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Inelasticity distribution and relationship between e+e and pp hadron-production mechanisms
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The inelasticity distribution is used to relate the hadron-production data in e+e annihilation to the
corresponding data in pp collisions. If e+e annihilation data are used as input, the hadron multiplicity
distributions P„(s), the average multiplicities (n (s) ), the normalized moments C~ls), the energy depen-
dence of the average transverse momentum (p, (s) ), the height of the central plateau h (s), and the
strength of the forward-backward multiplicity correlations b(s) are qualitatively reproduced over the
range of energies from those reached at the CERN ISR to &s =900, 1800, and 10 GeV in pp collisions.
The discrepancies observed between predicted and experimental values of C~{s), q 4, and h (s)» are in-
dicated and commented upon. Other possible tests of the e+e -pp universality are briefly mentioned.

PACS number(s): 13.85.Hd, 12.40.Ee, 13.65.+ i

I. INTRODUCTION

where p„p2 denote the four-vectors of the initial protons
and p) ]eading~P2]eading are the same outgoing leading pro-
tons. If the transverse momenta of the leading protons
are negligible, then

W=E& h,d+E
In the special case of symmetric events where
E~ h.d=E2 h.d and p~ h,d= —

p2 h,d we have

W=2Eh, d=(&s )
—2El„d;„ (1.2)

In e+e annihilation into hadrons, the proper energy for
hadron production coincides with the total c.m. energy of
the beam:

(&s ) + =2Eh„= W . (1.3)

A remarkable similarity between pp collisions and
e+e annihilation has been found in the inclusive
momentum distribution and the mean multiplicity of

*Also at the Max-Planck-Institut, Munchen, GeI'many.

The idea of a universal hadronization mechanism is not
new. It is based on the observation [1,2] that the charac-
teristics of low-pT hadron jets associated with leading
protons in pp collisions are similar to hadron jets ob-
served in high-energy e+e annihilation provided that
comparisons are made at the same proper energy for had-
ron production.

In pp collisions, the proper energy for hadron produc-
tion is the energy left behind by the two leading protons.
It is defined as the invariant mass squared of the pro-
duced hadron system [2]:

2= 2(P 1 P 1 leading+72 P2 leading )

2(5' 1 had +72 had

charged particles up to the highest energies reached at
the DESY e+e collider PETRA and CERN Intersect-
ing Storage Rings (ISR) [3] if the data are analyzed at the
same equivalent energy:

(1.4)

A long-standing problem in multiparticle phenomenol-
ogy is whether there is a relation between hadron produc-
tion characteristics in pp and e+e collisions. In the ab-
sence of a firm theory on pp collisions, various convicting
answers have been given to this question [4—9]. Al-
though the problem is an old one, currently popular mod-
els, such as FRITIOF from the Lund group [10], still de-
scribe soft processes as a superposition of e+e and deep
inelastic processes. However, there are limits to such an
analogy [7,9], in particular concerning the pT structure of
both processes at higher energies, &s ) 100 GeV. With
increasing energy, the violation of the Koba-Nielsen-
Olesen (KNO) scaling [11] in pp and/or Pp collisions is
observed in the CERN ISR data [12] and in the CERN
Super Proton Synchrotron (SPS) collider data [13,14]. At
the same time, the approximate KNO scaling in e+e
annihilation is observed in the energy interval from
(+s ) + -—20 to 91 GeV [15—17].

This paper may be considered as an additional contri-
bution to the above discussion of a possible link between
e+e and pp interactions extended to higher incoming
energies for hadron production. The link between e e
and pp collisions is provided by appropriate smearing of
the e+e data over inelasticity [18]. Our discussion will
be restricted to the prediction of the energy dependence
of the following physical quantities: the charged multi-
plicity distributions P„(s), the average charged multipli-
city ( n (s) ), the multiplicity dispersion D (s), the normal-
ized moments C (s), the average transverse momentum
(pT(s) ), the height of the central plateau, and the
strength of forward-backward charged-particle multipli-
city correlations in pp collisions.

The outline of the paper is as follows. In Sec. II we
define the inelasticity distribution and establish its con-
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nection with the universality hypothesis. In Sec. III we
list some of the known experimental data on e+e an-
nihilation in the energy region from &s =20 to 91 GeV.
These data are then used in Sec. IV as input to predict
the behavior of the hadron system produced in pp col-
lisions up to (&s ) =10 GeV. In Sec. V we compare
our model predictions with pp collision data. In Sec. VI
we add a few concluding critical remarks concerning the
extension of the model to still higher energies.

II. INELASTICITY DISTRIBUTION

In their analysis of the data on hadron production,
Basile et al. [1] emphasized the importance of the
leading-particle effect and the use of the energy variable
Eh,d for hadron production. The inelasticity K of the
collision is related to Eh,d by

2Eh, d =K&s (2.1)

It describes the fraction of incoming c.m. energy &s that
fragments into hadrons in the central region. Since Eh,d

varies at fixed &s from event to event, it is necessary to
introduce a probability distribution function y(K, s) of
the inelasticity variable K with the normalization

f y(K, s)dK =1 . (2.2)
0

All the "intrinsic" physical observables depending on E
are now to be smeared up over y(K, s).

As pointed out by Fowler et al. [18], the dependence
of 7t'(K, s) on s is essential for a satisfactory account of the
data. No completely satisfactory theoretical derivation
of y(K, s) exists [18,19]. Experimental information on
y(K, s) is, however, available only for (&s ) =16.5 GeV
[20] with a maximum at K-0.5. The mean inelasticity
( K ), defined as

(K ) = f Ky(K, s)dK, (2.3)
0

is approximately constant up to ISR energies
((K)-0.5).

If P(n~K) denotes the "intrinsic" conditional probabil-
ity of observing n charged particles provided that the
inelasticity of an event is K, then the experimentally mea-
sured charged-particle multiplicity distribution P„(s) is
obtained as a convolution:

P„(s)= f dK +(K s)P(nlK) . (2.4)
0

The information on P(n~K) and its dependence on K
may, in principle, be obtained from data [15]using the re-
lation (2.4) and the information on y(K, s). We shall,
however, follow another approach suggested by the
finding of Basile et al. [1]. We assume that, in the first
approximation, P(n~K) is given by the normalized multi-
plicity distribution for e+e annihilation over a range of
energies where (&s ) + = W=K(&s ) . In this ap-

e e PP
'

proach, the starting relation is

P„(s) = f dK y(K, s)P„(KV's ) +, (2.5)
min

where K;„=2m /Vs is due to the threshold energy for

the two-pion final state in e+e annihilation.
A simple relationship between P„(s) and

P„(K&s) + [by Eq. (2.5)] requires the knowledge of
the function y(K, s). The energy dependence of y(K, s) or
of its moments

(K")=f dK K "g(K,s), r =1,2, . . . ,
0

(2.6)

is related to the problem of violation of the Feynman
scaling in the fragmentation region of the leading parti-
cles. The available experimental data related to the ener-

gy dependence of the leading-proton distribution are in-
conclusive. The leading-proton spectrum was studied ex-
perimentally only at ISR energies [21], but not at CERN
or Fermilab pp colliders. As a consequence, very little is
known about the energy dependence of inelasticity.
Several authors have assumed that the average inelastici-
ty is a decreasing function of energy [18,19,22 —24] and
others have assumed that inelasticity is an increasing
function of energy [25]. We find that the arguments
offered in Refs. [24,26] that the inelasticity (K ) is a de-
creasing function of energy are more convincing and
solid.

The first attempts to construct y(K, s) with this proper-
ty were merely a simple parametrization. Following
Fowler et al. [19],we shall take y(K, s) in the form of a P
distribution:

y(K, s) =K' '(1 —K) '/B (a, b),
B (a, b) =I (a)I (b)/I (a +b),

with

(2.7)

III. INPUT INFORMATION ON e+e

The data on e+e annihilation are now available from
(&s ) + =20 up to 91 GeV [16,17].

The charged multiplicity distribution. The charged mul-
tiplicity distribution of hadrons for this limited range of
energy is consistent with the approximate KNO scaling
[17]. The KNO-scaling function that provides a good
continuous representation of the data is [4,6,27]

( n ( W) ) P„(W)

=g, ~, -(z)

=4(9'/16) z exp[ —(9n./16)z ], (3.1)

where z = n /( n ( W) ) + and g + (z) is normalized as

f dz P (z)= fdzzq, (z)=2,

with

W =K+s
Note that n =n,h=2n for e+e collisions.

(K)=a/(a+b) and (K(1 K))/D (K—)=a+b .

The s dependence of y(K, s) is contained in the parame-
ters a and b, which are determined by measuring ( K )
and D (K)= (K ) —( K ), respectively.
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(n(W)) ~ =2.20W'~ (3.2)

The data may also be fitted by the scaling form of the
negative-binomial (NB) distribution [17].

The average charged multi'plicity. Various parametriza-
tions have been proposed [17] for the average charged
multiplicity of hadrons in e+e annihilation. We shall
use the power-law dependence on the incoming c.m. ener-
gy W=(&s ) +

( nF( ng ) ) —a +bng (3.7)

where b is approximately -0. 1 and measures the correla-
tion strength. The observed slight variation of b in the
range from s = 14 to 91 GeV is taken into account by

approximately energy-independent forward- (F) back-
ward (B) multiplicity correlations. They are fairly well
parametrized by a linear function

Later on we shall discuss effects that the other parame-
trizations may have on the derived pp results. The new
data from the CERN e+e collider LEP seem to indi-
cate that it is possible to exclude the power-law depen-
dence [17], which is known to follow from various statis-
tical [28] and branching models [29].

The normalized moments C . The KNO scaling implies
an energy independence of the normalized moments C .
Data [17] show no indication of an energy variation of C2
to C5 for (vs ) + from 20 to 91 GeV. Using (3.1) we

find that

Cq(e+e ) =( ', )~sr q —f'(q/2+2) . (3.3)

From this equation we calculate the dispersion
D =(C~ —1)' (n ) as

b =0.027 In&s (3.8)

P(n~, n~~ W)=P„( W)f„(b, ), b =n~ n~ .— (3.9)

The distribution P„(W) is assumed to follow the KNO-
scaling rule and is here given by (3.1). It is also required
that the distribution f„(b,) at fixed n should be even in
the variable 6, peak at 5=0 and have the property

The approximate KNO scaling in the variable
n =nF +n~ suggests that the probability distribution
P(nF, n~ ~

W) with respect to forward and backward mul-
tiplicities nF and n~ is a product of two distributions
[31,32]:

D ~ ( W)=(32 /9~ —1)' (n(W)) + — . (3.4) (6 )„-kn if n is large . (3.10)

The average transverse momentum. The average trans-
verse momentum (p, (W)) + of charged hadrons in
e+e annihilation is experimentally almost constant
with respect to the thrust axis for energies up to 8'=30
[30]. We parametrize its dependence on Wby f„(b,) =(norm const) X exp( 6 /2kn—) . (3.11)

Here k is a parameter between 1 and 2, probably slightly
energy dependent.

A simple choice off„(b,) having these properties is

with

(p, (W)) + =aW+P, (3.5) Note that A=even= —n, —n+2, . . . , n. The summa-
tions over nz and nF are performed using the replace-
ment

a=4.2X10 /c, P=0.356 GeV/c,

and assume that it is valid up to 8'=91 GeV.
The height of the central plateau The availabl. e data for

the e+e cross section

,' I "dn—j"dS.
7lF, ng

Using (3.1) and (3.4) in (3.9) and (3.10) it is easy to show
that, in the large-n limit, the correlation strength b is

1 do =h (W)
0 dy y=0

b=[D (n) —k(n)]/[D (n)+k(n)]
= [0.132( n ( W) ) —k] /[0. 132(n ( W) ) +k] . (3.12)

at y =0 [16] show that h ( W) rises with W, and the trend
is well parametrized by

A reasonable fit to the e+e data is achieved with k ~2.
Note that in the case k =2 the correlation parameter b
becomes positive only if 8 & 30 GeV.

h (W)=ho+h& lnW, (3.6) IV. PREDICTIONS FOR pp COLLISIONS

with ho=2. 67 and h& =0.40.
Forward-backward multiplicity correlations. The data

from &s =14 to 91 GeV [16,17] show weak positive and

The charged multiplici ty distribution. Using Eqs.
(2.5)—(2.7) and Eq. (3.1) we calculate the multiplicity dis-
tribution in pp collisions. Taking K;„=0,we find that

(n'(s)) P„(s) =4(9'/16) z' (E'~ ) exp[ —(97r/16)z' (IC'~ ) ](K'~ ) U(b, 3 —a, (97r/16)z' (K'~ ) ),I'(a +b)
I a
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where

B (a + ,', b—)(K'")= ', z'=n/&n'(s)&
B(a,b)

(4.2)

(n(s)) =(n'(s)& +n (4.3)

and U(b, 3 —a, . . . ) is Kummar's function [33]. The
prime on ( n (s) )~ indicates that the contributions from
leading particles are missing. The correct expression for
the average charged hadron multiplicity in pp collisions
should be

Here we have used

( lnK) =P(a) —li(a +b),
( ln K ) =g'(a) —g'(a +b)+ ( lnK)

I (a +a) I (a +b)
I (a) I (a +b +a)

where

Q(x)= = lnl (x) .
I"(x) d

(4.10)

with no being the measure of the average number of
charged leading particles. For leading protons we shall
use no=2 [29].

Since, in our approach, (K' ) is a decreasing func-
tion of v's, the multiplicity distributions given by (4.1)
become broader with increasing v's; i.e., they have a
larger high-multiplicity tail (z ) 1) predicting breaking
of the KNO scaling in pp collisions.

The average charged multiplicities (n'(s) ) . The aver-
age charged multiplicities in pp collisions are predicted
using the relation

(n (s))„=J de( K, s)(n( K& s)) . . (4.4)

The parametrization (3.2) gives

(n'(s)) =2.20s' (K' ) .
PP

(4.5)

Equation (4.5) shows that the pure power-law growth of
(n'(s)) of the s' type, which is good at low energies
but too strong at collider energies, has slowed down be-
cause of the decreasing factor (K' ).

Two other parametrizations of ( n ( W) ) +, often

used in the literature [17],are

All three parametrizations of (n( W) ) + predict,

( n'(s) )~~, which is in reasonable agreement with the data
(Table II).

The normalized moments C'(pp). The energy variation
of the normalized C' =(n' ) /(n')~ moments in pp col-
lisions is obtained from

C~(pp)=C~(e+e )f dKy(K, s)
(n(KV's ))

& n'(s) &

(4.11)

C'(pp)=C (e e )(K' ')/(K' ')'.
We can also calculate the dispersion

D (s)~~ =D' (s)~~ =(n (s))~~ —(n(s))~~

(4.12)

of the multiplicity distribution in pp collisions. The result
1S

D (s)~~ = [C2(pp) —1]' (n'(s) ) (4.13)

This expression simplifies considerably if the power-law
parametrization (3.2) of ( n ( W) ) + is used:

and

(i) (n(W')) + =a+b lnW +c ln W'

a =3.320, b = —0.408, c =0.263,

(ii) (n(W')) + =a+bexpc[ln(W/Qo) ]'~

(4.6)

(4.7)

The average transverse momentum (p, (s) ) . The ener-
gy dependence of the average transverse momentum in pp
collisions is obtained from

(p, (s) ) =f dk y(K, s)(p, (Kv's ) )

Using Eq. (3.5) we find that

(4.14)
a =2.527, b =0.094, c =1.775, Qo= 1 GeV .

According to (4.4), these parametrizations yield

(i) (n'(s)) =a +b lns+c„ ln s,
with

The height of the central plateau h (s)~„. The rise of the
central plateau with energy in pp collisions is predicted
from (3.6) to be

h(s) =(h(K&s ) + )
a =a +2b ( lnK ) +4c ( ln K ),
b =b+4c( lnK), (4.8)

=ho+h, ( 1nK)+ —,'h, lns . (4.15)

and

Cp =C The forward backward correlati-on strength b (s)zz.
From (3.9) we find that the forward-backward joint mul-
tiplicity distribution in pp collisions is of the form

(ii) (n'(s) ) =a +b(K ) exp[c ( 1n(s/Qo))'~ ], P (n~, n~, s) =P„(s) f„(b,), (4.16)

a =c /[ ln(s /Qo ) ]'~, Qo = 1 GeV (4.9)
where P„(s) is now given by (4.1).

The correlation strength b (s) is then
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D (s) —k(n'(s))
(')m =

D (s) —k(n'(s))

Using Eq. (4.13) and k =2, we obtain

'( )) [C'(pp) —1]—2

(n'(s) ) [C2(pp) —1]+2

V. COMPARISON WITH DATA

(4.17)

(4.18)

10

-1
10

A

V

10

I I I I l 1 I t I ( I I f I I I t I 1

pp~charged

Ps= 62 GeV

a —20/lns, a+& —5 . (5.2)

In this section we compare predictions of Sec. IV with
the available data on pp collisions. In order to obtain
reasonable agreement with data, the inelasticity (IC )
should decrease with increasing incoming energy [24,26).

In this respect we follow the simple idea of Ref. [26]
that the limited growth of the number of independently
emitted sources ( C ) (clusters, clans, fireballs, . . . ) is re-
lated to the decrease of (K ) with energy in a very simple
way:

(C(s)) —(I~(s)) lns .

We assume that (IC (s) ) -4. I/Ins. Since there are no
direct measurements of inelasticity except at ISR ener-
gies, the estimates of the actual rate of decrease of
(K (s) ) with energy may vary within the range of +20%.
To be more specific, we use the set of parameters given in
Table I to shape the y(K, s) distributions (2.7), as shown
in Fig. 1. Note that the parameters a and b vary with en-
ergy as [23]

10
0 2

n/(n)

The predicted multiplici~t distribution of charged had-
rons in pp collisions at Vs =62 CxeV in the KNO form is
shown in Fig. 2 together with the data from Ref. [37].

According to Eq. (4.1) and Table I, the slope of the
multiplicity distribution decreases with energy, roughly
speaking, in proportion:

)&.=9oo o v'( + ' )&. = 54o o v'( + ' )&. =zoo a v

FIG. 2. Multiplicity distribution of charged hadrons in pp
collisions at &s =62 GeV in the KNO form. The data ( ) are
from Ref. [37].The theoretical curve (solid line) is from Eq. (4.1)
of the text.

=0.23:0.30.0.39 . (5.3)

3 0 v s v

2.5—
0

/
l

2.0 i
C x

/

1 $ T I v g T $ v $ % $1

8 A
40 I t ~ ~ ~ ~ ~ t I ~ ~

0

This means that with increasing energy, the multiplicity
distributions become wider than those predicted by the
KNO scaling in the region of large z'.

It is interesting to note that a Hat K distribution,
y(K, s)=1, a =b =1, leads to the result obtained by
Barshay [6] in deriving the KNO scaling in pp collisions
from the e+e data. The result is

30—

A 20-
V

10—

0 0
10 10

W [GeV)

10

FIG. 1. The function y(E, s) defined by Eq. (2.7) at various
energies +s (2 =16.5 —63 GeV, B =200 GeV, C =540 GeV,
D =900 GeV).

FIG. 3. Mean charged multiplicity in pp collisions. The data
( ) are from Ref. [14]. Our predictions (W) follow from Eqs.
(4.2) and (4.3) of the text.
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&s (CzeV)

TABLE I. Energy dependence of inelasticity.

( ~1/2 ) ( in'rC )

ISR
200
540
900
1800
104

2.5
2
1.5
1.2
F 1
1.0

2.5
2.7
3
3.2
3.3
3.4

0.50
0.42
0.33
0.27
0.25
0.23

0.69
0.63
0.55
0.48
0.46
0.43

—0.80
—1.01
—1.35
—1.65
—1.78
—1.94

0.91
1.44
2.51
3.74
4.39
5.17

&'(.) )„p„(.)„,=q„(')
=(rr/2)z' exp[ —(~/4)z' ],

with

(5.4)

VI. CONCLUDING REMARKS

Our analysis has shown that multihadron-production
spectra in pp collisions can be quantitatively predicted
from the corresponding e+e annihilation data if a suit-
able averaging over the inelasticity distribution g(K, s) is
performed.

For a satisfactory account of the data, the y(K, s)

z'=n/(n'(s) )~~ .

Other predictions are compared with data in Figs. 3
and 4 and Tables II, III, and IV: in Fig. 3 and Table II
for the average multiplicity, in Table III for the normal-
ized moments and the dispersion, in Fig. 4 for the energy
dependence of the mean transverse momentum, and in
Table IV for the height of the central plateau and the
strength of forward-backward multiplicity correlations.
The agreement with the data is reasonable except for C'
moments, which are clearly below the experimental data,
in particular for higher moments. This is partly due to
taking n

' = n —2. Better agreement is obtained if
n'=n —no with no (1, but still higher moments are not
reproduced. Predictions for the Fermilab Tevatron col-
lider energy (&s —1800 GeV) and the extrapolation to
the cosmic-ray point (&s —10 GeV) are also given.

Breakstone et al. [37] analyzed the data on pp and pp
multiplicities using the cuts at low (n;„) and high (n,„)
multiplicities. We have calculated multiplicities using
the same cuts. The results are given in Table V. Again,
the agreement with the data [37] is reasonable.

should depend on s in such a way that (K ) decreases
with increasing s [18].

The agreement between our predictions (Figs. 2, 3, and
4 and Tables II, III, IV, and V) and pp collision data
seems to support the basic ansatz, Eq. (2.5), which re-
lates the e+e multiplicity distributions over a range of
energies given by W=K&s to the hadron multiplicity
distribution at the given energy v's . However, the
discrepancies are observed in C' moments for q ~ 4 and
in the prediction of the rise of the rapidity plateau. These
seem to indicate that for energies &s ) 100 GeV not all
aspects of pp collisions can be treated as an incoherent su-
perposition of e+e -like processes through Eq. (2.5).

It is necessary to stress here that our analysis is re-
stricted to small-pT hadron final states and to the two-jet
structure similarity between e+e and pp collisions.

We believe that the microscopic picture underlying Eq.
(2.5) is that of Ref. [18]. The gluonic systems of the two
incoming protons interact strongly and fragment subse-
quently in a manner similar to that for quark-antiquark
pairs produced in e+e annihilation. This obviously
simple picture requires further study as it is not easy to
see which QCD diagrams, if any, are responsible for the
observed similarity between the hadronic spectra in
e+e and pp collisions.

There are also some simplified assumptions introduced
into our calculations, such as the specific parametrization
of y(K, s) by the P function, and the particular KNO scal-
ing form for e+e multiplicity distributions [16].

Other input quantities concerning e+e annihilation
are basically experimental and may change in future ex-
periments.

TABLE III. Predictions for the normalized moments accord-
ing to Eq. (4.12). The corresponding experimental values [34]
are given in parentheses, where n

' = n —2.
TABLE II. Predictions for the average charged multiplicity

(n'ls) &„,.
&s

(aeV) C2 C3 (n )/D

~ (4.5)

(n'ls) )~~
Eq. (4.8) Eq. (4.9)

200
540
900

1800
104

19.6
28.1

31.7
42.9
95.6

19.2
25.8
28.1

34.2
54.5

20.9
30.6
35.2
46.7
93.5

'See Ref. [34] and note that n'=n —2.

Expt'

19.4
27. 1

32.6

ISR
200

540

900

1800
104

1.2
1.20

(1.31)
1.26

(1.35)
1.31

(1.38)
1.33
1.40

1.6
1.71

(2.12)
1.89

(2.30)
2.10

(2.38)
2.18
2.36

2.4
2.73

(3.92)
3.25

(4.72)
3.84

(4.83)
4.17
4.73

4. 1

4.84
(8.51)
6.26

(10.69)
8.02

(10.94)
9.01

10.73

2.18
(1.78)
1.96

(1.66)
1.79

(1.61)
1.74
1.58
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TABLE IV. Predictions for the height of the central plateau

h»(s) and the strength of the forward-backward multiplicity
correlations b„(s).

hp~(s)'"

0.6

0.5—

200
540
900
1800
104

4 39'
4.44'
4 73'
5.29
6.04

0.32
0.57
0.66
0.75
0.90

0.4—

'Expt. data, Ref. [35].
"Expt. data, Ref. [38].
'A large part of the pP data is presented as 1/o. (do. /dq),
(g=0), where g is the pseudorapidity. To account for the
change g~y, the pseudorapidity data should be corrected
[8,39] for comparison with our results. In the central region,
do /dy typically exceeds do /dg by 10 to 20%.
Expt. data, Refs. [32,36].

0.3—

10

I

10
W [Gev]

. I

10

FIG. 4. Energy dependence of the mean transverse momen-
tum in pp and Pp collisions. The data (H) are from Refs.
[14,37]. Our predictions ( ~ ) are obtained from Eq. (4.14) of the
text.

However, there are also additional important tests of
the validity of Eq. (2.5), which have not been considered
in the present paper.

This is the multiplicity dependence of (p, (s)) in pp
collisions and in e+e annihilation where no data have
been available up to now [9].

The inclusion of hard processes when &s ) 100 GeV
has also not been discussed in this paper. We suggest a
procedure similar to the geometrical model [40] and as-
sume splitting of y(K, s) in two parts:

TABLE V. pp and pP charged multiplicity distributions at different energies. The fits concern multi-

plicities n between the n;„and n „values quoted in the table.

pp
pp
pp
pp
pp
pp
pp
pp
pp
pp

&s
(EseV)

10.7
11.5
13.8
13.8
13.8
13.8
13.9
18.2
19.7
23.9

n min n max

14
16
18
18
18
18
18
20
22
24

(n &Na'

5.57+0. 14
5.80+0.20
6.51+0.18
6.51+0.20
5.99+0.3S
6.65+0. 10
6.33+0.15
7.73+0.29
7.98+0.17
8.90+0. 15

(n)'
5.87
6.01

6.41

6.42
7.1

8.45

pp
pp
pp
pp

pp
pp
pp
pp
pp
pp
pp
pp
pp

23.9
26.6
27.4
27.6

27.6
30.4
38.8
44.5

52.6
62.2

200
540
900

6
6
6
6
8
8

10
12
12

24
24
26
26

24
26
32
30
34
36
S6
76
92

9.07+0.24
9.40+0. 14
9.73+0.18
9.36+0.17

8.91+0.25
9.92+0.28

10.64+0. 11
11.29+0.22
12.68+0.24
13.63+0.29
21.04+0.30
28.65+0.25
34.80+0.42

9.25
9.34

9.36

9.67
10.55
11.11
12.87
13.62
19.66
30.03
37.27

'See Table II of Ref. [37] and references therein.
This paper.
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y(IC, s) =y(IC'), 6)(&s —Qs„)+y(IC', s)h 0(+so —&s ),
+so —100 GeV,

where g, is due to soft collisions and g& is due to hard
collisions.

The recent interest in multiplicity Auctuations related
to intermittency may also be used to shed some light on
the validity of Eq. (2.5). The problem here is the
knowledge of the energy dependence of the intermittency
index f~( W) for e+e annihilation.

We hope to address these additional topics elsewhere.
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