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Drell-Yan dimuon production with transversely polarized protons
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We carefully study dimuon production by transversely polarized protons. It is shown that this process
should provide a good tool to uncover the parton distributions of the transversely polarized proton. In
particular we calculate the O(a, ) corrections to the total Drell-Yan cross section and the rapidity
differential cross section and find that the respective cross section asymmetries are rather stable.

PACS number(s): 13.85.Qk, 13.88.+e

I. INTRODUCTION

The spin structure of transversely polarized protons
has recently attracted growing theoretical interest
[1—10]. Up to now nothing is known experimentally
about the twist-2 distributions of transversely polarized
quarks in a transversely polarized proton, which are usu-
ally referred to as "transversity distributions" [11,1,2].
They may, however, be accessible in future experiments
at polarized hadron-hadron colliders [12]. It is therefore
important to perform detailed theoretical studies of what
is to be expected for the various conceivable processes
such as (Drell-Yan) dimuon production [1,2,4,5, 13], jet
[2,6,9,10], prompt photon [2,8], or heavy flavor [2] pro-
duction. Among these, dimuon production in collisions
of two transversely polarized hadrons plays a special role.
The reason for this is very simple: As is well known,
there are no contributions from incoming gluons to the
transverse two-spin cross sections due to angular momen-
tum conservation [3,5,13]. Nevertheless, gluons of course
contribute to the unpolarized (spin-averaged) cross sec-
tions. The quantities of interest in spin physics are the
cross-section asymmetries which are defined in this case
as the ratio of the transverse cross section over the unpo-
larized one. Thus, if incoming gluons contribute strongly
to the unpolarized cross section they will tend to drasti-
cally reduce the asymmetry. In all processes mentioned
above, with the exception of dimuon production, gluons
enter the unpolarized cross section already at the leading
order (LO), which means that the asymmetries for those
processes are expected to be small [2]. This is not the
case for the Drell-Yan process since here the LO subpro-
cess is qq —+p p annihilation which (in the unpolarized
case) receives only O(a, ) corrections from incoming
gluons. This feature makes the Drell-Yan process as im-
portant for the transversely polarized case as deep-
inelastic scattering is for the unpolarized and the longitu-
dinally polarized case [14—16] to define parton densities
beyond the leading order.

Furthermore, if studied in proton-proton collisions
(which will solely be discussed in the following), the
Drell-Yan process is very sensitive to the sea quark com-
ponent of the proton. Among the transversity distribu-
tions, the transverse sea is the most unknown (and there-
fore probably interesting) one since there are arguments

[1] that the transverse valence quark distributions are
closely related to their longitudinal counterparts and thus
are not completely unconstrained.

In view of the importance of the transversely polarized
Drell-Yan process we want to give a detailed study of it
in this paper. Since it is well known from the unpolarized
case that the higher-order [O(a, )] corrections to the
various differential cross sections are sizable [15,17] and
crucial for bringing theoretical predictions and experi-
mental results into agreement ("K factors"), it is neces-
sary to study the corresponding corrections for the trans-
versely polarized case and to examine their inAuence on
the asymmetries. This is the major issue of this work. In
Sec. II we present our notation and point out the general
framework for our calculations. In Sec. III we brieAy
deal with the qz differential Drell- Yan cross section
where qT is the transverse momentum of the virtual pho-
ton with respect to the beam axis. It should be noted that
in the qT differential case gluons again enter at LO in the
unpolarized cross section since qq annihilation in O(a, )

only contributes at qT=0 so that our above discussion
applies and small asymmetries are to be anticipated.
Therefore we turn to the qT integrated (total) cross sec-
tion in Sec. IV. We present the O(a, ) corrections to this
cross section. Section V is devoted to the cross-section
differential in the rapidity y, which is also presented in-
cluding next-to-leading-order corrections. Finally we
draw our conclusions in Sec. VI. The appendixes contain
calculational details and the results for the unpolarized
cross sections.

II. GENERAL FRAMEWORK

In this section we give all ingredients needed for the
calculation of the various Drell-Yan cross sections for
transverse polarization to order a, . In the unpolarized
case [15,17] the corresponding results were obtained by
simply considering the subprocesses qq~y (including
virtual corrections), qq~y*g, and qg~y~q and taking
into account the decay y*~p+p by multiplying with
the factor a/3srg, which represents the integration over
the lepton angular variables. This is unfortunately not
possible in the case of transverse polarization for the in-
coming particles where in order to obtain nonvanishing
cross sections it is crucial to keep the azimuthal angle Pi
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of one outgoing lepton unintegrated [5]. We therefore
have to resort to the full processes qq ~p+ p
qq ~p p g if transverse polarization is involved. Note
that the gluon-initiated process qg —+p p q is not
present in the case of transverse polarization as stated in
the Introduction [3,5].

To begin with, let us discuss the LO process
qq~p p . Our notation of the momenta is fixed in Fig.
1(a). The transverse spin vectors of the incoming quark
and antiquark are denoted by s, and s2, respectively.
The color-averaged matrix element is then given by
[2,1 1]

P2) ~2

+ crossed

Pl ) ~1 k

b)

FIG. 1. Feynman diagrams contributing to the transversely
polarized Drell- Yan process: (a) qq ~p+p in O(a, ), (b)
qq~p+p g in O(a, ).

u, +t, (k, s, )(ki s2)
iMi2 + (s„s2)=—e e +4

s

2tiu i+ (s, .s2 )
s

s, = (0;cosg„sing„O),

sz —= (0;cosPz, singb, 0),
k, =

~ k, ~ (1;sinO, cosg„sinO, sing„cosO, ),
(3)

where s =(p, +p2), t, —= (p, —k, ), and u, =(pz —k, ) .
In Eq. (1) the first term in square brackets corresponds to
the usual unpolarized matrix element, whereas the spin-
dependent terms which are the quantities of interest are
readily projected out from Eq. (1) by taking the
difference

+ ——
—,'[(M[' +

—IMI' + (s„—s2)] . (2)

Working in the c.m. system (c.m.s.) of the incoming parti-
cles we define the z axis by the direction of the three-
momentum of the incoming quark [18]. Furthermore
parametrizing the transverse spin vectors and the muon's
momentum by

&T lM + ~cad~
v

in agreement with the result of Refs. [2,4,5, 11]. Equation
(4) clearly demonstrates that it is crucial to keep the
lepton's azimuthal angle P, unintegrated. When consid-
ering the total Drell-Yan cross section in Sec. IV and the
y differential cross section in Sec. V, Eq. (4) will be the
starting point for our LO calculations.

Let us now turn to the 2~3 process qq~p+p g [Fig.
1(b)]. Quite in general, upon phase-space integration this
process will show up collinear and infrared singularities.
We therefore have to introduce a regulator in order to
regularize these singularities. A suitable choice is to in-
troduce a mass for the outgoing gluon (k %0) [17]. The
polarized matrix element for k %0 is then given by

8CFg e eq
[(k, s, )(k, .s, )+(k, s, )(I, .s, ) ]

3Q tu

Q2 t) u) Q~ t)u)
+(s, s~) 1+ (s —k )

——— + (t, +u, )+2
tu

(5)

where Cz= 4 and we have defined t =(p& —q) and u =(pz —q) . Parametrizing the momenta and spin vectors as in Eq.
(3) and introducing the angles O and P via

q =(qo; q~sinOcosg, ~q~sinOsing, ~q~cosO),

we And

8C 2e4e2
AT~M~ =

I~q~ sin Ocos($ —
&P, )cos(P Pb)+2~k&~ sin O—icos(P& —P, )cos(P& —Pb)

tu

—
~q~ ~k, ~

sinO sinO, [cos(P —P, )cos(P, —Pb )+cos(P —
Pb )cos(P, —P, )]]

where

Q2 — 1 —cosO i 1+cosO i—cos(P, —Pb) 1+ (s —k )++s ~k, ~
+

tu t u

~k, ~
sin O,—2&s ~k, ~

+2s
tu tu

(7)
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~ k, ~

=Q /2 [qo
—

~ q~ [sin8&sin8 cos(P —P, )+cos8 cos8, ] j .

The 2—+3 phase space for massive outgoing gluons is given in terms of our a~gular variables by

1 ~q~g d cos8,dg, d cos8dg
(8)

32+s (2~)s [qo ~ q~ [sin8&sin8 cos(P —
P& ) +cos8 cos8& ] ]

where ~q~ =Qqo —Q and qo=(s+Q —k )/2+s. Of course it is again crucial to keep P& unintegrated. As we want
to study transverse momentum distributions of the virtual photon in the next section, we will also keep the variable 0
which is connected with qz- via

qr'= ~q~'sin'8 .

The remaining two angles 8, and P can be integrated over using the integrals given in Appendix A [19]. We obtain

iqig b, M

32+s (2~) Iqo —~q~[sin8, sin8cos($ —P, )+cos8cos8, ]]

cos(2$, —P, —
Pb ) 1+ —31n 1+

(9)

(10)

From Eq. (10) it becomes obvious already how the regula-
tor k %0 cures the singularities arising for qr ~0, al-
though it is not needed for studying qz differentia1 cross
sections to which we will turn in the next section.

III. THE q& DIFFERENTIAL CROSS SECTION

In this section we study the transverse momentum (qr)
distribution of the virtual photon which decays into the
lepton pair. In order for the photon to acquire a nonvan-
ishing qz-, gluon emission must take place, which means
that the process qq ~p+p g is the leading-order process
for the transversely polarized case. Collecting all factors,
setting k =0 in Eq. (10) and changing from sin8 to qz.
via Eq. (9), we find, for the transversely polarized subpro-
cess cross section (omitting the fractional quark charge
for the moment),

4 c»(24'1 —4" 4'b)—
4sqz

(s —Q) 1—
(s —Q )

1+ —3 ln 1+
Q2 Q2

2a s

9s F2 1/2

X
1

qz-

b, rq(x) =—q t(x) —
q ~(x), (12)

qt (q ~) denoting the distribution of transversely polar-
ized quarks with their spin parallel (antiparallel) to the
spin of their transversely polarized parent proton [21].
This yields the hadronic cross section

where hro is defined in complete analogy with b. z ~M~
in Eq. (2). In order to get the hadronic cross section we
have to convolute Az& with the appropriate transverse
quark densities Az-q, which are defined by

67H(x]yx2, p )= yeq[brq(x, &p )67q(x2yp )

q

+brq(x2, p )brq(x), p )]

(14)

and r+ = (&r+p+ —+p) with r:Q IS, p=—qr IS and the
hadronic c.m. s. energy squared S. p is a typical mass
scale of the process not specified in this order. Apart
from the cross sections we are interested in the cross-
section asymmetry which is defined by

d Az-o. de
Ar(qz )=-

dQ dPidqz dg dPidqf.
Here dojdg dP, dqr is the unpolarized cross section
which also receives contributions from incoming gluons
and is given in Appendix B. As stated in the Introduc-
tion, the transverse quark distributions in the proton are
completely unknown up to now. The only constraint on
them is that they satisfy for each flavor the relation [1]

~bz q (x Q )~
~ q (x Q )

( —)
where the q are the corresponding unpolarized parton
distributions for which we shall take the LO ones sug-
gested by Gliick, Reya, and Vogt (GRV) [22] for all our
calculations.

In order to present numerical results we have to resort
to some simple model for the transverse parton distribu-
tions. %"e assume that at some low-resolution scale,
Q = Qo = 1 GeV, the transverse valence quark distribu-
tions equal their longitudinal counterparts, i.e.,

d A~o. dh~&
2 2 & 2 2dQ dgidqI '+ '+~" i dQ dPidqz

Aruv(x, go) =b,Luv(x, Qo),
b zdv(x~go) =bi.dv(x Qo ) .

(17)

Xb, Hr( ix, ~x, p), (13) Note that such an ansatz is supported by bag-model con-
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siderations where Arqv only slightly differs from ALqz
due to different p-wave contributions [1]. We fix the
valence input by choosing the longitudinally polarized
valence quark densities at Qo= 1 GeV from Ref. [23]
which satisfy the constraint (16) for the unpolarized GRV
[22] distributions. For the transversely polarized sea
b, Tq(x, Q&&) the situation is less clear. In order to study
the sensitivity of the asymmetries to the sea we shall as-
sume two different parametrizations: one with a rather
small sea [23],

0.00

AT(qT)

-0.02—

-0.04—

-0.06—

-0.08—

model a

model b

I I ) I I

xhrq(x, Qo)= —0.446x" (1—x) (model a), (18)

and another one with a large transverse sea quark polar-
ization [24],

x &Tq(x, Qo ) = —0.57x (1—x)' (model b), (19)

1.0

q(x} 0.8

0.6

which nevertheless satisfies the constraint (16). In both
cases we take the sea to be SU(2) symmetric but assume
b Ts (x, Qo ) =0 for the strange quarks. Figure 2 shows
the two asymmetries for ATq/q using the unpolarized q
from GRV [22] at Qo =1 GeV and Q =49 GeV . Hav-
ing fixed our input for the transverse quark densities, we
evolve them to higher scales with the help of the well-
known evolution kernel for transverse quark densities
given in Ref. [5] (see also Sec. IV). Note that the
leading-order evolution equations for the transverse case
do not involve gluons [5] and therefore only provide a
q ~q transition. This means that all quark distributions
evolve in Q separately like nonsinglet combinations.
Thus the assumption b, Ts(x, Qo ) =0 persists for all Q .
For the same reason there would be no transverse sea at
all at higher Q if we had assumed b, Tq(x, Qo ) =0 instead
of Eqs. (18) or (19) as is also conceivable [10]. In this
case the transverse Drell- Yan cross sections for pp
scattering would be identically zero, and we need not
pursue this possibility.

Figure 3 shows our result for the asymmetry AT(qT)
vs qr for Q =49 GeV [27] and &S =100 GeV. We
have made, as for all the following numerical evaluations,
the optimal choice cos(2$, —P, P& ) = 1 in E—q. (11).

12

q„[GeVJ

FIG. 3. AT(qT) according to Eq. {15)for the two models (18)
(dashed line) and (19) (solid line) at Q'=49 GeV and VS = 100
GeV. The unpolarized parton distributions are taken from [22].

Furthermore we have chosen the scale in the parton dis-
tributions and a, to be Q . It becomes obvious from Fig.
3 that the asymmetries in the perturbatively safe region
qT & 4 GeV are very small for both models for ATq. The
reason for this was already given in the Introduction.
The asymmetry is strongly suppressed by the gluonic
contribution to the unpolarized cross section, which is
significant especially at small qT.

The inAuence of the unpolarized gluon's contribution
on the asymmetry is drastically reduced if the LO
[O(a, )] process [Fig. 1(a)] has to be taken into account
as is the case for the asymmetries for the total and the y
differential Drell- Yan cross sections. For these the
gluonic contribution acts only as an order o;, correction
to the unpolarized cross section and is known to be rath-
er small compared to the quark piece even for the pp case
where valence-sea annihilation dominates. For this
reason we shall now turn to the total and the rapidity
differential cross sections to see whether they can give a
clue to the transversity distributions. Note that the LO
asymmetry for the rapidity differential cross section was
already discussed in Refs. [2,4]. As stated in the Intro-
duction it has, however, been shown [15,17] that O(a, )

corrections to the qq annihilation process are quite siz-
able for the total and the y differential unpolarized cross
sections. In our opinion it is therefore interesting to
study the importance of O(a, ) corrections to the Drell-
Yan cross sections also for the transversely polarized case
as these might be important for quantitative analyses.

IV. THE TOTAL DRELL-YAN CROSS SECTION
dobro /dQ dP~

0.2

0.001 0.01 0.1

The LO result for db, Tcr /dQ dP& can be immediately
obtained from Eq. (4) by integrating over cos6)&. This
gives for the subprocess cross section

dA o'
cos(2$, —P, Ps )5(1—z), —(20)

dQ dP, NQ
FIG. 2. The asymmetry —hzq(x)/q(x) for the two trans-

versely polarized sea quark distributions in Eq. (18) (dashed
lines, model a) and Eq. (19) (solid lines, model b) for Qo= 1

GeV and Q =49 GeV . The unpolarized sea qlx) was taken
from [22].

where z=Q /s. The O(a, ) corrections stemming from
the process qq~@+)M g are derived from Eq. (10) by in-
tegrating over 8 (for calculational details see Appendix
A) and are given in the limit k ~0 by
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dhT&"

dg'dpi

a2 a, 1 Q ir Q 1C„4cos(2$, —P, —
Pb )z 5(1—z) —ln' — +ln

9sg 2ir 4 k' 12 k' (1 —z)+

+2 ln(1 —z)
1 —z

21nz 1 —z 3 ln z
1 —z z 2 I —z

(21)

where the "+"prescription is defined in the usual way [15]:

f f (z)
0 (1—z)+ f i f(z) —f(1)d

0 1 —z
(22)

Note the appearance of infrared divergencies in Eq. (21) which show up, e.g. , in the term -ln Q /k . They are re-
moved by adding the O(a, ) part of the virtual corrections to the LO process, which can be found in Ref. [17] for the
unpolarized case and are trivially transformed to the case of transverse polarization:

daTo~

dg dPi

+2 ~s
cos(2$, —P, Pb )5—(1—z)C„

9s 2~
Q Q 7—ln +3 ln ——+
k k

(23)

Upon adding Eqs. (21) and (23) we find

dh oT

dg'dpi
cos(2/i P Pb ) '2b z Pqq(z)ln +CF 8z

8z lnz

1 —z
6zln z

1 —z

+4(1—z) ——6(1—z)
7
2

(24)

where

b, z.P (z) =—C~ +—5(1—z) —(1—z)
1+z2 3

T qq F (25)

is the transverse splitting function for the transition
q~q, which agrees with the one calculated in Ref. [5]
and which was already used for the evolution of our
transverse (twist-2) quark densities in Sec. III. We shall
factorize precisely this logarithmically singular term
ArP q(z)lnQ /k into the polarized quark densities and
take the remaining terms in Eq. (24) as the finite O(a, )

corrections to the cross section. Of course there is a
well-known arbitrariness in performing the factorization
of mass singularities. For instance, we could have alter-
natively decided to absorb all u, corrections into the
quark densities as was suggested for unpolarized deep-

I

inelastic scattering in Ref. [15] ("DIS scheme"). Any
change in the definition of quark densities beyond the
leading order is compensated by a corresponding change
in the respective two-loop splitting function [28]. How-
ever, the latter is not known up to now for the transverse-
ly polarized case. This of course limits the validity of our
numerical results presented below for which we have to
stick to the one-loop evolution kernel Az.P «(z) in Eq.
(25). The present situation is very similar to that in the
unpolarized case where also Drell-Yan K factors have
been studied before the two-loop anomalous dimensions
were calculated [29]. In any case our results will show up
their full importance when they will be combined with fu-
ture calculations of the transverse two-loop splitting
functions.

Adding finally all contributions including the LO one
we find, for the hadronic cross section,

d ATo.

dg dPi

a ~ dx~ ] dx2 n,
cos(2$, —P, Pb) f —f b, @II(x„xz,g ) 5(1—z)+CF Arf (z)

9SQ X, ~/'~& X2 2' (26)

with z =~/x, x2 and

hrf (z)—:Bz
ln(1 —z)

1 —z
8z lnz
1 —z

6zln z
1 —z b rf "=f z" 'b, rf (z)dz, —

0
(28)

For the numerical evaluation of Eq. (26) it is convenient
to have the Mellin-n moments of b, rf (z) which are
defined by

+4(1—z) ——5(1—z) .7
2

(27) since the corresponding moments of the cross section
take the simple form
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dhTof r" SQ dr
0 dQ dP,

&s

9
cos(2$, —p, p—b)6TH"(Q ) 1+C~ ATf"2'

0 I I I I
I

I I I I
I

I I I I

I
I I I I

model b
) -0.02—

-0.04—

(29)

where b, TH"(Q )—:2g e b, Tq "(Q )b Tq "(Q ). We find

b, Tf"=8 g —g ——8)k. )j k, k 6

e"
-0.06

-0.08

-0.1 0 100SO 1SO
I I I i I I I I i i I

200
n 4 7+12 g —g(3) + (30)

n(n +1) 2

with g(3)=1.20206. The corresponding results for the
unpolarized case can be derived from Ref. [17] and are
collected in Appendix B. Let us now study the numerical
importance of the O(a, ) corrections to the transverse
asymmetry of the total Drell-Yan cross section, which is
defined in analogy with 2 z (qT ) in Sec. III as

dATo. /dg dp,
do /dg dP,

(31)

Obviously 2 T is a scaling function in the variable
r=Q /S if the scale dependence of the parton distribu-
tions and n, is neglected. We have checked that AT is
indeed rather independent of the scale chosen, and there-
fore we present it as a function of ~ in Fig. 4. We have
used the same sets of parton distributions as introduced
in Sec. III and, for definiteness, we have taken the scale
Q =49 GeV [27]. The almost exact scaling behavior of
AT makes it possible to obtain the value of the asym-
metry for arbitrary values of Q and S from Fig. 4. It be-
comes obvious that the asymmetry is strongly dependent
on the size of ETq [30] and that it is much larger now (at
least for the large ETq ) than for the qT differential case.
Comparing the predictions for the leading-order case
(qq~@ p only) and for the O(a, ) results we see that
the asymmetry is stable, which is mainly due to the fact
that the most important corrections [terms -5(1—z) in

vS LGeVj

FIG. 5. dobro/dQ dP, according to Eq. (26) at Q =49
GeV for model b, Eq. (19), in O(a, ) (dashed line) and O(a, )

(solid line).

V. THE RAPIDITY DIFFERENTIAL CROSS SECTION

Finally we want to briefly discuss the cross-section
difFerential in the rapidity y of the outgoing virtual pho-
ton, which is defined by

+ )fc

y= —ln (32)

Eqs. (27) and (B5)] are the same for the polarized and the
unpolarized cross sections. Note that in contrast with
the asymmetry the individual cross sections
db, To /dQ dP, and do/dg dP, receive corrections of
order 30%. This can be seen in Fig. 5, where we show
the transversely polarized cross section db To /dQ dP,
vs &S in O(a, ) and O(a, ) for model b, Eq. (19), using
again Q =49 GeV . As discussed above, the expressive-
ness of the comparison between LO and higher-order re-
sults is still limited; nevertheless, it seems that one can be
rather confident that at least the asymmetry A will
remain stable even when the correct two-loop evolution is
implemented. Therefore one may tentatively conclude
from Fig. 4 that the asymmetry A should give a good
clue to the transverse parton distributions, especially the
sea quark distribution, of the proton.

-0.10—

qo and q3 being the zeroth and third component of the
photon's momentum in the c.m. s. of the incoming pro-
tons. Again we start with the result for the LO subpro-
cess cross section, which is

-0 ~0—

d&

dQ dy dP,
A

, cos(2y, —y. —y, )

X 5(x, —x, )5(xz —x 2 ) (33)

I l I I I IIII I I I I I IIII I i I I lllil I I I I I II

with x, =+re and x2= v'—re . The hadr—onic cross sec-
tion is given by

0.0001 0.001 0.01 0.1 1

FIG. 4. Az. according to Eq. (31) as a function of r=Q'/S
for the two models (18) and (19): O(a, ) (dashed lines), O(a, )
(solid lines). The scale of the parton distributions and a, was
chosen to be Q =49 GeV .

dhTo. ) ) dA~&
dx ) dx2

dQ 4' d4& "i "z dg d3' dpi

XbTH(x, ,x„g ) . (34)

We now turn to the O(a, ) corrections to this cross sec-
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0 0
QP X 1X2 X2X1

cosO=
lql x ]xz+xzx]

(35)

tion. y and cos8 (which was defined in Sec. II in the
c.m.s. of the incoming partons ) are related via

By changing from cos8 to y in Eq. (10) we can obtain the
O(a, ) cross section dbT&/dg dy dP]. To this end we
use the techniques developed in Ref. [17] which allow for
an explicit extraction of the collinear and infrared singu-
larities. After some algebra we find, for the subprocess
cross section,

db, r&

dg dy dP]

4&(x]xz+&)
z CF 0 o cos(2]jt ]

—P, Pb
—
)

9sg 2' (x, +x, )(xz+xz)

(1 —x] )(1—xz)
X 5(x] —x, )5(xz —x z ) —ln x'x'

1 2

7 772——+
4 6

1 2x, (1—xz)
+5(xz —xz ) ln +

(X] X] )++ X]X2(X]+X])

1 2xz(1 —x, )
+5(x] —x, ) ln +

(xz x2 )++ x ]xz(xz+xz )

ln(x, —x,
X1 X10

ln(xz —x z

X2 X2
0 ++

[(x, —x, )(xz —xz)]++

+ln 5(x] —x, )5(xz —xz ) —+ln

0 0X1X2+X1X2
0 6ln

(x]+x])(xz+xz) x]xz+xzx]
(x,xz+xzx, ) (x, —x, )(xz —xz )

(1—x] )(1—xz)
x'x'

1 2

+5(x] —x, )
(xz x 2 )++

+5(xz xz)p 1

(x, —x, )++
(36)

where we have defined a new prescription:

f(x, ) i f(x, ) —f(x, )

0 ~ 0 dx1 = dx1
(X] X] )++ x] X] X]

1 1 f (x„xz) ] ] f (x„xz) f (x„xz)—f—(x, ,xz)+f (x, ,xz)
o 1 o 2 p p 0 1 o 2

x] xz [(x] x] )(xz xz)]++ x] xz (x, —x, )(xz —xz)

(37)

02 a Q2 0 1dz
C~ln cos(2$] —P, Pb ) 6(x] —x,—) ETP 5(xz —z)

9SQ 2' k

x',
5(x] —z)+5(xz —xz) I, b, TPqq

p 1 dz

xl z z

In Eq. (36) the virtual corrections are already included such that only collinear divergencies are remaining, which are
removed by factorization. Analogously to Sec. IV we want to subtract only the singularity proportional to
hTP (z)lng /k . For the y differential cross section this simply means to subtract the lnQ /k terms in Eq. (36),
which equal

d 5z.cr /d Q dy d P]
AT(y) =

do/dg dy dP]
(38)

The expression for the unpolarized cross section which
again also receives O(a, ) contributions from incoming

The remaining terms are regarded as the O(a, ) correc-
tions to the cross section.

For a numerical evaluation of our results we define the
asymmetry Az. (y) as before:

l

gluons can be derived with some modifications concern-
ing the factorization scheme from Ref. [17] and is
presented in Appendix B. Figure 6 shows our results for
the asymmetry AT(y) for our two different choices for
the spin-dependent sea quark distributions for both LO
(dashed lines) and O(a, ) (solid lines). We have again
chosen Q =49 CxeV [27] and &S =100 GeV. Obviously
the asymmetry is again very sensitive to the transverse
sea quark distribution. Furthermore, the asymmetry is
rather stable to O(a, ) corrections if one does not go to
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A, (y)

0.0—
model a

-0.1

-0.2

-2

FIG. 6. AT(y) according to Eq. (38) for the two models (18)
and (19) at Q =49 GeV' and &S =100 GeV: O(a, ) (dashed
lines), O(a, ) (solid lines).

large Iy I
at the edge of the phase space. We may there-

fore conclude that also from studying the rapidity
differential cross sections one might be able to discrim-
inate between different models for the transverse sea
quark distributions in the proton.

VI. CONCLUSIONS

We have studied dimuon production in collisions of
two transversely polarized protons. We have presented

two diff'erent parametrizations for the transverse sea
quark distribution ATq in the proton, which is the quanti-
ty that mainly determines the asymmetries. As we have
shown, studying the qT differential cross section does not
provide a good tool to measure ATq since the asymmetry
is too strongly suppressed by the contribution of gluons
to the unpolarized cross section. This does not happen
for the total and the rapidity differential cross sections
since here the dominant contribution comes from
qq~@ p annihilation. Since O(a, ) corrections to
these cross sections turned out to be rather large in the
unpolarized case, we have presented these corrections
also for the case of transverse polarization. Our main re-
sult is that although the corrections to the cross sections
are of order 30%%uo, the cross-section asymmetries are rath-
er stable against higher-order effects. This is in particular
true for the total Drell- Yan cross section and for the rapi-
dity differential cross section at not too large yI. As
these are strongly dependent on the transverse sea quark
distribution, we can be confident that their measurement
at future polarized hadron colliders would allow a deter-
mination of the up to now completely unknown transver-
sity distributions in the proton.
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APPENDIX A

In this appendix we want to give some integrals needed for the derivation of Eqs. (10) and (21). Let us define

2m. 1 f (0),P)I [f,n]—:f dP f d cosO,
[ q0

—
I q I [sinO, sinO cos((t —P, ) +cosO cosO, ] ]

"

Equation (10) is then obtained using

(A 1)

I [1,2]=, I [1,3]=

I [cos (P —
P& ),2]= 2

4~q0 4~qcosO . z 8~
4

I [c soO&,3]=, I [sin 0&,4]= (Q +2Iq sin 0),4 1 1& 3Q6

27rln 1+IqI sin 0/Q

I q I'sin'0

2wln 1+ IqI sin 0/Q
I [sin (P —

P&), 2] =
I q I'sin'0

I [sin(@—Pz)cos((t —
@& ), 2] =0

I[sin &0si (n@
—

P&), 3]=0, I [sinO&cos(cb —
@&),3]= 4' qIsinO

The "+"prescriptions in Eq. (21) enter via the relations

1 z 1 1 4Q+—ln 5( 1 —z)
s —Q' —k' Q' (1—z) 2 k' (A2)

&s
I
ql'+ Q'k'+ &s

I qI

s —Q' —&' +s IqI'+Q'k' —+s IqI Q

2 lnz 1 Q ln(1 —z)
ln

1 —z (1—z)+ k~ 1 —z

+5( 1 —z) —ln Q
2

4

~2

12
(A3)
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APPENDIX 8
In this appendix we collect the corresponding results for the unpolarized Drell-Yan cross sections. All of them can

be derived from Ref. [17]. For the total and the y differential cross sections the results of Ref. [17] have to be
transformed from the DIS scheme used in [17] to our scheme in which we simply subtract the lnQ /k singularity. For
all three cross sections the hadronic cross section is obtained by convoluting the subprocess cross sections with the ap-
propriate combinations of unpolarized parton distributions:

D = fd, fdx, [Do~'H(X, ,X„Q')+Do'gK(X„X„Q )+Dos~K(X„X„Q')], (B1)

where the integration limits for the cases D =d ldQ dg]dqT, D =dldQ dg„and D =dldQ dy dP] can be read off
from Eqs. (13), (26), and (34), respectively. In Eq. (Bl) H (x „x2,Q ) is the unpolarized analogue of b, TH (x],x2, Q ) in
Eq. (14) and

K(x„x2,Q )=—ge [q(x„Q )+q(x„Q )]G(x2, Q ) (B2)

with the unpolarized gluon distribution G (x, Q ). The subprocess cross sections for the qT differential case are given by

do ~~

dQ d])]]dqT

cx2 +s 4
9s 2m qT

(s —Q) 1— 4sq,'
(s —Q )

s Q 2qr
' ]&2 Q2 ~21+

s s
(B3)

d&

dQ dp]dqT

a ~s 4

9s 2m qT2

(s —Q) 1— 4sqT

(s —Q )

1/2
2Q s s s

d &g~

dQ dp]dqT~

2Q(s —
Q )+2Q(s —Q )

A. 2s w3s

(B4)

d&

dQ dP]
—4(1+z )

1 —z

with the color factor T~ =
—,'. For the total Drell-Yan cross section we find

2

2 5(1—z)+ C~ 4(1+z )
9sQ' 2~ ~ '

1 —z
7—4(1 —z) ——5(1 —z)
2

(B5)

d &'g
R

dQ dP] 9sQ2 2]r

dog~

dQ dP]

z +(1—z) ln ——z +z ——1 —z 3 2 1

z2 2 2

(B6)

Finally the rapidity difFerential subprocess cross sections are given by

d o'q~

dQ dy dP]
2 2

5(x, —x, )5(x2 —x 2 )

4&2 Qs (x]X2++)[r +(x]X2) ]

9SQ 2' (x]X2 ) (x] +x ] )(X2+x 2 )

(1—x, )(1—x2)
X 5(x, —x, )5(x2 —x2) —ln ——+

X X 4 6

1 2x](1—x2)
+5(x2 —x2) ln +

(X] X] )++ X]X2(X]+X])

ln(x, —x, )

X] X)0

1 2x2(1 —x, ) ln(x2 —x2 )
+5(x, —x, ) ln o 0 +

(X2 X2)++ x]X2(X2+X2) X2 X2

1 x]X2(x]+x] )(X2+X2)1

[1 +(x]X2) ](x]X2+X2X])

X) X)0

x, +(x, )

X2 X2

++ X, +(X, )
I

2 0 2

(B7)
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d &~~

dQ dy dP,

d8'

dQ dy d((),

4tz2 a, (x, ) +(x, —x, ) 2x (1—x2)
Ttt 5(x2 —x 2 ) 3 0 0 09SQ 2m. 2x, x ix2(xi +x 1 )

xz(~+xix2)[i +(~ x—,x2) ]
0(x2 x 2 )++ x lx 2(x1x 2 +x2x 1 )(x2+x 2 )

3 2 0 0 0

+(++x1x2 )[x ix2x 1 + (x1x2 +2x2x 1 )1
2 0 0 3(x,x2) (xix2+x2x, )

dggq (1~2) .
dQ dy dP,

2x1

(89)

[1]R. L. Jaffe and X.Ji, Phys. Rev. Lett. 67, 552 (1991);Nucl.
Phys. B375, 527 (1992).

[2] X. Ji, Phys. Lett. B 284, 137 (1992).
[3] X. Ji, Phys. Lett. B 289, 137 (1992); R. L Jaffe. and A.

Manohar, ibid. 223, 218 (1989).
[4] J. L. Cortes, B. Pire, and J. P. Ralston, Z. Phys. C 55, 409

(1992).
[5] X. Artru and M. Mekhfi, Z. Phys. C 45, 669 (1990).
[6] R. W. Robinett, Phys. Rev. D 45, 2563 (1992).
[7] G. A. Ladinsky, Phys. Rev. D 46, 2922 (1992).
[8] J. Qiu and G. Sterman, Phys. Rev. Lett. 67, 2264 (1991).
[9] A. V. Efremov, L. Mankiewicz, and N. A. Tornqvist,

Phys. Lett. B 284, 394 (1992); R. D. Carlitz et al. ,
Pennsylvania State University Report PSU/TH/101, 1992
(unpublished); J. C. Collins, Nucl. Phys. B394, 169 (1993);
Nucl. Phys. B396, 161 (1993).

[10]M. Stratmann and W. Vogelsang, Phys. Lett. B 295, 277
(1992).

[11]J. P. Ralston and D. E. Soper, Nucl. Phys. B152, 109
(1979).

[12] RHIC Spin Collaboration, D. Hill et al. , Report RHIC-
SPIN-LOI, 1991 (unpublished); D. Underwood et al. , Par-
ticle World 3, 1 (1992).

[13]J. T. Donohue and S. Gottlieb, Phys. Rev. D 23, 2577
(1981);23, 2581 (1981).

[14]Note that in transversely polarized inclusive deep-inelastic
scattering the twist-2 transversity distributions discussed
here are not accessible [1,5].

[15]G. Altarelli, R. K. Ellis, and G. Martinelli, Nucl. Phys.
B157,461 (1979).

[16]P. Ratcliffe, Nucl. Phys. B223, 45 (1983).
[17]J. Kubar et al. , Nucl. Phys. B175,251 (1980).
[18]Note that we take this direction to coincide with the one

of the incoming proton beam; i.e., we neglect effects of in-
trinsic kT smearing for the incoming partons which were
discussed in detail in [13].

[19]As stated above, our coordinates refer to the c.m. s. of the
incoming particles, which we believe to be the experimen-
tally relevant frame regarding future polarized colliders

such as the BNL Relativistic Heavy Ion Collider (RHIC)
[12]. Working instead in the well-known Collins-Soper
frame [20] which is widely being used in Drell-Yan stud-
ies, we find a vanishing P-integrated matrix element in Eq.
(10), which makes it not suitable for the extraction of the
higher-order corrections in Secs. IV and V.

[20] J. C. Collins and D. E. Soper, Phys. Rev. D 16, 2219
(1977).

[21] We mention that the parton densities defined in this way
were called h in [11,4], li, in [1],and h, q in [5].

[22] M. Gliick, E. Reya, and A. Vogt, Z. Phys. C 53, 127
(1992).

[23] P. Chiappetta and G. Nardulli, Z. Phys. C 51, 435 (1991).
[24] Note that the large negative sea quark polarization was

also suggested for the longitudinally polarized case [25] in
order to account for the European Muon Collaboration
(EMC) result [26] for the first moment of the longitudinal
spin-dependent structure function g&. Since we only want
to estimate the magnitude of the effects to be expected it is
clearly sufticient to confine oneself to a negative transverse
sea rather than to additionally studying a positive one.

[25] J. Ellis, R. A. Flores, and S. Ritz, Phys. Lett. B 198, 393
(1987); J. Ellis and R. A. Flores, Nucl. Phys. B307, 883
(1988); M. Gluck and E. Reya, University of Dortmund
Report DO-TH 87/14, 1987 (unpublished).

[26] EMC. , J. Ashman et al. , Phys. Lett. B 206, 364 (1988);
Nucl Phys. B328, 1 (1989); V. W. Hughes et al. , Phys.
Lett. B 212, 511 (1988); G. Baum et al. , Phys. Rev. Lett.
5I, 1135 (1983).

[27] Note that at such large values of Q additional higher
twist contributions (twist 3,4) to the cross section which
were discussed in [11,1] can be safely neglected.

[28] M. Gluck and E. Reya, Phys. Rev. D 25, 1211 (1982).
[29] G. Curci, W. Furmanski, and R. Petronzio, Nucl. Phys.

B175, 27 (1980); E. G. Floratos, C. Kounnas, and R. La-
caze, ibid. B192,417 (1981).

[30] Note that striking similarity between the shapes of Ar in
Fig. 4 and the ones of —ETq(x)/q(x) in Fig. 2, which ob-
viously determine the behavior of 2 T.


