ —W„+c ] + ig(0" c+)[W„c —W„c ] + zg(B"c )[W„+c —W„c+]

1

2
——(wmw[e (H —ix )c++e+(H+ix )c ]+i l

——s
l
gz(wmw[c+x cz —e x+cz]

+ie(wmw[c X cg —c X+cx] — (zmzczHcz + i (zmz[—czX+c —czX c+],
2 2

with

(A23)

(A24)

c = cos O~cz + sin 0~c~,

c = cos0~cz + sin0~c~.
(A25)

APPENDIX B: SELF-ENERGIES, VERTEX FUNCTIONS, AND OBLIQUE PARAMETERS

In this appendix we give full details on our analytic results. We flrst list the one-loop contributions to the vertex
functions in a general Bg gauge. As described in Sec. IV the gauge dependent terms cancel in the combinations
AIIT (q ) of vertex and two-point functions which appear in the four-fermion amplitudes [see Eqs. (4.6) and (4.7)].
Full expressions for the AIIT (q ) will be given below, including all divergent terms. When using a nonlinear realization
of the Goldstone bosons, the Higgs exchange graphs would not appear in our calculation. We therefore also give in
this appendix the expressions for the oblique correction parameters when keeping anomalous gauge boson interactions
only [25].

The divergent contributions to the gauge boson fermion vertices only depend on the operators O~ and O~~~
which induce anomalous triple gauge boson couplings. The TV-fermion vertex is flavor independent and given by the
form factor

~l wjzf (z2) g ~l w( z)

g 3n fq' Az
l A, g'fwww + A, fw —(6v+(z+2) l

ln
A~ 4 ) p2 (Bl)

Similarly the corrections to the Zf f and pf f vertex functions only depend on the third component of the fermion's

isospin, T3, and are given by

with

30,' A2
bl'~(q ) = s g fwww ln

87t82 A2 p
and

(B3)

2 m2 1 A2+Is(q)=c
I A2g fwww +

A
fw —(6v+I)

l8zrsz (A2 A2 2 ) u' (B4)

The gauge dependent terms in the vertex functions are exactly canceled by corresponding terms in the two-point
functions: only the gauge invariant combinations
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»r'(q') = »T'(q') —» q' &I'i(q')

AIIT (q ) = AII~ (q ) s q AI I (q ) c (q mz) AI i(q )

AIIT (q ) = EIIT (q ) —2c (q —mz) &I'1, (q )

(B5a)

(B5b)

(B5c)

(B5d)

—QQ
2 2 2 2

DIIT (q ) = 2 (few + fBB)q —fBw — 18g fwwwmw lnm~ A

g2 16~2A2 p2

q ( mz ~ 2mw), , ( mz+ 2mw)

(, q') A'

16' 2A2
(fw + fB) A + i 3mw+ —

i
ln6) (B6

—3Q 2 q ( mw ) q' 33, , A'
+HT (q ) = » l

2fDwq —fBw, I

— » —q fwwwmw»g' ) 16vr'A' 2 P
q' ( mz+2mw& A2 2 ( mz+2mwi1+ 2 A —mH 1+3 4 ln

mH

g q', (, q'i A'
+16 2A2(s fBB —c fww)mzln 2

—
2 fw A +

~

6mw+ —
i

ln16' 2A2 y2 16vr2A2 6 ) p2

+ 2 2 (mH —mz + 10mw) ln
q' fw —fB

16~2A2 p
2 2 2 2 A 2

II (q)=+2A, f q f. . A-. . .—„,, »q r
P
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A 3 zlnm2 p2 16vr2A2 mH2 v')
mw 3 2 1 2 2 A q 2 1 ( 2 2 2 2 25 A+ fw A (mH + mz) ln fw A ——
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~
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I

H+ Z16m A 2 2 9 ) p2
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&IIT (q ) = &IIT (q ) + f@ i 2 2 + IfBmH + 3(fB + fw)mw]]»A2 2g2 16' 2A2 4 p

(B6b)

(B6c)

(B6d)

enter in the four-fermion amplitudes. Instead of these we give below the linear combinations LIIT, etc. , as de6.ned
in Eq. (3.4):

In the above equations the 1/mH2 terms correspond to Higgs tadpole graphs such as the ones in Figs. 1(f) and
1(g). They merely contribute to a renormalization of the Higgs vacuum expectation value, or, equivalently, to the
renormalization of G~.

Feynman graphs involving Higgs boson loops are absent in models with a nonlinear realization of the Goldstone
boson sector. Hence, we also give the results of Sec. IV when eliminating all graphs involving the exchange of the
physical Higgs boson. The expressions for the oblique correction form factors of Eq. (4.8) remain valid except for the

2

anticipated replacement of ln ~~ by ln, . The replacement rules for the quadratic divergencies are not as simple
mw mw

because of a subtlety of using dimensional regularization: the quadratic divergence is de6ned as the pole at d = 2
dimensions [see Eq. (4.1a)] and hence one gets dA = 2A whereas d lnA = 4 lnA. Because of this nontrivial d
dependence the quadratic divergencies for the theory without Higgs graphs are only qualitatively reproduced by the
replacement —m2H(ln, + 2) = A as suggested by Eq. (4.11).

More precisely we need to subtract the Higgs contributions from the results of Sec. IV. These Higgs contributions
simultaneously give rise to the mH terms in Eqs. (4.9c) and (4.9d) and to quadratic divergencies via the scalar integral

B22 (q; mH, m) =— 1 1

327r2
I'(e —1)(4ap )' dx[xmH + (1 —x)m —q x(1 —x)]

lp,
' ( 1 i 1 (» q'i (1+1 I+, I

mH+m' ——
l l

——&B+»(4~)+1 I+ .
8~ qe —1 ) 64~' ( 3) (B7)
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which is multiplied by some function of f(d = 4 —2e) in the full two-point functions. According to Eq. (4.1) the
quadratic and logarithmic singularities of the two-point functions are deBned via the residues of the poles at e = 1
and e = 0, respectively, and these residues get difFerent contributions from the factor f (d) as long as f (d = 2) g
f(d = 4). Since m~ terms only appear in the logarithmic singularity, dropping the Higgs exchange graphs leads to
the replacement rule

f(4) m—H I
ln 2 + —

I

m f(2)A, (
2 ( mH 2)

and the function f (d) must be known.
Keeping track of the powers of the space-time dimension d, we have calculated the renormalized coeKcients of the

four dimension-six operators which contribute at tree level, in the absence of the Higgs exchange graphs:

f~w = faw—

fDa =f»—

3fw+fa
I

768vr2 m~~ '

3fa+ fw I
768vr2 m~~ '

(Boa)

(Bob)

A2 1' 2l f22 2) A
faw =f~w+ —,(f~+fw)+

I
o+

I fa —
I

—
I
fw+»g'fwww ln, , (Boc)

327t 8 m~ 3c2) q3 3c ) m~
n l A2 3m2s2 A 5 6m2 A2

fe,&=f4,~ —,f~I, +, », I
—,(f~+fw)» (B9d)

8vrc2 q
v2 v2 m2w) v2 mw

One finds that even the sign of the quadratic divergence in f&w and f@ z has changed compared to the naive
replacement mH ~ A. This sign flip may be taken as indicative of the strong model dependence of the quadratically
enhanced terms in the operator mixing.
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