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Final-state-interaction simulation of T violation in top-quark semileptonic decay
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The standard electroweak final-state interaction induces a false T-odd correlation in the top-quark
semileptonic decay. The correlation parameter is calculated in the standard model and found to be con-
siderably larger than those that could be produced by genuine T-violation e6'ects in a large class of
theoretical models.
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I. INTRODUCTION

Final-state interactions play an important role in the
determination of CP and T violation. A test for CP viola-
tion is to compare the partial decay rates of a particle and
its antiparticle. In this case final-state interactions are
necessary since in their absence the partial decay rates
are equal from CPT invariance even if CP is violated. A
general formalism for calculating such partial rate
differences based on CPT invariance and unitarity has re-
cently been developed [1],and its application to 8 meson
decays (Ref. [1]) and to t-quark decays [2] has revealed
some interesting relations between final-state interaction
and CP-violation observables in weak decays.

A test [3] for T violation is to observe a "Todd corre--
lation, " such as those of the form o"(p, Xpz) where o is
a spin and p& and p2 are momenta. In contrast with the
partial decay difference, a T-odd correlation can be pro-
duced by final-state interactions even if T invariance
holds. Thus, to use such correlations as a test of T viola-
tion the final-state-interaction effect must be negligible or
calculable.

This article will be concerned with the t-quark semilep-
tonic decay t~bW~bv&l in the standard model. Copi-
ous production of t quarks at future high-energy colliders
such as the Superconducting Super Collider (SSC) and
CERN Large Hadron Collider (LHC) have aroused con-
siderable interest in exploring the origin of CP and T
violation via t-quark interactions [4]. In particular, a re-
cent study [5] of the possibility of using the T odd corre--
lation has shown that it has a reasonable sensitivity to
some nonstandard sources of T violation. Since such
correlations can be produced by standard model physics
alone, it is timely to undertake a computation of the
final-state-interaction effect due entirely to the standard
electroweak interaction, which, up to the one-loop level,
respects T and CP invariance in Cabibbo-allowed weak
decays such as t~b8'+~bv&l.

II. FINAL-STATE-INTERACTION EFFECT

The computation of final-state-interaction effects on
the T-odd correlation has long been of interest. Early ex-
amples of the calculation involved nuclear P decay [6],
hyperon semileptonic decay [7], and Et3' decays [8).

The parameter of interest is the coefficient of the T-odd
correlation term in the decay spectrum, which in nuclear
p decay, for instance, has the following form in the lead-
ing approximation:
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where cr is the polarization of the parent nucleus and
p, (E, ) and p„(E ) are the electron and neutrino

e e

momentum (energy), respectively. In this example, the
dominant contribution arises from electromagnetic final-
state interaction. The effect depends, among other
things, on the recoil of the decaying particle, and thus the
size of the T-odd correlation parameter D is of order
D-aE, /M (ZaE, /M) in neutron (nuclear) p decay,
where M is a nucleon mass. Since E, is typically of order
1 MeV, the recoil effect, which is characterized by the ra-
tio E, /M, is rather tiny. Hence D is highly suppressed in
neutron p decay with D typically of the order of
10 —10 . A considerably larger result (10 —10 )
can be obtained in some nuclear P decays due to the
enhancement Z &&1 (Ref. [6]). The typical value of the
T-odd correlation is between 10 and 10 in a neutral
K/3 decay. The result in a charged KI3 decay is still
smaller (10 —10 ), because there the final-state pion is
neutral and the effect can only arise from two-loop
graphs.

In terms of weak-current interactions, the t-quark
semileptonic decay is analogous in many respects to the
nuclear p decay. However, the disparity between m, and
mb implies that the T-odd correlation in the decay
t ~bvI l does not have a recoil suppression. Indeed, com-
pared to nuclear p decay, where the recoil effect is of or-
der 10, in the t sernileptonic decay such effects are
given by E /m„which is of order unity. As a conse-
quence, we expect that the final-state-interaction contri-
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bution to the T-odd correlation parameter is roughly

D(t~bW~bv, e )-a~Qd
~

———10
m,

(2)

~8(P )e v

e(p )

where Qd = —
—,
' is the b-quark charge, and we have taken

E, /m, —
—,'.

In what follows we will concentrate on the decay
t~b8'~bv, e. Insofar as the lepton mass can be ig-
nored, our result holds for the other t-quark semileptonic
decays as well.

A large m, implies that the decay t~bv, e proceeds
dominantly through the 8' resonance. The smallness of
the W width (I w/Mw=0. 026) then makes the calcula-
tion of the leading final-state-interaction effect very sim-
ple. Neglecting the b-quark and lepton masses, the lead-
ing contributions are generated by graphs displayed in
Fig. 1 with
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where k =p —p' is the momentum transfer carried by the
O' I. and 8 are the helicity projection operators, and the
effective vertex I, which includes one-loop interaction
corrections from Figs. 1(b) and 1(c), can be parametrized
as

r =F, (k )y I. iF2(k )m,—tr "k„R, (4)

where o "=(i/2)~y, y"] Term. s of the form y R and
o. "k„L, vanish in the limit mb=0. Also, the k term
drops out for m, =m =0. While the form factor

e

F, = I+O(a/m) introduces a correction to the weak in-
teraction charge g, I'2 gives an anomalous moment to the
bt 8' vertex.

In analogous to nuclear P decay one may define a T
odd correlation parameter D:

4 m, E E
g«(2~)' ~k' M'+ir M —~'

FIG. 1. Feynman graphs generating the dominant contribu-
tions to the T-odd correlation. The calculation is carried out in
the Feynman —'t Hooft gauge. P is the Higgs-Goldstone boson.

ImF2(Mw) =—

1 2Ii+ 2Is S

(6b)

evaluated at k =Mw. The ellipses in Eq (5) r.efer to the
other terms of no interest to us and
dQ=(d p, /2E~)(d p, /2E„)(d p'/2po). In reaching
(6a) we have taken F, = 1.

The final-state interaction in nuclear P decay takes
place between the daughter nucleus and the electron. By
contrast, the dominant effect in the decay
tabb@'+~bev, arises from bR'~bS" rescattering. By
employing the unitarity formula given by Wolfenstein
(Ref. [I]) one can show that the relevant interactions are
those which scatter a b8'+ state to other b8'+ states
with different spin configurations. As a result, the T-odd
correlation parameter is directly proportional to the ab-
sorptive part of the form factor I'2 which connects had-
ron states with different helicities. We find (the detail of
the calculation is summarized in the Appendix)
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In Eq. (6b) the first term comes from the photon graphs
and the second from the Z. For a very heavy top the re-
sult is dominated by the Z exchange diagram and has a
logarithmic dependence on m, . Asymptotically it ap-
proaches

cx 3 2$
lim D ——.1 ——1—

m, 6 4 3

M2 1 1 z
2 2 2 2 (7)

The numerical results for D from Eqs. (6a) to (6c) are
summarized [9] in Table I for m, between 100 and 200
GeV. One sees that D is between 1X10 and 6X10
as we expected from the simple dimensional argument
Eq. (2). The result shows a slow increase with larger
values of m, in this region.

The T-odd correlation may be reparametrized in terms
of an asymmetry parameter 3, which is related to the
difference of the decay 8'+ —+ev, occurring in the oppo-
site sides of the a, Xp plane (Ref. [5]):

tween the absorptive part of F
&

from electroweak interac-
tions and the real part of F2 from QCD. An order of
-(1—10)%%uo correction due to this efFect alone is possible.
A still more complicated contribution arises from the in-
terference between ImF2 calculated above and the real
part of F, due to QCD. Other uncertainties arise from
neglecting (1) the 8'Z threshold eff'ect (relevant if
m, &M~+Mz+mb) and (2) all the box diagrams. The
contribution of the latter also depends on the angle be-
tween p, and p' in a rather complicated way. All of these
contributions are suppressed by the ratio I ~/M~, how-
ever. The calculation of these next-leading terms would
be crucial should future experiments approach the pre-
cision of D —10

T-odd correlations of the form cr, (p X p ),

crb (p Xp, ) and P and CP-o-dd correlations of the form

o, (o b Xp') are much more difficult to measure experi-
mentally, and thus will not be considered in this paper.

III. CONCLUSION

3(m, —M~) m, M~1m(F, Fz )

4(m, +2M~) iF, i

3(m, —M~)
m, M~ImF2

4(m, +2M~)

where ImF2 is given by Eqs. (6b) and (6c) with an addi-
tional overall minus sign. The results for 3 are summa-
rized in the last column of Table I. They vary from
1X10 to 1X10 for m, =100—200 GeV. In compar-
ison with the maximal-aHowed T violation effect in the
models considered in Ref. [5] in which
A (5X10 -5X10 ", the standard model final-state
interaction produces a much larger false effect.

It is dificult to calculate the T-odd parameter to an ac-
curacy of -30%%uo. The major theoretical uncertainties of
the present calculation come from neglecting QCD
corrections, which introduce a sizable interference be-

We have calculated the T-odd correlation o., (p Xp )e

induced by the standard electroweak final-state interac-
tions in the decay t ~b 8'+ —+bl v&, and found that the re-
sult has a logarithmic dependence on the t-quark mass
and is dominated by the bW~b8' rescattering due to a
Z exchange in the heavy top limit. For m, in the range
100—200 GeV the correlation parameter D defined in Eq.
(5) is between 1 X 10 and 6X 10, and the asymmetry
parameter A given by Eq. (8) is between 1 X 10 and
1X10 . It is shown that the standard model physics
can simulate a false T-odd signal, with its magnitude
exceeding genuine T-violation effects of a size that could
possibly be produced in a large class of theoretical mod-
els. To get rid of this pure final-state interaction effect
one may consider comparing the asymmetry parameter
for both t~bW+ and t~b8', as in the study of CP-
violating parameters a+ c7 and P+P in the A decays [10].

100
110
120
130
140
150
160
170
180
190
200

1.1x10 '
1.4X 10
1.9X 10
2.4X 10
2.9x10-'
3.5 X 10
4.0X 10
4.6X 10
5.1 X 10
5.6X 10
6.1 X 10

1.0X 10
1.8 X 10
2.8X 10
3.9X 10
5.1X 10
6.4X 10
7.6x10 '
8.7x10 '
9.8X 10
1.1 X 10
1.2x10 '

TABLE I. The result for the T-odd correlation in the t-quark
semileptonic decay. The parameters D and A are defined in
Eqs. (5) and (9), respectively.

m, (GeV)
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APPENDIX

We give some details of the calculation in this appen-
dix. The technique is standard [11] except that we use
the Minkowskian metric g ~=diag(1, —1, —1, —1). The
one- and two-point functions are defined as
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d "K 1a(m)= —ip,(" "
(2m)" K m— +ie

~

~

B ( m „m2; k ) = i—po("
d "K 1

(2m. )" [K —m, +i e)[(K+k ) —m 2+ ie]

(Al)

where e—+0+, and we use dimensional regularization to isolate the ultraviolet divergences. The only relevant three-
point function is

We find

d4K 1

(2m ) [K —Mz+i e][(K—k ) M—~+i e][(K+p') m(, —+i e]
(A2)

Imd(m)=0,

ImB(m„m2, 'k)=
z QA(k, m, , m2)8[k —(m&+m2) ],1

16m.k

1 Mzm,2 2

ImCO = ln 8[m, (M~+—m(, ) ],
16~+A(m, ,M~, m(, ) Mz ( +~( ( ~Mw~m( )

(A3)

where A.(x,y, z)=x +y +z —2xy —2xz —2yz. In
evaluating ImCO we have put all the external lines on
their mass shell.

Neglecting the b-quark and lepton masses, the final-
state-interaction eft'ect due to a photon exchange is

It can be written in a more conventional form by apply-
ing the Gordon identity

[u&(p')p' Ru, (p)]=—[u (( p')cr "k„Ru,(p)]+

I (y)= —e Qd4m, p' R(a, +b(), (A4)
(A9)

(2m) K [(K—k) —M~][(K+p') —
m(, ]

(A5)=a, k +a~'

(2m)" K [(K—k) —M~][(K+p') —m(, ]

=b, (k~p'i+k~p'~)+b2g ~+b3k k~+b~p' p'~ .

where a, and b& are the coefficients defined in the in-
tegrals

The result due to Z exchange is

I ~(Z) = —e (1+2Qds )m,p' R

1 1
( —a', +a2+Co)

C

(a', +b', )
S

(A10)

where the coefficients a'„a2, and b& are defined analo-
gously:

We find

(A6) d X
l

(2n ) [K —Mz ][(K—k ) —M~][(K+p') —m(, ]
B(M~, O;k ) —B(M~, O;p )a)—
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(g —4)f a K
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A(M~) — M~B( ,0M~,p)
m( (m( M~) sc'ac~

[K —Mz][(K —k ) —M~][(K+p')z —m„]
=b'((k p'~+k~p' )+b2g ~+b3k kP+b4p' p'~ .

2M~ p'R.
2m~

~Qd1, ,(y) = 1— (Ag) We find

It then follows from Eqs. (A3), (A4), and (A7) that the ab-
sorptive part of I (y ) is

1 [B(Mz, M~,'k ) B(Mg, O;p ) —Mz C—o],—M
(A12)

Ia 2 [B(Mz,O;p') B(M~,O;p) MzC—O]
— — [B(Mz,M~;k) B(M~, O;p) —MzC—O], (A13)
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1gt C

(m —M )

M
[ A (M~) M~B(M~ 0'p )]+ ~ [/I (Mz) MzB(M~ Mz'k )]

m,

z+2Mz[B(M~ 0 p)'B(Mz 0;p')] —3 [B(M~,Mz;k) —B(M~,O;p)]
m, Mw

Mw m2 2 2

Z 0
, —M M

(A14)

One can check that in the limit Mz =0, a, and a', become identical and so do b& and b']. The logarithmic dependence
on m, in the limit m, ~ ao arises because I (Z) has a term which is directly proportional to Co [see (A10)].

It then follows that the absorptive part of I (Z) is

a(1+2Qds )

4(m, —M~)
1

2

1 2Ii+ I2
$ S

(A15)

where I, 2 are given by Fq. (6c). Adding (A8) and (A15) we obtain the results given by Eqs. (6a) —(6c) of th«e~t.
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