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Rare decay B — K™*+v : A more precise calculation
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Efforts to predict the rare exclusive decay B — K*v from the well-known inclusive decay b —
sy are frustrated by the effect of the large recoil momentum. We show how to reduce the large
uncertainty in calculating this decay by relating B — K™+ to the semileptonic process B — pev
using the heavy-quark symmetry in B decays and SU(3) flavor symmetry. A direct measurement of
the ¢? spectrum for the semileptonic decay can provide accurate information for the exclusive rare

decay.
PACS number(s): 13.40.Hq, 11.30.Hv, 13.20.Jf

The inclusive rare decay B — X,v is now well un-
derstood in the context of the standard model [1] and
the experimental upper bound [2] of 8.4 x 10™* for the
branching ratio is already playing an important role [3]
in constraining the parameters of models other than the
standard model. On the other hand, the most likely
experimental observation to be made will be the exclu-
sive decay B — K*~. The recent limit from the CLEO
Collaboration [4] of the branching ratio for this mode is
0.92 x 1074, It is this exclusive rare decay B — K*7~,
however, which is the least well known theoretically due
to the large recoil momentum of the K* meson [5]. A
recent paper [6] points out that heavy-quark symmetry
together with SU(3) flavor symmetry could relate the rare
decay B —+ K*v to a measurement of the semileptonic
decay B — pei. However, the relation is only valid at a
single point in the Dalitz plot, a point where the semilep-
tonic decay vanishes, so that there would still be a large
uncertainty in such a measurement.

In this paper we obtain a similar relation that relates
the exclusive rare decay B — K™*v to the spectrum in
q? for the semileptonic decay B — pev. The ¢? spec-
trum for B — pei does not vanish at ¢> = 0 and so
a direct measurement of the spectrum at this point can
provide accurate information for B — K*v. Of necessity
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this new result requires an extension of the heavy-quark
symmetries to a consideration of the K* and p systems.
We show that this is not the same as demanding K* or
p to be a heavy-quark system in the conventional sense.
Our result dramatically reduces the uncertainty from the
earlier calculations.

First we discuss the application of the heavy-quark
symmetry. Usually, it is the hadronic systems with a
b or a ¢ quark that have these symmetries. Here we de-
rive the relations for matrix elements of either B or B*
with an unspecified vector meson V. We show how to
extend the heavy-quark symmetry relations to the case
when the meson V is K* or p, and we estimate the pos-
sible errors using a set of quark-model calculations, both
for nonrelativistic and for relativistic cases. Then we use
the results to give a reliable relation between the decay
B — K*~v and the g2 spectrum for B — pep.

I. HEAVY-QUARK SYMMETRY RELATIONS

We first recapitulate the derivation of the heavy-quark
symmetry relations for B decay. The hadronic matrix
elements relevant to the decay B(bq) — V(Qq) are given
by

(1)

(V(k,€)|Qvuvsb|B(pp)) = —2(mp — m3)T2(q?)e, — 2T3(q%) (€* - q)(pB + k)u — 2T4(*) (€* - @) (pB — k) 5 (2)
(V(k,€)|Qicunq"br|B(pB)) = f1(q%)icurce™ Pk + [(mE — mi)e, — (¢* - q)(pB + k)] f2(?)

+(* - q) [(PB — k), —

where ¢ = pg — k. We show below that the hadronic form
factors fi,2,3(¢?) and T 2,3,4(q%) for the decay B — V
can all be related using just the spin symmetry and static
limit of the heavy b quark.
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In the heavy b limit, the spin of the b quark is decoupled
from all other light fields in B [7]. We can therefore
construct the spin operator SZ for the b quark such that
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SZ1B(va)) = 51B; (4))

S71B; (ba)) = 5|B(a))

where B} stands for a longitudinal vector B* meson. In
|B) and |B}), the spatial momentum of the b quark is in
the z direction for the b spinor to be an eigenstate of SZ.
Using the relation (V|QTIb|B) = —2(V|[SZ,QIb] |B;)
for I any product of v matrices, we have the following
identities between the B — V and B} — V matrix ele-
ments:

J

(V(k,€)|@ublB* (p5,¢)) = [ (¢ - €)A1(g?) + (¢ - @) (e

+[(C-€)Bu(e®) + (C-a) (e

(
(V(k, €)|Qrusb| B* (p5, C)) = £(a*)iguuarce™ M (pB + k)7 + F(¢Viemrce™ P (pp — k)7, (11)

where ¢ and €* are the polarization vectors of B* and V,
respectively. Using the matrix identities in Eqgs. (4)—(9),
we can relate T} 2 3 4 to the B* — V form factors:
2m3T1 = (Al —_ Bl) 5
2(mp — my) T2 =mp (A1 + B1) + Ev(AL — By) ,
QmB(T;, - T4) = *—(.Al - Bl) y
2mp(Ta + Ty) = — (A1 +B1) - C

(12)
D=(A—Bi) ,
g:Al y
F=B,
Ay =B, =0 .

Since the spatial momentum of the b quark is defined
in the z direction, the above relations are worked out

J
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(V]A4o|B) = —(V|Vs|By) , (4)
(V|As|B) = —(V|Vo|B[) , (5)
(VIVe|B) = ¥(V|V4|B}) , (6)
(VIVo|B) = —(V|4s|Bf) , (7)
(VIVs|B) = —(V|Ao|B/) , (8)
(VI|A+|B) = #(V|A|B/) , 9)

where V,, = Q'y#b and A, = Qv,vsb. The covariant
expansions of the vector and axial-vector matrix elements
for the decay B*(bg) — V(Qq) are defined to be

-q)A2(¢%) ] (pB + k),

9)B2(4%) ] (B — k) + C(¢°)(¢" - 9)Cu + D(d?) (¢ - @)e],

10)
1

f

in the B rest frame. We choose the longitudinal polar-
ization vector for B} to be ¢;* = (0;0,0,1) and define
the momentum of V to be k* = (Ev; k', k2, k%), where
Ey = (m%+m% —q?)/(2mp). The resulting form-factor
relations in Eq. (12) are consistent with those in Ref. [7]
using the spin symmetry of a heavy Q, except for the
relation T3 + T4 = 0, which is missing here.

We can relate the form factors fq 2,3 to the form factors
T1,2,3,4 using the static limit of the b quark. In the B rest
frame, the static b-quark spinor satisfies the equation of
motion yob = b. We then have the relations between the
v, and o0, matrix elements [8]:

(VIQid| B) = (V|Qioo:b| B) (13)

(V|Qviysb|B) = —(V|Qicoivsb| B) . (14)

This gives the form-factor relations

m2 -m2
fi=—(mp - By)Ty - —2—XT, ,
mp
- E E LA PP R L
fo= =y (e = B) —med By | T gy, (e ) T "

1 1
fs=—5(mp + Ev)T1 + E—(mlza —my)(Ta + T2+ T5 — Ta) .
mp

Using the spin-symmetry relations in Eq. (12), we can also write f1 3 in terms of the B* — V form factors as

flz_-Al )
1 1 q?
= —— —_ = _ B
f2 2A1 2 (sz_m%/> 1
1
f3=531

(16)

Thus, using only the spin symmetry and static limit of the heavy b quark, we can relate the B — V hadronic form

factors as
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2(mp —my) T =[(mp +my)?> — |1 + a
2T3 =T, + i )
2mB
steety s P
2mp
(17)
«a
fi=—(mp +my)Ty — Smn
mp
T a q?
2fy =— L L 1
f2 [(mB+mV) q ]mB+mV 2mB( +sz_m%/ )
«a
2fs=—(mp —my)T1 + —— ,
2mp
-
where (VlQﬁBHB*) ~ mB<V|Q’YOb|B*> . (18)

a:mB(A1 + Bl) - mv(.A1 —
B=—C— (A +By) .

Bl) ’

If we ignore the a and B terms in Eq. (17), the
resulting form-factor relations are exactly the heavy-
quark symmetry relations obtained using the large-mass
limits of both b and @ quarks [5, 7, 8]. The func-
tion —y/4mpmyT; in this limit resembles the role of
the Isgur-Wise function, with absolute normalization at
g> = t,, given in the quark model as [5]

26B0v

—\/4mBmVT]_(tm) = (m) ~1 ,

where Gp and [y are variational parameters of the mo-
mentum wave functions for B and V, respectively. We
shall show below that the o and 8 terms in Eq. (17)
can be regarded as small corrections to the heavy-quark
relations coming from the weak binding, or Aqcp effects.
Thus, the symmetry relations are dominated by the T}
terms.

To show that the right-hand side (RHS) of Eq.
is dominated by the 7T) terms, we use the equation
of motion for the b quark to get the matrix relation
(V|Qpsb|B*) = mp(V|Qb|B*) and work in the V rest
frame. If we assume the static limit of @Q so that the
equation of motion Q = Q- is satisfied we can relate
the matrix elements for Qb and Qvob as

The additional form-factor relations that follow from Eq.
(18) are given by

—C = (A +By) = Z—‘;(Al ~Bi) , (19)

corresponding to = 8 = 0 in Eq. (17). The correc-
tion to the static Q@ assumption is proportional to p/mg,
where p is the spatial momentum of Q in the V rest
frame. Since

my = \/pz + sz + \/pz + m?l + binding energy ,

and my = mg + my for a heavy enough vector meson,
in the weak binding limit of V it is easy to show that
p/mg < 1. The corrections to Eq. (19) arising from
the static @ assumption are therefore small, and conse-
quently we have the suppression of a,8 = O(p/mg) in
this limit.

We can use the quark model to show explicitly the
suppression of a and g in the weak binding limit. In the
quark-model calculations of a, 3, and T, we have, in the
B rest frame,

Eo +m E, +m
hy = dp¢v¢g,/ QzE Q,/ b T

(17) mpf=—a =+/4mpEy (hl - Evliz—mv> s (20)
EV h2
T= =\ np By ¥ ) (By —mv) @)
where
1
(k+p)-p )
T Ee + mQ)(Eb +mp) )
(22)
k-(k+ p))
Eg +mg

Eo +m E +m
hz— dp¢v¢)31/ Q2E Q\/ > ) Eb+I:nb
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The term k is the recoil momentum of V in the B
rest frame. The energies of the b and @ quarks in

Eq. (22) are given by Ey = /p2+mi and Eg =
W/ (k+p)2+ mz . The terms ¢p(p) and ¢v(p + 7k),
where r = mg/(mg+my), are the momentum wave func-
tions of B and V, respectively. In the weak binding limit
of V and with my =~ mg + m,, we have [5]

k-(k+p)

EQ + mq

k-p
Ey +my

(k+p)-p
(Eq +mq)(Ep + mb)) - (@)
|

~ By —mv) (1+
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This gives in Eq. (22) the relation
(Bv —my)hy = hy (24)

which is insensitive to the problem of how the overlap
occurs between ¢p and ¢y. The suppression of o and 3
in this limit is then obvious from Eq. (20).

In the quark model, the relation between —a (and
mpf) and T can also be written

mpB=-—a=[(mp+my)?—-¢*|Tie , (25)
where € = 1 — (Ey — my)hy/hy. The correction to Eq.
(23) is given by

(k+p)-p (k+p)-p

5 = [(my — mq) — (By — Eq) — (By —my)] (1+(

which corresponds to the binding effects in V. From Eq.
(26), it is then easy to show that € ~ 0 in the weak
binding limit of V' and with my =~ mg + mq.

Using the Gaussian wave functions for ¢ g and ¢v [5,9],
we obtain throughout the whole kinematic region a rather
stable ratio for (Ey — my )hi/hs, which is between 0.95
and 1.04 for B — K*, and between 0.89 and 0.98 for B —
p. These two ranges include the large uncertainty in the
quark model associated with different recoil dependencies
in the wave function overlap [5]. In all cases the value for
¢ is very small with |¢| < 0.05 for B — K* and [¢| < 0.11
for B — p throughout the full kinematic range.

It is then clear from Eq. (25) that the symmetry rela-
tions in Eq. (17) are dominated by the 7 terms as the
o and (3 terms are suppressed by . [Near ¢% = t,, some
relations are further suppressed by e(my/mpg).] Thus,
the B — V hadronic form factors satisfy the heavy-
J

— 1 2
e(tm) ~ (VM) L ma ) )mv () mo
mqQ 3 \mg +myg ,BV mq

where

<p2> — fdp¢V(P)¢B(p)P2 — Bﬁ%ﬁ%/
J dpév (p)oB(P) By + By

The expansion parameter (p?) is a stable function of mg
with 1/(p?) = 428 MeV for m, and 4/(p?) = 502 MeV
for my. At about mg = 0.9 GeV, € has a maximum and
ceases to follow the 1/mg power law. It is this turnover
that stops the correction £ from becoming very large for
smaller mg and keeps the correction to the symmetry
relation in Eq. (17) small for s and u quarks.

II. THE DECAYS B — K*y AND B — pev

The branching ratio for the exclusive B — K*~ to the
inclusive b — s processes can be written in terms of f;
and f; at ¢ = 0, as [10, 11]

Eq +mq)(Ep + my)

) 2 e o) (B )

(26)

‘quark symmetry relations even if the quark @ is much
lighter than the b quark. The breakdown of the relations
is a measure of the weak binding approximation and is a
small correction.

Since the effect is small and stable across the full kine-
matic range we can use the model to investigate, with
some confidence, the 1/m¢g behavior of e. This behav-
ior can most easily be checked near the zero recoil part,
in which the recoil effect becomes insignificant. In Fig.
1, we show the mq dependence of (t,,) with my — mg
fixed at m, — m,. For mq greater than about 0.9 GeV,
¢ falls off like a power law of 1/mg. As shown in the
figure, the curve can be approximated, above 1.25 GeV,
by a Taylor expansion of (t,,) with respect to (p?)/m3,
using Eq. (26). The leading terms in the expansion are
given by

mq\ _ 3 (%) mv 14+ Ime (27)
mp 8 32 Q 9 my ’
0.08 T T T T
0.06 -
(tn)0.04 |
0.02 +
0 1 - 1 1
0 1 2 3 4 5
mq(GeV)
FIG.1. The mq dependence of &(t,n) with my —mg fixed

at m, — m,. The solid line is the exact numerical result of
€(tm) using Eq. (26). The dotted line is a Taylor expansion
of e(tm) with respect to (p®)/m?,.
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I'(B— K*y) _ mi(m% —m%.)31 . )
R(B — K*v) = ~ L OV sl (0T ”
(B K= 155y = i i = ma)e 3 OF +41£01°] (28)

Using Eq. (17), we can write f2(0) = (1/2)f1(0) at g2 = 0. Although there is now only one form factor to calculate
in Eq. (28), this is still a controversial model-dependent calculation. There is an uncertainty of about a factor of 10
depending on the way the large recoil of K* is handled. In the nonrelativistic quark model, the exclusive to inclusive
ratio R(B — K™*v) is calculated to be within the range of 4.5% [10] to 25% [5, 11]. In the relativistic quark model
[12] of Bauer, Stech, and Wirbel, we have instead R = 12%. In the QCD sum-rule calculations, even higher values of
R =28+11% [13] and R = 40% [14] were obtained.

In an attempt to remove this uncertainty, Burdman and Donoghue [6] have discussed a method of relating B — K*~y
to the semileptonic process B — pei using the static b-quark limit and SU(3) flavor symmetry. Their main result is

that the ratio

I'(B — K*v) ( lim

q?—0,curve ¢

1 dI'(B — pep) -t _
dE,dE.

is independent of hadronic form factors. Here, 1 repre-
sents the QCD corrections [1] to the decay b — sv, and
the word “curve” denotes the region in the Dalitz plot
for which ¢ = 4E.(mp — E, — E.). The only uncer-
tainty on the right-hand side is that of |V,s| for which
[15] |Vub|/|Ves| = 0.10 £ 0.03.

Their method proposes to overcome the uncertainty
in the calculation at large recoil (g2 = 0) of the B —
K* form factors by making a direct measurement of the
semileptonic decay B — pei. Notice that we use only
the ¢2 = 0 point on the “curve” to compare with the
photonic decay in Eq. (29). The problem with this is that
the semileptonic decay vanishes at the ¢> = 0 point on
the “curve,” which is why this kinematic factor is divided
out in Eq. (29). This means that experimentally there
should be no events at that point and very few in the
J

2m?2

4m® |n® (mp — mk.

2)3

T G% |Vaw|? m

2

; (29)

neighborhood, making it a very difficult measurement.

We shall avoid this by considering instead the ¢? spec-
trum for the semileptonic decay B — pe. The advan-
tage here is that the g2 spectrum does not vanish at
g% = 0 since we integrate over the events from different
electron energies across the Dalitz plot. The disadvan-
tage is that in taking the ratio we do not have the simple
cancellation of form factors, which made the previous re-
lationship so appealing. However, we can relate the ratio
to the knowledge of ¢, which we have demonstrated to
be a small number anywhere in the Dalitz plot.

The differential width for B — pep is given by

dI'(B — pep)
dg?

G%‘ 21,13
= SE IVl kPAr (30)
where

2

m2 — m?2)2 302m2 2m2 k|2 m2 —m
AT:querTZZ(—B—”)—— 14 2 e +T32~m73|—|-+T2T3—~§T~n———”(m%—m§—q2).

m3 k2

P

At g2 = 0, the differential width for B — pe& reduces to

dI’(B — pep)
dq?

_ Gk M-
= Toan3 | Vel 3 m?2

q?2=0 B'""p

2
P P

|T2(0) + T5(0)|* . (31)

If we use the symmetry relations in Eq. (17) and SU(3) flavor symmetry in which TIB_’K‘ = Tf_’p, we can express
the ratio between R(B — K*v) and dI'(B — pev)/dg® at ¢®> = 0 as

dI'(B — peD) 1920 1 (mE —m&k.)® (mp —my)? mp 2
R(B = K*y) [ =222 = I
(5= K) ( 7 peo) G Vel (md—m2)® (mp—m-)? (m —m)P
0.1\’
=1.9 x 10*® GeV (—%) I . 32
Viaval) (32)

In the limit € = 0, that is & = 0 and 8 ~ 0 in Eq. (17), we have Z =1 in Eq. (32). We estimate the correction to

T using the quark-model results for o and 8 in Eq. (25) as

7-(1-

2mp

me b oo (o)) / (1 _ (s ¥ mp)(m ¢ mf’)sB*%o)) - (33)

2
4mpm,
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Although € is a small number, the value of £(0) is
sensitive to the details of the wave-function overlap in
the quark model because of the large recoil momen-
tum. In an extreme case with a relativistic recoil depen-
dence in the overlap, we obtain eZ~X"(0) = 0.010 and
eB=P(0) = 0.043 which gives Z = 1.09. On the other
hand, using a milder nonrelativistic recoil dependence,
we obtain 8K (0) = 0.046 and 57 (0) = 0.087 which
gives 7 = 1.18.

We also estimate the correction to Z using the rela-
tivistic quark model of Bauer, Stech, and Wirbel (BSW)
[12]. In this model, we have, at g2 = 0,

mp

=- 34

TI(O) sz m%, gz , ( )
mp + my

a(0) = [(ms ~ ma) (Z2ELY — (my +ma)| 42
(35)
|
p2 MZ
em(Pr,z) =Nyv/o(l—z)exp (-5 Jexp [ ——
2w2 2w?

where z and pr denote the longitudinal momentum frac-
tion and transverse momentum of the decaying quark Q
in the infinite momentum frame. The term Njs is a nor-
malization factor defined by [ dpr fol dz|o(pT,z)|? = 1.
The wave function s depends only on one free param-
eter w, which determines the average transverse quark
momentum (p2) = w?. In the BSW model, the value
of w is taken to be w = 0.4 GeV as it fits most of the
experimental data very well.

If we follow Eq. (25) and define the parameters € and €
as —a/Ty = (mp+my)2%e and mpB/T) = (mp+my)2&
at ¢ = 0, we have

6(0):1_(m3—mv> (mb+mQ) , (40)
mp + my mp — mQ

1 4m2 g1
£(0) = B my = —m 41
©) (mB+mv)2mb—mQ( Vg2 Q) (1)

Notice that the expression for £(0) is independent of the
overlapping effects in Egs. (37) and (38). Numerically,
we get eB7K"(0) = 0.11 and €77(0) = 0.15. In Eq.
(41), £(0) depends on the ratio g; /g2 of the overlap inte-
grals. It can be shown that the ratio g; /g is very stable
with respect to the changes in w and mg. For w = 0.4
GeV, we obtain é57%"(0) = 0.15 and £8-7(0) = 0.22.
Thus, the sizes of € and ¢ are relatively larger in the BSW
model than in the nonrelativistic quark model. However,
the overall correction to the symmetry relations in Eq.
(17) is still less than 15%. In Egs. (40) and (41), it is
clear that the smallness of € and € is due to the subtrac-
tion between different mass terms (see also the case in
the nonrelativistic quark model). For light mg, € and &
both scale like 1/mp; this gives an extra 1/mp suppres-
sion to the o and 3 terms, relative to the T} term, in the

PATRICK J. ODONNELL AND HUMPHREY K. K. TUNG

4mB
_ _ 36
3(0) mZ, —mb (mgg2 —mvag1) , (36)
where g; and g, are overlap integrals given by
1
gl=/de/ dz oy (pr,z)es(PT, ) | (37)
0
Ydx
g2 = de/ — ¢v(pr,z)es(pr,@) . (38)
0

In the BSW model, the orbital wave functions ¢ g and ¢y
are solutions to a relativistic scalar harmonic oscillator
potential. For meson M with constituent quarks Qg, the
wave function ¢ps is given by

2 272
1_mg—my 39
- 5 2M?2 ’ ( )
[
symmetry relations.
We can write Z in terms of € and £ as
s 1 — mabme 5K ()
1+ (e malmatme)” 5 ) — matme B o)
(42)

While the values of € and € are larger in the BSW model,
the overall correction to Z is still small with Z = 1.12
close to the value obtained by the nonrelativistic quark
model. Thus, the uncertainty in calculating the branch-
ing ratio R(B — K*v) due to the recoil problem has now
been reduced by an order of magnitude.

We have derived a relation between the branching ra-
tio R(B — K*v) and the ¢? spectrum for B — pep.
Since the ¢? spectrum for B — pew does not vanish at
g?> = 0, this reduces the uncertainty in the measure-
ment of the semileptonic decay in contrast to the case
in Eq. (29). Now ARGUS has given the result [16]
of R(B~ — p%lp) = (11.3 £ 3.6 £ 2.7) x 10~%, and by
isospin symmetry, I'(B® — p*lp) = 2I'(B~ — o).
This allows us to estimate d['(B — pep)/dg® at ¢ = 0
to be about 107!7 GeV~!. Equation (32) then gives
R(B — K*v) about 10~!, which is quantitatively cor-
rect. A direct measurement of d['(B — pev)/dq® at
g?> = 0 can therefore provide reliable information for
R(B — K*v).
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