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We report on a considerable improvement in the technique of measuring multiparticle correlations
via integrals over correlation functions. A modification of measures used in the characterization of
chaotic dynamical systems permits fast and flexible calculation of factorial moments and cumulants
as well as their di8'erential versions. Higher-order correlation integral measurements even of large
multiplicity events such as encountered in heavy ion collisons are now feasible. The change from
"ordinary" to "factorial" powers may have important consequences in other fields such as the study
of galaxy correlations and Bose-Einstein interferometry.
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I. INTRODUCTION

Wherever statistical analyses are done, whether in
physics, biology, or psychology, the measurement of the
correlation function is a basic element of understanding.
While each discipline has its own set of questions for
which it seeks answers, the underlying statistical mecha-
nisms are very similar: given a set of variables, one first
finds the distribution of how often each of these variables
takes on a certain value, and much that is useful can be
learned from these one-variable distributions. Following
immediately is the question how two variables behave si-
multaneously, whether they are independent or in some
way correlated: the two-variable correlation function pro-
vides the answers. Higher orders provide additional in-
formation, but with escalating difFiculty of measurement
and diminishing returns.

Conversely, a knowledge of correlation functions to all
orders provides complete information on any statistical
system.

Of special interest to us here are point distributions.
Typical examples of point distributions include galaxies
in the sky, cows in a field, and particles in phase space
(the exact size of the object under study is irrelevant as
long as it is small compared to the embedding space).
The aim of this paper is to develop and extend meth-
ods of measuring correlation functions of point distribu-
tions. While we shall be considering particle correlations
in high-energy collisions, the formalism developed here
should be suitable, with appropriate modifications, for
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problems in a number of other situations.
Beyond traditional methods, recent advances in the

theory of fractals and scaling have spawned a new way
of approaching correlations: scaling behavior manifests
itself in power-law behavior of the correlation function,
which in particle physics can be measured experimen-
tally through the factorial moments revived by Bialas and
Peschanski [1]. On the other hand, a measure termed the
correlation integral [2—4] has been in use in the character-
ization of strange attractors and other contexts for some
time. As an improvement on the factorial moments and
following the suggestion of Dremin [5], we previously in-
troduced into multiparticle physics two forms of the cor-
relation integral which we termed the "snake" and the
symmetrized "Grassberger-Hentschel-Procaccia" (GHP)
integrals [6]. In this paper, we advocate a slightly dif-
ferent form, which for obvious reasons we name "star"
integral. Yet another form useful for pion interferometry
takes the invariant mass of the q-tuple as a measure of
its size [7,8].

To illustrate the concept of the correlation integral and
the difI'erence between the various forms, we consider the
phase-space plot (e.g. , in rapidity and azimuthal angle)
of the pions produced in a particular collision and ask
the question how clusters consisting of q particles may
be characterized, i.e., what "size" should be assigned to
each cluster. Taking q = 5, for example, we show in
Fig. 1 one particular selection of five particles from this
event and assign the following sizes to it: in (a), the five
particles are joined into a "snake, " and the 5-tuple is
assigned a size e corresponding to the longest of the four
joining lines. In (b), the same 5-tuple is assigned a size
given by the maximum of all ten pairwise distances; this
defines the GHP correlation integral. The "star" integral
in Fig. 1(c), finally, is assigned a size corresponding to the
longest of the four lines to the chosen center particle. A
line represents a particular interparticle distance being
tested and found to be smaller than e; those particles not
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II. THE CORRELATION INTEGRAL

A. Basic concepts

~ ~

(a) (b) (c)

FIG. 1. Different version of the correlation integral: (a)
snake, (b) GHP, and (c) star. For a given set of q particles
in phase space (here q = 5) taken from the N particles of
a particular event, pairwise distances are tested according to
the topology of joining lines shown. The longest of the lines
characterizes the size of the given q-tuple in every prescrip-
tion. The star count is much more eKcient than the other
prescriptions, see Sec. II.

connected by a line may or may not be within a distance
c of each other.

Every correlation integral of order q thus assigns a size
to every possible q-tuple of particles in an event. The
way this assignment is done distinguishes the diferent
versions of correlation integrals. Once such an assign-
ment is made, they all count the number of q-tuples that
are smaller than a given size. For a large data sample this
corresponds to an integration over the qth-order correla-
tion function, as shown explicitly in Eqs. (4)—(7) below.

We shaH show that the star shares aH the advantages
of the snake and GHP forms but is more amenable to
intuitive understanding and is computationally more ef-
Gcient by orders of magnitude. Furthermore, our formal-
ism leads naturally to a conceptual cleanup of the heuris-
tic fractal measure used in the study of strange attrac-
tors, in galaxy distributions, and in multiparticle correla-
tions [3—6,9]. Being derived directly and rigorously from
the underlying correlation function, it necessitates the
use of factorial powers rather than the ordinary powers
used previously. The difference becomes significant when
small particle numbers are involved, a situation which
occurs inevitably when the integration domain becomes
suKciently small.

In addition to this cleanup, we provide here a technique
to measure integrals of cumulant correlation functions
which are the genuine higher-order correlations and thus
very useful observables. Previously, the only way to ex-
tract information on higher-order cumulants had been via
combinations of factorial moments [10] and in third order
for some very special configurations in rapidity space [11].
By clarifying and extending the technique of event mix-
ing, we show how cumulant functions can be integrated
directly and thus share all the advantages of correlation
integrals over bin-averaged factorial moments.

The paper is organized as follows. In Sec. II, the star
correlation integral is introduced, while in Sec. III we lay
a solid theoretical foundation for the practice of event
mixing. In Sec. IV, we remind the reader of the basic re-
lations defining true correlations and show how these may
be measured directly in the correlation integral scheme.
Differential versions and their considerable advantages
are discussed in Sec. V. We conclude with some remarks
and recommendations.

The starting point for all correlation analyses is the
qth-order correlation function or "inclusive density"
p~(mi, a2, . . . , a~). The choice of the q variables ay living
in d dimensions is determined by our particular problem;
in high-energy physics, we can have, for example, vec-
tor three-momenta x = (p, p„,p, ), some combination of
boost-invariant variables such as rapidity, azimuthal an-
gle, and transverse momentum (y, P, p~), or just one of
these alone.

The set of correlation functions pq, q = 1, 2, . . . can be
defined for a fixed total number of particles and jor for
specific particle types such as positively and negatively
charged pions; for the purposes of this paper, we shall
mostly consider only one type of particle within an in-
clusive distribution where the total number of particles
per event is not held constant. For this case, pq is de6ned
operationally as

where o.I is the total interaction cross section and o.;„,~
the inclusive cross section. Integrating in d dimensions
over the total window A~ = (A2:)", we get

d~~ dmq pq(m, xq) (N~&~)

where N is the total number of particles in La and
(K('ij) = (K(%—1) . (K—q+1)) = (~(Ax) is the unnor-
malized qth-order factorial moment over the same region.

Integrating pq over various domains of integration, one
can obtain any number of possible moments. For exam-
ple, the vertical normalized factorial moment revived by
Bialas and Peschanski [1],

gV 1
M"

pi( )
Q„da PAq(ai, . . . , aq)

(3)
, J~( ) Hkd~~ pi(~i) pi(~. )

'

integrates pq in a Cartesian lattice of M" cubes, each of
size A(m) = O(mi, . . . , m~) = (82:), normalizing each
bin separately. For the purposes of searching for power-
law behavior of the correlation. function, Fq is measured
as a function of M, with the bin edge length decreasing
correspondingly, b2: = Ax/M. The "horizontal" facto-

In addition to a suitable choice of variables, some "pre-
processing" of the data may be required to eliminate un-
wanted e8'ects, for example the transformation to jet coor-
dinates in e+e collisions [12], and, if desired, the creation of
data subsamples of Axed total multiplicity.
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rial moments [1], the diB'erential versions of Sec. V, and
indeed the traditional way of presenting correlation func-
tions in constant bin sizes are all integrations over differ-
ent domains of the same correlation function.

In the same way, the three correlation integrals are
simply integrals over specific domains. The qth-order
snake correlation integral is de6.ned in terms of pq and
the "cluster size" e as

restricts all possible pairs of coordinates. The star inte-
gral is de6ned as

~star
(

f Pq(~1~ y ~q) 812813 ' ' ' 81q d~l ' ' ' dq

f pi (Zi) ' ' ' pi (Zq) 812813 ' ' ' Oiq dgi dzq

~snake
(

f p (ai, . . . , ~ ) 812023 . 0 1 d~i . da

f Pl (+1) ' ' Pl (+q) O12O23 ' ' ' Oq —liq d+1 ' ' ' d+q

(7)

involving all coordinates paired with my. The "topology"
of the different correlation integrals shown in Fig. 1 is
thus visible already in the selection of 0 functions.

where 8,2 = 8(e—la; —a~ I). Similarly, the GHP moment
is de6ned with all interparticle distances restricted:

f p, (~1, . . . , aq) Q, , 0,, dpi . d~,~CHP( ) f pi(~1) pi(~q) II;(, 8Vd1 . dq'

where

Hij = O)20)3 ' 0]q023 ' Oq y)q

B. The star integral

While the definition (1) of pq is exact and unambigu-
ous, we shall need for the derivation of the correlation
integral an alternative but equivalent formulation writ-
ten down by, e.g. , Klimontovich [13]. I et the N particles
of a speci6c event be situated at the points X, in phase
space, i = 1, . . . , N. Then the "event correlation func-
tion" pq is defined as adding 1 at every point (ai, . . . , mq)
if there is simultaneously at each ak a particle X, inde-
pendently of the positions of the other N —q particles.
This is done for all N!qj = N!/(N —q)! selections of q-
tuples out of the total N particles. For a specific event a
this defines a function

P;(» ~q) =
42'q

=1

h(xi —X, ) 8(~2 —X, ) 8(xq —X, ),

where b(a) is the product of d one-dimensional b functions. This function, when averaged over all events, yields the
q-particle distribution function of Eq. (1),

P.( 1 .) =(P;( 1" q)) = ..') P;( 1" .)

where N is the number of events in the experimental sample. For finite resolution, Eq. (9) corresponds to building
up a qd-dimensional histogram.

Inserting Eqs. (8) and (9) into the numerator of Eq. (7), we find immediately the (unnormalized) star integral
factorial moment to be

In Ref. [6], we erroneously denied that the GHP integral could be written down as an analytical integral of the correlation
function.

Since both definitions (1) and (9) are implemented for a finite number of events, they are, strictly speaking, estimators of
the true correlations.
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N

(;™(e)= ) O(e —X;„,)8(e —X,„,) 8(e —X;„,)
21+22 P.. .+2q

(10)

where X,„.„=~X,, —X,„~. Pulling out the first sum, we can factorize the remaining sums:

( ) t~ —il

(" '(e) = ) ) H(e —x;„,) ),
21 22 421

where the factorial power [q—1] in the exponent came about because the sum indices are restricted to i g ip g ii
for all n g P. The quantity inside the parentheses is so important that we give it a special name, the sphere count:

N

n(X... e) = ) 8(e —X;„,), 22 8 zl, (12)

which represents the number of particles within a sphere of radius e centered on the particle X... excluding the center
particle itself. [For the given e and center particle shown in Fig. 2(a), we would have n(X;, , e) = 9.] In a similar form,
it is used extensively in the description of galaxy distributions. Introducing the shorthand notation n(X;, e)—:a the
unnormalized factorial moment can be written compactly as (we henceforth drop the "star" superscript)

An alternative derivation of (z(e) proceeds by coordinate transformation [6,14]. One first defines a "particle-
centered" correlation function around the particle at X... fixing to it the coordinate mq by a b function:

p~(X;, ; xi, x2, . . . , x~) = b(xi —X,, )
22 /23 g. . .giq

h(z2 —X,, )b(zs —X,, ) b(z~ —X;,), (14)

where the sum indices are all restricted additionally by i g ii, and then transforms to relative coordinates. These
are the distinctive hallmark of correlation integrals: for the snake integral, we used the coordinate transformation
R = P& i xg/q and rl, = zan+i —x~ [6]. For the star integral, on the other hand, all coordinates are defined relative
to ai..

Pg —H —K] ) 7 k —cEIc K] A: = 2, . . . , q.

Inserting these into the h functions of Eq. (14), we find

pq(X, „R,r2, . . . , rq) = h[R —X,, ]
2~ 823 4"-82q

h[r2 —(X;, —X;,)]. h[r~ —(X;, —X;,)] . (16)

Since at this point we are only interested in correlations as a function of relative distances, we integrate out R over
the entire interval AR = Ax. The relative coordinates rI, we want to restrict to a maximum length rI, = ~ry~ ( e.
For higher dimensions d ) 1, we must first integrate out the angular parts dOA, of dv'I, . Since we shall eventually
normalize our correlations using exactly the same domain of integration, however, the constants resulting from the
angular integrations will cancel and we henceforth ignore them. The remaining integral over the lengths rk is given
by fo g& drk r& At the sam. e time, on integrating out the angular coordinates, the remaining h functions of Eq.
(16) become

212'

and the factors r& will on integration cancel exactly with X,.",.„.To express this entire process of simplification, we
shall write, in shorthand,

which is just an integral of the lengths ry For d = 1, f' Q. k dry is shorthand for f' P& drI, .
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Integrating in this way over all relative coordinates, we again get a factorial product of single sums:

dR d~i p (X;,;R)r2, . . . , v'~) = ) O(e —X,„., )8(e —X', ', ) . 8(e —X*,' )
k=2 22 Q. . .+2q

~
fv —ij

=
~ ) 8(e —X,„,)

22

which, on summing over i i and averaging over all events, again yields Eq. (11).
As derived above, the (~(e) of Eqs. (7) and (11)—(13) is the unnormalized factorial moment over the domain shown

in Fig. 2(a):

ns(e) = (R, PyIR, E AÃ, r/, E [O, e], k = 2, . . . , q); (20)

this "Boating sphere" form is best whenever the nature of our variables m in d dimensions is such that a length can
be sensibly defined, the most obvious being the Euclidean distance

k, x + k, y +2 2 (21)

but often this is not so good. The variables (y, P, p~), for example, have very difFerent behavior, and it may be better
to treat each one separately. For such cases, one may use the "floating box" form [15],where each of the d components
is treated as a one-dimensional correlation integral and the total domain as shown in Fig. 2(b) is

~&(e) = (Rf "&,

fluff

E Ax r&, f E [
—e, e] Vk = 2, . . . , q; f = y, Q, . . .f . (22)

This corresponds to inserting d(q —1) 8 functions into
Eq. (7), one for each component.

The results of this section have the following important
consequences.

(1) As shown in Eqs. (19)—(11), the q —1 sums factorize
nicely into a single sum of sphere counts n(X;, , e). This
means that (~(e) can be calculated in an algorithm of
order N, independently of the order q. As emphasized
previously [3], this represents a tremendous savings in
CPU time over other correlation measures, including the

(a)

FIG. 2. The conceptual advantage of the star integral over
other versions stems from the fact that counting q-stars can
be reduced to computing factorials of sphere counts n(X, , e).
(a) "Floating sphere": n(X', , e) = number of neighboring par-
ticles @within a sphere of radius r centered at particle i with
coordinates X,. The center particle itself is not included in
the sphere count. (b) %Then the coordinates m have very dif-
ferent physical properties in their components (such as y, P
and p&), the "floating box" may be a better choice as it treats
the distances along di8'erent coordinate a~es independently.

snake and GHP integrals advocated by us previously [6],
which run under ¹ and ¹/q!algorithms respectively.

(2) This means that the correlation integral can now
be used also for correlation analysis in heavy ion col-
lisions, something hitherto impossible due to the large
event multiplicities. The big improvements in statistics
over the conventional vertical factorial moments will al-
low for much more accurate measurements.

(3) Unlike the star integral found so far in the literature
[3—5,16], we get a factoria/ pow'er of the sphere count
n~~ ~ rather than the ordinary power n~ . This result
we obtained rigorously from first principles merely by
restricting the sum indices to be unequal because the
same particle may not be counted more than once. Even
for the large multiplicities encountered in astronomy, the
change is not inconsequential, as the difference between
nI~ ~ and n~ is important when e becomes sufBciently
small.

(4) We obtained this factorial power without draw-
ing on distinctions between "dynamical" and "statistical"
fluctuations [1].

(5) To first order, we have ignored the variation of
(~(e) with the center coordinate R; this is equivalent to
assuming that the physics is the same for all parts of
the defined window. When statistics permit, it may be
very useful to measure (v also as a function of R. For
example, one expects the correlation structure at small
transverse momentum to be very diferent from that at
large p~, so that a separate measurement of (~ for small
and large B = p~i may be most revealing.

(6) The advantages of correlation integrals over the
traditional factorial moments arise because the former
use interparticle distances directly while the latter rely
on fixed bins and grids rather than the particle positions
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themselves.
(7) We must emphasize that the star integral as derived

here is difFerent from the snake and GHP versions we used
in earlier papers. All three are correlation integrals, but
they differ in the topology of the interparticle distances
measured. For q = 2, all three are the same, while the
snake and star versions are the same even at the level
q = 3. Only in fourth order do the differences between
the latter two appear. While the snake and GHP versions
are not wrong and an improvement over previous work,
the present star integral represents a big step forward.

~ ~

Event a

~
]

~

Event b

III. NORMALIZATION BY EVENT MIXING

We now proceed to consider the denominator of Eq.
(7). Since the topic of normalization is complex and
full of pitfalls, we do not address the full range of issues
here and defer such discussion to future work. Instead,
we concentrate on the normalization scheme we consider
most suitable for the measurement of correlations in high-
energy physics, a version resembling the so-called vertical
normalization used in Eq. (3).

The normalization of the correlation integral is done by
means of event mixing, a seemingly heuristic technique
commonly used in Bose-Einstein correlations [12]. It is
well founded, however, both for our purposes here and in
the Bose-Einstein context [8]. We recall that if all q co-

FIG. 3. The basic building blocks for computing the nor-
malization of correlation integrals [Eqs. (23)—(26)] as well as
cumulants [Eqs. (43)IF] is the sphere count nb(X, , e). While
similar to the count of Fig. 2(a), nq(X, , e) performs a sphere
count around particle X, taken from event a (shown as a
dot) by placing it in the event b and counting the b-particles
(shown as crosses) within the sphere. In the example shown,
nz(X, , e) = 6. Averages over many events b are taken while
X, is kept fixed.

ordinates ak are statistically independent of each other,
the correlation function factorizes: pq ——p&. We hence
normalize the numerator (11) of the star integral by in-
tegrating g& i pi(mg = R+ry) over the same domain:

&,
""

(e) = dR pi(R)
q

I

k=2
drk pi(R+r2) . pi(R+r ) = dR pi(R) dr2 pi(R+r2)

- q —1

(here and below it is understood that one transforms from a to ) coordinates before integration). Inserting pi(a@) =
N, P, P,. 8(aI, —X,'. ") for each factor, we find, after integration,

(,""-(.) =m.-„') ) w,'„-& ) ) o(.—x;; )" o(.—x;",")
&2 ) ~ ~ ~ )&q 22 ) ~ ~ .)2q

(24)

where now X;",„"—:X;.' —X,'. "
~

measures the distance between two particles taken from diferent events ei and e), .
This much resembles the numerator expressions of Eq. (11), and, indeed, the sums also factorize here, so that

q —1

) ) o(.—x, ; )
21 22

) (n„(X;,.))~-'
2

(25)

or, in shorthand,

~;--() = ):(b) -'
2

(26)

Comparing the numerator (11) to the denominator (26),
we note that the exponent of the latter is an ordinary
power q —1 instead of the factorial power [q—1] of the
former; this follows from the fact that in Eq. (24) there
are no restrictions on the sum indices.

Figure 3 shows how the denominator sphere count
nz(X;, e) = b is found by inserting the particle X, of
event a into another event 6 of the sample and doing

t

the count n),(X, , e) = P H(e —X, . ) around it. This is
done for many events 6 to obtain the inner event aver-
age of Eq. (25). Note that one has to distinguish care-
fully between a- and 6-event averages: the computation
of (b) = (nb(X;, e)) involves an average over difFerent
events b while the position of the sphere center is kept
fixed at X; . Expressions of the form (P, (b) ) then de-
note sums of contributions when the center of the sphere
"Goats" over the i = 1, . . . , N particle positions of event
a and finally over all events a = 1, . . . , N, .

While the derivation of Eq. (25) from (23) is exact,
this expression for the normalization is correct only for

—+ oo: it contains a hidden bias due to correlations
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induced by use of the same events in every factor p1 in
(23). For the case where the experimental sample size is
not infinite, statistical theory provides estimators, which
from the limited-size sample estimate quantities for the
"true" (i.e. , infinitely large) sample. Applying the theory
of estimators to our problem, we find that the product
of distributions pi in Eq. (23) must be modified precisely
in such a way that the event indices ei, . . . , eq are all
mutually unequal. This is in agreement with the heuristic
procedure of creating "fake events" where each track is
taken from a difFerent (real) event.

The corrections to obtain such an unbiased form of
the normalization can be written as a series in powers of
1/N, , with the leading term given by (b)q i. For the
relatively small number of events and great sensitivity to
bias found in heavy ion samples, the correction can be
quite important, while the situation for hadronic data is
less acute. We defer the details of this very technical dis-
cussion and the exact expressions to a future publication
[17].

Subject to the above corrections, the normalized qth-
order moment in its star integral form is

(g alq —il)
(norm(&) (g (b)q

—i) (27)

As in the case of the traditional moments (3), one would
measure E~(e) as a function of decreasing e; a straight
line in a plot of lnI"q versus in& would, as before, be in-
terpreted as scaling behavior of pq. We caution, however,
that there are important issues which must be addressed
before such conclusions can be drawn, among them nor-
malization effects.

The following points should be noted.
(1) Theoretical models are easily compared to data

obtained with the star integral: when they predict the
single-particle distribution p1 and correlation functions

pq, their corresponding star integral moment is just given
by the analytic integral expression (7). Monte Carlo sim-
ulations should, of course, take into account the proper
removal of bias induced by finite sample size.

(2) The measurement of the star integral is very eco-
nomical. 3ust as the numerator (q can be measured in
an algorithm of order N2 (the number of particles per
event), so the denominator requires only an algorithm of
the order of the square of the sample size, N, , a large
savings over the previous GHP and snake integral algo-
rithms [6]. (This savings is not destroyed by the above-
mentioned corrections to obtain an unbiased normaliza-
tion. ) When the order of the events in the sample is
random, this can be reduced even further by taking for
the "inner" event average (b) only a fraction of the full
sample, e.g. , b E (a—1, a—2, . . . , a —Af. The smaller A,
the faster the calculation but the larger the statistical
error. Since a small value of A introduces a consider-
able bias, which disappears as it is increased, great care
must be taken that A is of a size where the normaliza-
tion becomes independent of its exact value. An optimal
value for A can be found for a given sample and length
e by experimentation. Whenever doubt arises, the full
A = N —1 sum should be taken as this is exact.

EgbR

y
—1)bR

dBy i, (28)

with 8B = Ax/L, while the floating sphere of Eq. (20)

For smaller values of A, the error in the denominator
will be non-negligible and. should be combined with the
numerator error, including covariances.

(3) For e = Ax, all 8 functions become unity by
default and so Eq(Ax) = (Nl l)/(N)q, which is unity
only when the event multiplicities in Lu are Poisson dis-
tributed. Furthermore, when the distribution is purely
random for a given e, then I"q(e) becomes unity; see the
discussion around Eq. (50) below.

(4) Annoying boundary efFects due to the finiteness of
Aa are largely canceled out, because the vertical nor-
malization used means that sphere counts for centers X;
close to the boundary are reduced for both numerator
and denominator. In the business of galaxy distributions,
this remains a much-discussed topic [9]; since unfortu-
nately only a single event exists in this case, the horizon-
tal normalization, which is vulnerable to such boundary
effects, has to be used there.

(5) Nevertheless, there may be instances where the hor-
izontal normalization may be preferred. The definition of
fractal dimensions, for example, is often couched. in terms
of the horizontally normalized correlation integral.

(6) The vertical normalization has the additional ad-
vantage that the effects of the single-particle distribu-
tion pi (x) are canceled out to some extent. While
in many cases pi is constant ("stationary") or varying
only weakly, it may in high-energy collisions vary quite
strongly; especially the transverse momentum distribu-
tion pi(p~) is strongly peaked and then falls off expo-
nentially. Since sphere counts in both numerator and
denominator vary about equally as a function of pi, the
trivial effects on I"q of a strongly varying single particle
distribution are compensated. However, this compensa-
tion is only partial: when e is small, each small domain
is approximately Bat and the cancellation is fairly reli-
able. When r is large, though, the variation of a nonsta-
tionary p1 within the domain is averaged out before the
ratio is taken instead of the better reverse order. Ide-
ally, one would divide up such large domains into many
small ones and sum up the contributions only after nor-
malization, but this is usually made impossible by bad
statistics. Also, even the so-called vertical factorial mo-
ments (3) used traditionally sufFer for large bins from the
same effect, so that this problem can be ignored at the
present level of sophistication.

(7) Of greater concern is the possibility that the inte-
gration of the center coordinate H over the entire domain
Ax in Eqs. (19) and (23) suffers from the same prob-
lem for any value of e. For p1's that are weakly varying
this does not matter very much, but when they change
drastically [such as pi(p&)] a more vertical form should
be used. At some cost in CPU time, this can be im-
plemented straightforwardly. Instead of letting H range
over the entire space, we introduce discrete binning; for
the fIoating box,
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yields, after integrating out the angles,

/BR

—i)bR
(29)

do the star integral separately for every bin, with e set
to Ex/M, and then add up the contributions. This sum
over star integrals should then be identical to the vertical
factorial moment I""(M).

By splitting the R, integration in this way, the correlation
integral can be made largely independent of the shape of
pi. As one is usually interested in Fq as a function of
e only, the number of subdivisions L and bin sizes bB
can be kept fixed throughout a computation; the only
requirement is that the number of subdivisions should be
large enough to ensure that the final correlation integral
depends on L only weakly.

For systems where pi varies strongly only with one
of its variables while varying weakly with the others, it
may be possible to define a "hybrid" correlation integral
with mixed normalization, implementing an B sum as in
Eq. (28) for this component only and not for the weakly
varying components. This would be useful to boost the
number of counts.

As discussed in Sec. IIB, splitting up Lt into differ-
ent regions may in itself be useful in isolating different
physical effects. No sums over E would be taken for such
cases.

(8) There remains the question how the traditional fac-
torial moments (3) and star correlation integrals (27) are
to be compared. The simplest answer is that they should
not be compared at all, since by their different defini-
tions they cannot be expected to yield exactly the same
results even for the same data sample. Under ideal cir-
cumstances (%, ~oo, weakly varying pl, etc.), the two
should yield a similar slope asymptotically. It may be
helpful to compare the two at equal e, but deviations
should not be interpreted as revealing anything funda-
mental. If one finds large differences between traditional
factorial moments (3) and correlation integrals, then they
are mostly due to the different normalization procedures
used.

One can, however, check for consistency between the
BP factorial moments and the star integrals. Both should
be the same for e = Lx. Also, for integer M, one can

I

IV. CUMULANTS

A. Definition and use

The measurement of factorial moments and/or corre-
lation integrals may be useful in itself in searching for a
power law in the correlation function. Moments do not,
however, reveal the true correlations, because the corre-
lation function contains uncorrelated parts which have
to be subtracted. This becomes clear on considering the
effect that statistical independence has on the correla-
tion function. Statistical independence of two points ui
and a2 means that the correlation function P2(al, m2)
factorizes into a product pl(al)pl(a2). Similarly, when
mi becomes statistically independent of all other points
aI,~i, the higher-order correlation functions factorize ac-
cordingly: pq(al, m2, . . . , az) ~ pl(a:1)pz 1(m2, . . . , az).
All possible combinations of such factorizations have to
be subtracted from the original correlation function be-
fore one can speak of the "true" correlations.

These reduced quantities, known as cumulants, are ba-
sic to statistical analysis of any sort [18]. They are con-
structed precisely in such a way as to become zero when-
ever any one or more of the points xk becomes statisti-
cally independent of the others. (The often-used factor-
ization pq ~ p& is only the most drastic form of statis-
tical independence, assuming that every point becomes
independent of every other. ) Cumulants of different dis-
tributions are also additive under convolution of the dis-
tributions [19] as well as being invariant under change of
origin [18].

The first few cumulants Cq are, in terms of the corre-
lation functions,

+2(~1& %2) P2(1) ~2) Pl(1)Pl( 2) &

+3(1~ ~2) ~3) P3(~1) ~2) ~3) Pl (~1)p (~22) ~3) Pl (~2)P2(~3i 1) Pl(3)P2(~1) ~2)

(3o)

+ 2 Pl(~1)P1(~2)P1(~3)

+4(eel) Ã2) ~3) ~4) p4(~1) ~2) 3) ~4) ) Pl(~1)P3(~2) ~3& 4) ) P2(~1& ~2)P2( 3& ~4)
(4) (3)

+2 ) lP(%1) lP(% ) 2P(%23%4) —6 Pl (%1)pl (~ )pl 2( )P13(4) .

(6)

The bracketed numbers under the sums indicate the number of permutatlons of the arguments ~k which have to be
included. Further, omitting the arguments,

+5 p5 ) plp4 ) p2p3 + 2 ) pl plp3 + 2 ) plp2p2 6 ) pl pl plp2 + 24p51 1

(5) (io) (») (») (io)
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K"(M) = .J. rI, d-. C,(-,
I~ dx p~ (~)

(34)

which yields relations such as K2 E2 1 K3
I"3 —3E2 + 2, etc. which can thus be utilized directly by
experimentalists. These relations hold exactly for q & 3
and approximately for q ) 3. They are not true for hor-
izontally normalized moments.

B. Correlation integral cumulants

and so on for higher orders.
These equations have been utilized to find simple re-

lations between the vertical factorial moments I"q of Eq.
(3) and the integrated normalized cumulants [10]. With
m = (mq, . . . , mg) as usual, the integrated normalized
cumulant is defined as

A(e) = dv p C~(H, v .2, . . . , v ~)

C~(~g, . . . , x~) Og20gs . O~q da~ . . d~q (36)

o, = ) O(e —X,, ) = n(X, , e),

6 = ) O(~ —X;,b) = nb(X;, e)

(see Figs. 2 and 3 for terms contributing to a and 6 respec-
tively). To demonstrate this, we start with q = 2. Here
f2

——f (p2 —pq pq), which by Eqs. (11)—(13) and (23)—(26)
is seen to yield (henceforth we suppress the dependence
on e)

the un-normalized factorial cumulant. The latter can be
written entirely in terms of the sphere counts introduced
previously:

.(e)
norm (35)

with

jn contrast with Eq. (34), the correlation integral cu-
mulant is defined as the integral of Cq over the domains
As of Eq. (20) or B~ of Eq. (22) after appropriate trans-
formation to relative coordinates:

).(~ —(6)) (38)

For q = 3, the first term in the expansion (31) of Cs
is just (s —.(g a~ j), while the last term pqpqpq yields

g ™= (P, (b)2). The three "mixed terms" involving
both p2 and pi must be worked out explicitly. On the
one hand,

, (a, )p, (a„~,) = N,. ) ) ) 8(.— )o-(, —~P„'),
ab i jgk

) (bi2j) (39)

while on the other hand, if ai is contained in p2,

(40)

so that, putting all the pieces together,

b ) '
(ot I (ht ]l —2aIb)+ 2jb)')

2

(41)

The constant recurrence of the outer event average and i sum suggests that we define an "i-particle cumulant" by

) .A(i) —= f. (42)

in terms of which we find

f2(i) = ~ —(6)

fs(i) = a~ j —(b~ ~) —2a(b) + 2(b)

f'( ) = -' —(6 '
)

—3- '
(6) —3-(6 '

) + 6(»&6 'j) + 6-(6)' - «6)',
fs(i) = a~ j —(b~ ~) —4a~ ~(b) —4a(6~ ~) —6a~ j(6~ ~) + 8(b)(b~ j) + 12a~ ~(b) + 6(b~ ~)(b~ ~)

+24a(b) (b~ j) —36(b) (b~ ~) —24n(b) + 24(b)

(43)

(44)

(45)

(46)
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which are then summed over all particles i and averaged
over all events to yield fq

How these sums can be obtained graphically is illus-
trated for q = 3 in Fig. 4(a) and q = 4 in Fig. 4(b).
The black squares represent individual particles; those
enclosed by a circle belong to the same event. The cen-
ter particle at X, is connected to the q —1 other particles
by the lines representing the 0 functions. One now draws
all possible event topologies with q —1 lines connected to
one center particle. For p joining lines within the X,.
event, one writes down a factor aC"~; while lines connect-
ing X, to p particles in the same (other) event yields
a factor (b~"j). p lines going to different events b, c, . . .
results in a factor (b)". Putting all such factors together
and assigning to each the appropriate sign and prefactor
from Eqs. (30)ff', one obtains the cumulant expansions
(43)-(46).

Writing higher orders recursively in terms of lower-
order curnulants,

fs(i) = a' —(b') —2(b)f2(i)

f4(i) = a 'j —(b
'

) —3(»fs(i) —3(b ')f2(i) (47)

f, (i) = a~'~ —(b~'~) —4(b)f, (i) —6(b('~)f, (i) —4(b('~)f, (i)

we are led to the conjecture that

without doing the messy algebra involved.
Just as the normalization (" ' must be corrected for

q
bias, we must for third and higher order cumulants also
correct for limited sample size. Here, too, using estima-
tors to correct for the effect of the limited-size sample
requires that all event sums go over unequal events. This
again results in corrections of the order 1/N, , 1/2V,
so that, for example, fs(i) above would acquire the ad-
ditional correction term 2((b)z —(b ))/(K, —2). While
these corrections can be quite important, we defer a dis-
cussion of their origins and exact expressions to future
work [17j.

When an event sample has no correlations, the count
around a particle in event a would on average be the same
as when it was inserted into other events,

which results in fq
——0. This would of course be true

on average only. Less obvious but also true is that if
any one of the q variables of Cq becomes independent,
the integrated cumulants fq become zero also; this can
be shown graphically too. A stronger condition of ran-
domness, comparable to the Poisson distribution in Axed
bins, would be rejected by the behavior

(50)

which, if proven for arbitrary q & 5, could open the way
for an easy calculation of cumulants to arbitrary order

) (blq
—tj)

A

f4 n~
+

+ 6 6

, n n, n, qn
UVv

so that the moments would go to unity, Fq ~ 1, for this
case.

It must be stressed that the qth-order cumulant con-
tains no correlations of order lower than q. Thus even if
f2 ) 0, fs can still be zero when there are no true third-
order correlations; Equation (47) is merely a convenient
grouping of the terms.

We further see that, since only the basic quantities a
and 6 are needed to construct cumulants, they can also be
calculated very economically with order N algorithms.

The estimation of errors always provides a headache
since mostly one has to deal with the intricacies of error
propagation and covariances. In the star integral formu-
lation, however, this process is much simplified; for the
statistical error on Kq, one merely has to calculate

FIG. 4. Schematic representation of event mixing terms
entering the (a) third- and (b) fourth-order cumulant [Eqs.
(44)—(45)]. For a given center particle i in event a, the other
particles in the q-tuple can be either within the same event
a or in difFerent events b, c, . . . (see text). p particles in event
a lead to a factor a ";p particles in event b give a factor
(b~"~) and a particle in p different events b, c, . . . , gives a factor
(b)". With the appropriate combinatorial prefactors, the sum
of these terms yields the third- and fourth-order cumulant
integrals.

(x;fv('))') —f,'
~ (A)=

ev
(51)

C. Presenting cumulants

While there may be many useful ways to plot correla-
tions, depending on what one is looking for, we recom-

and combine this with the corresponding statistical error
for the event mixing denominator. Errors for the factorial
moments Eq and differentials of Sec. V are obtained with
the same ease.
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mend the following format for cumulants. The second-
order cumulant

(P,e, et. —X;;))
K, (e) = —1

'2 '-
'2

(52)

cannot be smaller than —1. Its theoretical maximum is
harder to find; but an estimate can be made by using
the extreme case where the events are extremely "spiky"
but the spikes are uniformly distributed in phase space
(from event to event). The event-averaged count will be
approximately n = (N)(e/Az)", while the 8 functions
of the numerator are all unity for our narrow spikes; this
extreme case thus gives an approximate upper limit

(N (N —1))
r' A2: )

( ( —1)) & )
(53)

to which a given sample K2 can be compared. For higher
orders, one may then plot the K~ directly and/or as the
ratios Kz/Kq, which would express qth-order correlations
as a fraction of second. -order correlations. Testing for
linking, on the other hand [10], one would plot the ratios

Apart from calculating cumulants which are averaged
over the entire event sample, it may in specific cases
be interesting to look at "single-event cumulants" f~ for
rare events, for example if a certain event or group of
events exhibits unusual patterns in a phase-space plot.
To see whether such cumulants difI'er significantly from
mere statistical noise in the fIuctuations, they should
be plotted on top of the corresponding event-averaged
cumulant plus/minus twice (or three times) the error

X/2
f~+2 (( Tf (iv)] ) —f . Whether sech sinttte-event

cumulants are a good idea will have to be established in
practice. We remind the reader that the distribution of
factorial moments is not necessarily Gaussian [20] and
that a large-deviation analysis may also be appropriate
in such cases [21].

(54)

or exponential,

Eg =Ejc ) cO 1) (55)

the second definition being useful because data presented
as function of inc& will be equally spaced. These two
sequences divide up the whole phase space into adjacent
and disjoint domains; for d = 1 and q = 2, these domains
are shown in Fig. 5 as the sequence of strips filling the
entire domain. We also introduce the indicator function

Ig (X)—:8 (e~ —X') —8 (eg i —X),

Q(2(2 t): rt(X ~ eg) —n(X, , e& i) = a& —ai i, (57)

the latter defining the shortened notation we shall be
using. We next ask how many clusters of q —1 particles
exist for which the maximum distance to X;, is in this
interval, max(X, „,, . . . , X;„)C [eq i, ei]. The answer is
surprisingly simple: the number of such clusters is

a(, (i, t) = n(X;„e,) ~' —'j —n(X;„e, , ) ~' 'j

[~—il I~-il (58)

since through use of

X)
——Xp

which is unity when ez i & X & e& and zero otherwise.
The difFerential forms are defined as follows (see also

Fig. 6). Given a center particle A", in event a, the num-
ber of particles situated a distance X,„„C[eq i, eq] away
from X;, is

V. DIFFERENTIAL VERSIONS

Correlation integrals and their cumulants described so
far are defined always in terms of a maximum distance
e; the ubiquitous 0 functions ensure that all interparti-
cle distances X;~ involved must be smaller than e. The
simplicity of this definition allows one to test clusters of
many particles at once, i.e., probe correlations of order 3
or higher, something not possible using the conventional
methods of measuring correlation functions. It makes
good sense, however, to ask not only whether some in-
terparticle distance is smaller than some value, X;z & e,
but also whether it falls within a certain distance interval

Eg 1)F
To this purpose, we define a sequence of distances

ei, e2, . . . up to some maximum distance determined by
the total domain of integration. This sequence can be
either linear,

FIG. 5. The exponential sequence of distances
(t = 1, 2, . . .) of Eq. (55), used to define the difFerential forms
of correlation integrals of Sec. V. The shaded regions rep-
resent the integration area of the differential integral AP2(t)
over the two-particle density p(xi, xq). Note that the coor-
dinates x in this figure are one-diinensional (d = 1) and the
labels 1 and 2 refer to two diferent particles within the inter-
val Ax.
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O(eT —X) = ) I, (X) O(e —max(Xi, . . . , Xq) ) =
\

p=1
O(e —X„)

and we can show that

) It( max(X;. .., . . . , X;„)).
C2 g ~ QCQ

In Fig. 6, one such cluster is shown, where at least one
particle other than the central one is in the shaded re-
gions for the floating sphere domain of Eq. (20).

The normalization proceeds along the same lines as in
Sec. III, so that not surprisingly we find that the normal-
ized differential moment is

(62)

while the cumulants are similarly

Both LEq and LKq are thus accessible to measurement
with minimal additional effort. Usually, they will be plot-
ted as a function of t, i.e. , the distance interval within
which the maximum interparticle distance would fall.
LEq can be thought of as the analogue to the "factorial
correlator" defined in Ref. [1] and AKq to their cumu-
lants [22].

We conclude this section by listing the advantages of
using the differential moments and cumulants as a mea-
sure of cluster size.

First of all, they have all the advantages of the cor-
relation integrals in that their statistics will be higher
and the data points calculated more stable than the cor-
responding correlator. Especially for higher dimensions,
the large gain in statistics will permit measurements that
would be impossible otherwise.

DifFerential moments and cumulants are almost im-
mune to the problems of converting from biased to unbi-
ased estimators in the normalization and in Jq. Because
these corrections for bias take the form of an additive se-
ries, taking the difFerence fq(i, t) —fz(t', t 1) cause—s them
to cancel to a large degree.

When a unique distance can be defined as in Eq. (21),
the difFerential count is unambiguous even in higher di-
mensions, unlike the correlator, where distance defini-
tions are ambiguous for multidimensional analyses [23].

Very importantly, the domains of integration of the
normalized differential moments and cumulants are dis-
joint (Fig. 5), meaning that the data points will not be
correlated amongst themselves, a constant bug in ordi-
nary moments and cumulants.

A special status must be accorded to AI'2(t): it be-
haves as a "roaming distance, " looking for all particle
pairs that are a certain distance apart. This is sugges-
tive of interpreting A/2 as a kind of Fourier transform
of the distances [24].

VI- CONCLUSION

FIG. 6. An example of the differential sphere count
within the shaded area in two dimensions (d = 2) gives
A(2(i, t) = az —az i = 9 —6 = 3 [Eq. (57)]. For higher orders,
the number of all q-stars with size within the interval [sz i, ez],
i.e., with at least one of the q —1 neighboring particles within
the shaded area, is given by Kfq(i, t) = aI —aI i

l of Eq.
(58). In the present figure, for example, At' s(i, t) = 42.

We have developed a general formalism for measuring
correlations of point distributions. The language used
has been that of high-energy physics, but we believe that
the method may be of use in other fields also. The use
of a b function notation has enabled us to derive the star
integral from first principles and through its greater clar-
ity pointed to a number of important extensions. Most
important of these is that the correlation integral used
in the astronomy literature [3,9] and suggested for high-
energy physics [5] appears to be in need of modification
from the form n i to the "factorial power" form n[q- '~j.

To assess whether such a modification is possible or prac-
tical in galaxy distributions is beyond the scope of this
paper; for the limited number of particles encountered
in high-energy physics, however, it seems an unavoidable
and clearly superior formulation.

The felicitous definition of relative coordinates leading
to the star integral makes the latter very economical to
calculate, including all cumulants and differential quanti-
ties. Since, in addition, the domains of integration are the
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largest possible, we believe that the star integral extracts
the maximum available correlation information from the
data for the minimum price in CPU time. In this re-
spect, it has proven superior to the traditional factorial
moments and older correlation measurements, especially
when correlations are measured in higher-dimensional
spaces. As computers continue their evolution to pre-
viously unimaginable speeds and capacity, the present
method should become routine even for the higher or-
ders.

Three issues have been dealt with only cursorily or not
at all: the question of eliminating the inHuence of the
total multiplicity distribution, the measurement of cor-
relations between different species of particles (e.g. , dis-
tinguished by their charge), and the problem of properly
defining fractal dimensions for nonstationary ensembles
of events rather than the usual single-event time series.
We hope to return to the latter in future.

The present paper has emphasized. the how to rather
than the what of measurement. At first sight, it may
seem unnecessary to devote so much effort to the mere
process of measurement. However, high-energy hadronic
collisions, and to an even greater extent nucleus-nucleus
collisions, are presently in a state where very few exact
calculations on correlations can be done and most theo-
retical work relies on assumptions which often are hard to
support or believe. In this context, we believe that it is of
cardinal importance that there should be a clear and un-
ambiguous method for analyzing correlations, and that,
if possible, a standard should be established by which
different experiments can be compared.

The confusion underlying the dynamics of correlations
is reflected in the cursory way in which we have treated
the choice of variables. While there are some theoreti-
cal preferences [25], we are fairly ignorant of the dynam-
ics of the soft component and hence the best choice of
variables in this case. The original proposal regarding
self-similarity in particle production [I] did not have the-
oretical grounding in currently acceptable physical theo-
ries but was based on a toy model to illustrate the idea,
while exact calculations of correlations, e.g. , in a @CD
framework [26] can be applied only to high-p~ processes.

The occurrence of different forms of correlation inte-
grals might cause unpleasant confusion among experi-
mentalists who would prefer a unique recipe to extract
information of higher-order correlation functions. Unfor-

tunately, there is a priori no best choice. The different
forms merely reflect the freedom of choice of the partic-
ular shape of the integration domain; but all commonly
probe the correlation functions by decreasing the size of
the integration domain. While the numerical values of
the various integrals may differ, the functional depen-
dence is supposed to be similar (this was shown numer-
ically for the snake and GHP integrals [6]). Moreover,
by suitable normalization most of the numerical differ-
ences between the various forms can be divided out, so
that the choice of a particular form can be guided by
practical eKciency arguments.

On very general grounds, the choice of relative coor-
dinates seems a wise one, in whatever variables one may
prefer. This is true especially for cases where there is
some degree of stationarity in the distribution (i.e. , in-
variance under translation), which is generally assumed
to be true for galaxy distributions and perhaps for pion
distributions at higher collision energies. The ubiqui-
tous use of such stationarity assumptions testifies to their
popularity. Not least, measurements in Bose-Einstein
interferometry rely on relative coordinates, whether in
their three-vector form q = p~ —p2 or as a function of
Q' = —(pi —P2)'.

In this context, we have aimed to provide a frame-
work that is adaptable to any future choice of variables
and dynamical theories. This will hopefully allow for
clean measurements to guide theoretical thinking, while
remaining flexible in its implementation.
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