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We study pair production from a strong electric field in boost-invariant coordinates as a simple model
for the central rapidity region of a heavy-ion collision. We derive and solve the renormalized equations
for the time evolution of the mean electric field and current of the produced particles, when the field is
taken to be a function only of the fiuid proper time r=+t z' We—find. that a relativistic transport
theory with a Schwinger source term modified to take Pauli blocking (or Bose enhancement) into ac-
count gives a good description of the numerical solution to the field equations. We also compute the re-
normalized energy-momentum tensor of the produced particles and compare the effective pressure, ener-

gy, and entropy density to that expected from hydrodynamic models of energy and momentum How of
the plasma.

PACS number(s): 12.38.Mh, 25.75.+r

I. INTRODUCTION

A popular theoretical picture of high-energy heavy-ion
collisions begins with the creation of a Aux tube contain-
ing a strong color electric field [1]. The field energy is
converted into particles as qq pairs and gluons are creat-
ed by the Schwinger tunneling mechanism [2—4]. The
transition from this quantum tunneling stage to a later
hydrodynamic stage has previously been described phe-
nomenologically using a kinetic theory model in which a
relativistic Boltzmann equation is coupled to a simple
Schwinger source term [5—8]. Such a model requires
justification, as does the use of Schwinger's formula in the
case of an electric field which is changing rapidly because
of screening by the produced particles. Our aim in this
paper is to present a completely field-theoretic treatment
of the electrodynamic initial-value problem which exhib-
its the decay of the electric field and subsequent plasma
oscillations. This approach allows direct calculation of
the spectrum of produced particles from first principles
and comparison of the results with more phenomenologi-
cal hydrodynamic models of the plasma.

Although our approach is relevant to heavy-ion col-
lisions at best only during the period when the produced

partons can be treated as almost free, the details of had-
ronization are not expected to affect the average How of
energy and momentum. Hence information obtained
about energy Aow in the weak-coupling phase where our
methods apply is translated to energy and momentum
eventually deposited in the detector. Using further had-
ronization assumptions, one can relate our results to the
particle spectrum of the outgoing particles.

Recently [9—12], we have presented a practical renor-
malization scheme appropriate for initial-value and quan-
tum back-reaction problems involving the production of
charged pairs of bosons or fermions by a strong electric
field. In those papers the electric field is restricted to be
spatially homogeneous, so that all physical quantities are
functions of time alone. The method used to identify the
divergences is to perform an adiabatic expansion of the
equations of motion for the time-dependent mode func-
tions. The divergence in the expectation value of the
current comes from the first few terms in the adiabatic
expansion and can be isolated and identified as the usual
coupling-constant counterterm. In this manner we were
able to construct finite equations for the process of pair
production from a spatially homogeneous electric field
and to consider the back reaction that this pair produc-
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tion has on the time evolution of the electric field.
In heavy-ion collisions, one is clearly dealing with a sit-

uation that is not spatially homogeneous. However, par-
ticle production in the central rapidity region can be
modeled as an inside-outside cascade which is symmetric
under longitudinal boosts and thus produces a plateau in
the particle rapidity distributions [13—17]. This boost
invariance also emerges dynamically in Landau's hydro-
dynamical model [18] and forms an essential kinematic
ingredient in the subsequent models of Cooper, Frye, and
Schonberg [19] and of Bjorken [16]. The Iiux-tube model
of Low [20] and Nussinov [21] incorporates this invari-
ance naturally.

Hence kinematical considerations constrain the spatial
inhomogeneity in the central rapidity region to a form
that again allows an adiabatic expansion in a single vari-
able, the fiuid proper time r=(t z)'~ —. In Landau's
hydrodynamical model, one finds that after a short time
7o the energy-momentum tensor in a comoving frame is a
function only of ~. This is the essential assumption we
make that allows us to apply the methods of [9—12] to
the heavy-ion collision problem.

In our approach the initial conditions of the fields are
specified at ~=~o, that is, on a hyperbola of constant
proper time. The comoving energy density is a function
of ~ only. ' Then the electric field must also be a function
solely of ~. We can apply the adiabatic regularization
method to identify and remove the divergences. The
simplification introduced by the boost symmetry allows
us to study the renormalization of this inhomogeneous
initial-value problem.

A remarkable feature of Landau's model is the appear-
ance of a scaling solution in which U, =z/t. Alternative-
ly, requiring invariance under longitudinal boosts [16,19]
also leads naturally to a scaling solution. In models based
on Landau's ideas, one also assumes that it is possible to
determine the particle spectra from the hydrodynamical
Aow of energy momentum by identifying particle veloci-
ties with hydrodynamical velocities. Using our methods,
we can assess the validity of these assumptions. We cal-
culate numerically the evolution of the electric field in ~
and study the accompanying production of pairs. As it
turns out, the Boltzmann equation, when modified to
reAect quantum statistics correctly, does very well at
reproducing the gross features of the field-theoretic solu-
tion. This is not too surprising, since our field equations
are mean-field equations (formally derived in the large-%
limit) and hence are semiclassical in nature. The field-
theoretic treatment presented here is the first term in a
systematic I /X expansion in the number of parton
species or quark flavors. The next order in the expansion
contains dynamical gauge fields as well as charged parti-
cles in the background classical field. Thus in the next
order one can study equilibrium due to scattering; one

Following the usage in hydrodynamics, we shall continue to
refer to the coordinates ~ and t)= —21n[(t+z)/(t —z)] as the

Auid proper time and the Quid rapidity, respectively, or simply
as comoving coordinates.

II. ELECTRODYNAMICS
IN COMOVING COORDINATES

A. Scalars

We consider first the electrodynamics of spin-0 bosons.
We shall use the metric convention ( —+++ ) which is
commonly used in the curved-space literature. The ac-
tion in general curvilinear coordinates with metric g„ is

S=Id xV' —g [ g" (V'„p)tp p —mptp—
gag F F ] (2.1)

where

V„P= ( 8„ieA „)P,—F„,=B„A,—t) A„. (2.2)

We use Greek indices for curvilinear coordinates and La-
tin indices for flat Minkowski coordinates.

To express the boost invariance of the system, it is use-
ful to introduce the light-cone variables w and g, which
will be identified later with Quid proper time and rapidity.
These coordinates are defined in terms of the ordinary
laboratory-frame Minkowski time t and coordinate along
the beam direction z by

z =~sinhq, t =~cosh' . (2.3)

The Minkowski line element in these coordinates has the

could also calculate, for example, lepton production and
correlations in the evolving plasma from first principles.
These systematic corrections require the use of the
Schwinger-Keldysh formalism [22] and will be discussed
elsewhere.

The outline of the paper is as follows. In Sec. II we
formulate electrodynamics in the semiclassical limit in
the (r, g) coordinate system corresponding to the hydro-
dynamical scaling variables. This curvilinear coordinate
system requires some formalism borrowed from the
literature of quantum fields in curved spaces, which we
review for the benefit of the reader unfamiliar with the
subject. In Sec. III we perform the renormalization of
the current using the adiabatic method of our previous
papers. This is needed as the source term for a finite
Maxwell equation of the particle back reaction on the
electric field. Section IV is devoted to the renormaliza-
tion of the energy-momentum tensor of the produced
pairs in the comoving frame. We also discuss there the
relationship to the effective hydrodynamic point of view.
The detailed results of numerical calculations in the
(1+1)-dimensional case for both charged scalars and fer-
mions are presented in Sec. V.

The paper contains three appendixes. In Appendix A
we present the necessary formulas used in computing the
particle spectrum from the time evolution of the field
modes. In Appendix B we prove that, for the boost-
invariant kinematics of this problem, the distribution of
particles in Quid rapidity is the same as the distribution of
particles in particle rapidity. In Appendix C we reformu-
late the problem in the conformal time coordinate, which
turns out to be somewhat more convenient for actual nu-
merical methods.
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form

ds = —dr +dx +dy +r dg (2.4)
0,+—8,— [8„—te A (r) ] —a. —a, +m2 1 1 ~ 2 2 2 2

Hence the metric tensor is given by

g„=diag( —1, 1, l, r ), (2.5)

a bg„v=V„V nab (2.6)

where g,b
=diag I

—1, 1, 1, 1] is the flat Minkowski
metric. A convenient choice of the vierbein for the
metric (2.5) for our problem is

V' =diag[1, 1, l, r],
so that

(2.7)

1
V,"=diag 1, 1, 1,—.

7
(2.8)

Thus the determinant of the metric tensor is given by

detV=& —g =r .

The Klein-Gordon equation is

1

g PV (g""&—g )V,P m$=—0,

and Maxwell's equations read

1
( Q —g EP~) =j P

(2.9)

(2.10)

(2.11)

with its inverse determined from g" g p 6p This metric
is a special case of the Kasner metric [23].

For our future use we introduce the vierbein V„', which
transforms the curvilinear coordinates to Minkowski
coordinates,

$(r, q, x,y)=0 . (2.16)

In order to remove first derivatives with respect to ~, we
define a rescaled field y by

(2.17)

The Klein-Gordon equation for g is then

a', —', [a„—eA( )]'——' —a„' —a,'+m'

y(r, rj, x,y) =0 . (2.18)

We are interested in the solution of this field equation,
where A is regarded as a classical field determined by the
expectation value of the Maxwell equation (2.11). This
approximation ignores processes with photon propaga-
tors and can be shown [9] to be the leading order in a
large-N expansion, where X is the number of Aavors of
the charged scalar field.

These equations are to be solved subject to initial con-
ditions at 'T 7 p. We need to specify the initial value of
the electric field and the density matrix describing the ini-
tial state of the charged scalar field. For the problem at
hand, it is sufhcient to describe the charged scalar field by
the particle-number density and pair-correlation density
with respect to an adiabatic vacuum state [see (2.30)
below].

In the gauge we have chosen, there is homogeneity in g
as well as in the directions x and y. This allows us to in-
troduce a Fourier decomposition for the quantum field
operator y at proper time ~:

where

J ~I 'elk~d (~0)0) 2e A (A)]. (2.12)
y(, g, ,)=f [dk][f„(r)a„e' "+f*„(r)b„e '"'"],

F„= I'„=E(r) . — —

In the curvilinear coordinate system, we have

(2.13)

Here C denotes the operation of charge symmetrization
as discussed in [9].

We are interested in the case where the electric field is
in the z direction and is a function of ~ only. In Min-
kowski coordinates the only nonvanishing components of
the electromagnetic field tensor F,b are

where

dk„d k~[dk]=
(2~)'

k x=k„q+k~ x~,

k~=(k, k ), x~ =—(x,y) .

The modes fz satisfy the equation

(2.19)

(2.20)

dA„(r)
717 (2.14) d f„

d
+~~(&»~ =o (2.21)

where we have chosen the gauge A, =0 so that the only
nonvanishing component of A„ is Az(r)= A. Using the
relationship between the two coordinate systems, we find
that

with

coq(r) =sr„(r)+k~+m + 1

4

Fg7 1 dAE(r)=
7- d~

(2.15)
k„—eA

~ (r)=
(2.22)

In this gauge and coordinates, the Klein-Gordon equa-
tion becomes

We quantize the matter field by imposing commutation
relations at equal ~:
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i5(g —g')6 (xi —xI )
ear coordinates (found, for example, in [23]) gives rise to
the action

(2.23)

[bi„bit ]= [ai„ai",] =(27r) 5"(k—k'), (2.24)

Demanding that the usual commutation relations obtain,
for the creation and annihilation operators,

S=f d + 'x (det V) 4y "V„%'+—( V„%)y "0'

im—%"Il— F—F" (2.32)
1

4 p'p 7

in d spatial dimensions, we find that fk must satisfy the
condition

where [24]

V„%= ( 8„+r„ie A „)—0', (2.33)

f,(r)a,f„*(r)—fk (~)a,f„(~)=i . (2.25)

exp —i Ak 7' d7'

[2Q„(r)]'
(2.26)

[2Q„(r)]'

Because of (2.21), Qi, must satisfy the same diff'erential
equation as appears in our previous papers [9—12]:

3 ~ +Q —67
4 ~p k k (2.27)

This latter condition is satisfied by a WKB-like parame-
trization of fi, .

and the spin connection I „is given by

r ='x "v (a v;+r, vb'), r'"=-'Iy'y (2.34)

l yp 3
(2.35)

The coordinate-dependent gamma matrices y" are ob-
tained from the usual Dirac gamma matrices y' via

y"=y'V,"(x) . (2.36)

with I„& the usual Christoffel symbol. We find that, in
our case (see [25]),

The overdots denote differentiation with respect to 7.
The only nontrivial Maxwell equation in A, =O gauge

is

The coordinate-independent Dirac matrices satisfy

(2.37)

A(. ) =(J'&.1 d 1 d
d7 7 d7

(2.28)
From the action (2.32), we obtain the Heisenberg field

equation for the fermions,

In terms of the charge densities N+ and N and the
correlation pair density I, we can write the Maxwell
equation as

=e f [dk] [1+2N(k)+2F(k)cos(2yi, )] .dE
d7 Qk

(2.29)

The structure of (2.29) is similar to that of the equation
found for the homogeneous problem [9,10]. We have
used the definitions

(y i'V„+m )q =0,
which takes the form

(2.38)

&.(&—g F ) = (~ ) = ——'( [+,y "+]& .
2

(2.40)

yo a,+ +yl al+ (aq leAn)+m—q'=0.1

27

(2.39)
Variation of S with respect to A„yields the semiclassical
Maxwell equation

(ai, .ak ) =(2m. )"5 (k —k')N+(k),

(bi i,,b i, ) =(2~) 5 (k —k')N (k),
(b i,.ai, ) =(2') 5"(k—k')F(k) .

(2.30)

If the electric field is in the z direction and a function of 7
only, we find that the only nontrivial Maxwell equation is

=—([V,y ~%])= ([%t,y, y'4]) . (2.41)
7 d7 2 27

Note that we have taken N+(k)=N (k)=N(k) since
the current component j' vanishes as a result of the
Maxwell equation (Gauss's law)

We expand the fermion field in terms of Fourier modes
at fixed proper time 7:

%(x)=f [dk] g [b, (k)gi„(r)e'""e't'
j'=e N+ k —N k

7
1

8„(& gF"')=0 . —

B. Fermions

(2.31) The gi
—„then obey

p d 1
y +

+d, ( —k)P:i„(r)e '""e '~ "] . (2.42)

+iyi k, +iy'm„+m Pi
—„(r)=0,

Let us now turn to the same problem in Dirac electro-
dynamics. The Lagrangian density for QED in curvilin- (2.43)
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where m„has been defined previously in (2.22). The su-
perscript + refers to positive- or negative-energy solu-
tions with respect to the adiabatic vacuum at 7 70. Fol-
lowing [11],we square the Dirac equation by introducing

~ ~

2 Qk,

Ak, +
4 Q~~, 2 Ak, 4

=
cubi, (r) —Qi„. (2.52)

0 d 1
+fi„i—yi ki i—y m.„+m
7

Returning to the Maxwell equation and following steps
(2.27) —(2.30) of Ref. [11],we obtain

with A,, = 1 for s = 1,2 and k, = —1 for s =3,4. They are
normalized:

y„y, =25„, . (2.46)

The sets s =1,2 and s =3,4 are two different complete
sets of linearly independent solutions of the Dirac equa-
tion (see [11]). Inserting (2.44) into the Dirac equation
(2.43), we obtain the quadratic mode equation

(2.44)

The spinors y, are chosen to be eigenspinors of y y,
(2.45) (2.53)

where we have taken the particle number N(ks) and
pair-correlation density F(ks ) defined by the analogues of
Eqs. (2.30) equal to zero for simplicity.

Using the normalization conditions (2.49) and (2.50),
we may express the mode functions and current in terms
of the generalized frequency functions Ak, .

2
Qk, +k, ~

2lf i'= co'+0' +ks k ks 2Q ks
2

d
+e„iA,,~„ f—„—,(r)=0,

where now

2 2+g2+ 2

(2.47)

(2.48)

+2k.,m„Qk,

[see Eq. (3.7) of Ref. [11]].

III. RENQRMALIZATION

(2.54)

If the canonical anticommutation relations are im-
posed on the Fock-space mode operators, then the Pi

—„
rnust obey the orthonormality relations

(2.49)

where r, s=1,2 or 3,4. Using the orthonormality rela-
tions and (2.44), we find, for a given k and s,

2f oaf p+j eaj p+ ~ g (feaj p j' oaf p) —1 gap

(2.50)

A. Scalars

The renormalization of the equations of the last section
is straightforward and is accomplished by analyzing the
divergences in an adiabatic expansion of the differential
equation for Q„(r). We first present the regularization
for the scalar case, where Qk satisfies the differential
equation (2.27). The divergences of physical quantities
such as the current and energy-momentum tensor can be
isolated by expanding 0 in an adiabatic expansion. Up to
second order, this is given by

where a,P=+ refer to the positive- and negative-energy
solutions. Note that from the off-diagonal relationship
(a+P) we can express the negative-energy solutions in
terms of the positive-energy ones. This fact we shall use
repeatedly in what follows.

Now we parametrize the positive-energy solutions f i+„

in the same manner as in Eq. (3.1) of Ref. [11]:

, 4co

3'
867

=e f [dk] " [1+2N(k)
d~ Qi, r

The unrenormalized Maxwell equation is

(3.1)

f&+(r)=N&, exp ' f —iA&, (r')
ks 0

ir„(~')
d~' .' 2Qi„(r')

where Qk, obeys the real equation

(2.51)

+2F(k)cos[2yi, (r)] j . (3.2)

dF.

dan-

k r
The adiabatic expansion (3.1) leads to

(3.3)

To study its renormalization in d =3 spatial dimensions,
we need to consider only the vacuum term:
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dE k„—eA„=e f [dk] 1

4COk
4

+ 0 ~ ~

3COi
~ 2

8COk

(3.4)

The first term in (3.4) is zero by reffection symmetry if we
I

choose fixed integration boundaries for the kinetic
momentum k„—eA„. The only divergent terms occur at
second order. (Higher terms in the expansion have more
powers of k in the denominator. ) Using (2.22) and
refiection symmetry, the right-hand side of (3.4) can be
written as

~ ~

e f [dk](k„—eA )
SeA [(k„—eA ) + —,

' ]

4V CO

(3.5)

Performing the k„and azimuthal angular integrations first, we obtain

48m o ki+m +1/4r 2r (ki+m +1/4v )
(3.6)

where we have inserted a cutoff in the remaining trans-
verse momentum integration. The logarithmically diver-
gent first term in (3.6) is

B. Fermions

We turn to the renormalization problem in the spin- —,
'

case. The unrenormalized Maxwell equation is
1

24m

~ .—A+ 1n
1—ln 1+

4m
(3.7) d 1 dA

'7

4 (~+ (z= —2e g f [dk](ki+m )A,,
s=1

We recognize the cutoff-dependent infinite part as

e 6e ~
dE
d7

where

(3.8)

(3.12)

Replacing A and Q with co and co on the left-hand side of
(2.52), we obtain the adiabatic expansion up to second or-
der:

5e =(1/24m. )1n(A/m ) (3.9) 0 —
CO &7T+ 'IT

2CO

7T21—
CO

e =e (1+e 5e ) '=e (1—e 5e ) (3.10)

is the usual one-loop charge renormalization factor in
scalar QED. Defining the renormalized charge via 3 2 2 2 A. ~'~ ky+— + + + ~ 0 ~

4 CO 4CO CO

(3.13)
and using the Ward identity eE =e&E~, we may absorb
the divergence in the current into the left-hand side of the
Maxwell equation to obtain a finite renormalized equa-
tion suitable for numerical integration.

In the d =1 case, there is no transverse momentum in-
tegration, and the charge renormalization is finite. The
finite coefficient of the combination —2+3/r is
dependent and is given by

12m m + 1

4
(3.11)

The standard result in 1+ 1 dimensions is
5e =(12m.m ) ', and this is what is obtained for the spa-
tially homogeneous problem by our method as well [10].
Thus absorbing 6e in the renormalization of the charge
[see (3.10)] leaves us with a (finite) r-dependent coefficient
that is multiplied by the above combination, which ap-
pears now on both sides of the finite Maxwell equation,
just as in the three-dimensional case. This feature is
peculiar to scalars in the ~ coordinate. The actual nu-
merical solution of the scalar equations was performed in
the conformal time coordinate u =in(mr) discussed in
Appendix C.

(ki+m )( —2A,, )
s=1

7 COk

~ ~

2COk

577~77~ COk
~ 2

'
2 2"—R„(r),

4CO1 '7
(3.14)

where Ri, (r) falls faster than co and so leads to a finite
contribution to the current. Substituting (3.14) and using
the definition (2.22) of ir„and its first and second deriva-
tive into (3.12) yields

dE
d7

e k~+m
[dk]

2 COi

—e f [dk]R&(r)

0 ~

A —2 + 5Am„
2

%COD

2

ln
6m.

A dE —e f [dk]Rk(r), (3.15)

where A is again the cutoff in the transverse momentum

Using this expansion in (2.54) allows us to express the in-
tegrand of (3.12) in the form
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e (1+e 5e )= —e f [dk]Ri, (r),dE
d7.

(3.16)

after multiplying both sides of the equation by e. The re-
normalized charge is

integral which has been reserved for last.
The cutoff-dependent term on the right-hand side is

precisely the logarithmically divergent charge renormal-
ization in 3+ 1 dimensions. Defining 5e
=(1/6' )ln(A/m ) as usual and shifting this term to the
left-hand side, we obtain

IV. ENERGY-MOMENTUM TENSOR
AND EFFECTIVE HYDRODYNAMICS

ytotal ~~ yfermion + Z
em

p~ Q g ggpv p~ p~ (4.1)

In our semiclassical calculations, we follow the evolu-
tion of the matter and electromagnetic fields. With these
quantities in hand, we can calculate, in addition to the
particle spectrum, other physical quantities such as the
energy density and the longitudinal and transverse pres-
sures. To obtain these quantities, we derive the energy-
momentum tensor in the comoving frame. We shall give
explicit formulas here only for the fermionic case.

The energy-momentum tensor for QED is obtained by
varying the action in (2.32). We find

2
=ZeR 1+e2ge2

(3 17) with

Z
term&on [ill ~ P ql] [P @ — @]

(4.2)

dER = —eR dkRk ~
d7

(3.18)

where Rz(r) is defined by Eq. (3.14) and the integral is

now completely convergent.

and the Ward identity assures us that eRER =eE. Hence
we obtain the renormalized Maxwell equation

TcB1 = —(
1 g FPoF+F 'PF )

In the following we shall drop the superscript on the fer-
mion part of the energy-momentum tensor where it
causes no confusion to do so.

We are interested in calculating the diagonal terms of
the matter part of the energy-momentum tensor and in
identifying them with the energy and pressure in the
comoving frame. We begin with T„,

1
2

(OlT„O) = —g f [dk](ki+ m) fk, fk, f „*,
+ fq—,

7

l
2

2 .+df [dk] 2(ki+m )fk,+ fi+„+ (4.3)

In the latter form, only the positive-frequency mode func-
tions appear, which is most useful for the adiabatic ex-
pansion below. Averaging over s =1,2 and s =3,4, we

may also write (4.3) in the form

(Ol&„l»= —2 y f [dk](k', +m') "Iffy+ I'.
s=1 7

(4.4)

This expression contains quartic and quadratic diver-

gences in 3+ 1 dimensions present even in the complete
absence of fields (the vacuum energy or cosmological con-
stant terms) and a logarithmic divergence which is relat-
ed to the charge renormalization of the last section. To
isolate these divergent terms, we express the integrand of
T as the sum of its second-order adiabatic expansion
and a remainder term:

4—2 y (k +m ) if/+ l2

s=1
(rr„+ed )

+(ki+m )
" +R„(k), (45)
48 7

where R„(k) falls off faster than co so that the integral
over R„(k) is finite.

The first term in (4.5) gives rise to a quartic divergence
in three space dimensions (or a quadratic divergence in
one space dimension) independent of the electric field and
must be subtracted. The n„ term in (4.5) gives rise to a
quadratic divergence in three dimensions which must be
likewise subtracted. However, in one space dimension
this term yields a finite contribution to (Ol T„lO) which
must be retained, since it is ~ independent, and cannot be
absorbed into a cosmological constant counterterm.
Strictly speaking, subtracting this term in three dimen-
sions can only be justified by using a coordinate-invariant
regularization scheme for formally divergent quantities,
such as dimensional regularization, where quartic and
quadratic divergences are automatically excised. Only in
such a scheme can one be certain that the divergence can
be absorbed into a counterterm of the generally
coordinate-invariant Lagrangian in (2.32). The net result
is that this term must be handled somewhat differently in
the three- and one-dimensional cases.
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The term which is linear in 3 vanishes when integrated
symmetrically. The term in (4.5) proportional to e 3 is
logarithmically divergent in three dimensions and finite
in one dimension. In fact, it is precisely

2

~ 2A
2

(4.6)

where 5e is given by (3.9) in three dimensions and by
(12irm ) in one dimension. In either case, it can be ab-
sorbed into a renormalization of the electric energy term
of the stress tensor,

z cm
vt (4.7)

(1+e 5e ) =Z
2H 2T 2

(4.8)

Thus the explicitly finite, renormalized (T„& for the
combined matter and electromagnetic system is

by charge renormalization. When added to the elec-
tromagnetic term, it gives

(4.14)

In a precisely analogous manner, one develops the adia-
batic expansion of the integrand, isolates the divergences
and the logarithmically divergent charge renormaliza-
tion, which combines with the electromagnetic stress,

+cm —pcm
XX

27
(4.15)

and arrives at the renormalized form for the total
(T„&=(T~~ &, which can be written as

this case is equal to a constant (12m )

For the transverse components of the matter stress ten-
sor in three dimensions, we have

(T„.&=&T„&

4

g f [dk]&', if„*,+
d

f+„,
T

E2
( T„&= + f [dk]R„(k), (4.9)

( T„„&= —f [dk] [R„—ir„Ri, ]+ E~—

in three dimensions, where R„(k) is defined in (4.5). In
one dimension the finite ~„ term that must be retained in

the adiabatic expansion of (4.5) gives rise to an additional
(12~r )

' on the right-hand side of (4.9).
Turning now to T„„,the matter part is given by

4

& 0
~ T„„IO & =2r y f [dk](ki+ m )A,, ir„~f„,~' .

(4.10)

where R and R & have been defined previously. This re-
sult for the transverse components may be obtained by
consideration of the trace of the energy-momentum ten-
sor T„". From Eqs. (4.9), (4.13), and (4.16), we note that
this trace vanishes as m ~0.

Both the unrenormalized and renormalized total
energy-momentum tensors are covariantly conserved, so
that we have

The adiabatic expansion of the integrand gives, in this
case,

T" „=(T" „) „.„,+(T". „), =0, .

( TP~ ) = —FpP
(4.17)

4
2r g (ki+m )A,,ir„~fi„

s =1
In the boost-invariant proper time coordinates, one may
verify that this equation takes the form

2'
+

~ ~

2coi
5

2
5m„m~

~„~(coi,—m„)
467'

(4.18)

+m.„HRi, (r) . (4. 1 1)

ycm
2

(4.12)

Therefore the fully renormalized total T„„ in three di-
mensions is

( T„„&= ,'E~r +r f [dk]n„Ri, (~—) —. (4.13)

As for ( T„&, there is a finite additional term in one di-

mension that must be added to this expression, which in

Inserting this into (4.10), we find again that the quadratic
and quartic divergences in three dimensions are indepen-
dent of the electric field and that the terms proportional
to 2 vanish, whereas the term proportional to A again
renormalizes the electromagnetic contribution to the
energy-momentum tensor:

If we follow the standard practice and define the energy
density and transverse and longitudinal pressures via

Ti, =diag(e, pi pi'pill~ (4.19)

then the energy conservation equation takes the form

d(e~)
+p)( =Ej„.dr

(4.20)

In most hydrodynamical models of particle produc-
tion, one usually assumes that thermal equilibrium sets in
and that there is an equation of state, pll=pll(e). For
boost-invariant kinematics U =z/t, all the collective vari-
ables are functions only of ~ and therefore p~~

is implicitly
a function of e. In our field-theoretic model in the semi-
classical limit, there is no real scattering of partons and
thus one does not have charged particles in equilibrium
or a true equation of state. Hence the transverse and lon-
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gitudinal pressures are difFerent. In the next order in
1/N, there is parton-parton scattering and it remains to
be seen whether thermal equilibrium and isotropy of the
pressures will emerge dynamically. Nevertheless, even in
this order in 1/N one can define an efFective hydro-
dynamics using the expectation value of the field theory's
stress tensor (4.19). Formally introducing the auxiliary
quantities "temperature" and "entropy density" in a sug-
gestive way in analogy with thermodynamics via

e+p~i = Ts, de= Tds,

we find that the entropy density obeys

d(sr) Ejq
d7. T

(4.21)

(4.22)

d(sr)
(4.23)

which is of the same form as (4.22) in the absence of elec-
tric field, with the difFerence that the isotropic pressure
enters into the definitions of the entropy density and tem-
perature of the Quid in (4.21). From these definitions one
can also calculate directly the entropy density in the
comoving frame as a function of ~ by

Note that when the electric field goes to zero s~ becomes
constant. If

p~~ also goes to zero with r faster than I/r,
then e~ is constant when the electric fields goes to zero.

In standard phenomenological models of particle pro-
duction such as Landau's hydrodynamical model, one
usually assumes that the hydrodynamics describes an iso-
tropic perfect Quid whose energy-momentum tensor in a
comoving frame has the form (4.19) with

p~~ =pi. Then
one component of the energy conservation equation be-
comes

1 dEs(r)=exp. d7-
o e+p d~

(4.24)

Since we follow the microscopic degrees of freedom, we
can also construct the Boltzmann entropy function in
terms of the single-particle distribution function in
comoving phase space. This is done in Appendix A.

Let us compare the energy spectra of the isotropic hy-
drodynamics with the results of our field-theoretic ap-
proach. One quantity we wish to determine is the
amount of laboratory-frame energy in a bin of Quid rapi-
dity, dE»b/dq. For the isotropic hydrodynamics, in the
laboratory frame one can write the energy-momentum
tensor in the form

T"=(e+p )u'u'+pi)", (4.25)

where u '= cosh' and u '= sinhg. Then calculating
dE»b/dq on a surface of constant proper time ~, we ob-
tain

dE) b do
Tta

dn dn

do, = 2 i(dz, dt ) = Air&—(cosh'), —sinhg), (4.26)

dE»b
A J E( r/ )r/ cosh tI

d'g

where A~ is a transverse size which in a flux-tube model
would be the transverse area of the chromoelectric Aux
tube.

We show now that our microscopic hydrodynamics
gives an identical result, without any assumptions about
thermal equilibrium. In fact, transforming the result of
our field-theoretic calculation (4.19) to the laboratory
frame,

Tab

ecosh il+p~(sinh g 0 0 (e+p~~ )cosh') sinhg

0 pq 0 0

0 0 p~ 0

(e+p~~)cosh' sinhg 0 0 esinh il+p~~cosh rj

(4.27)

dEi~b 6( rf )rf
=A~

m cosh' dg m„
(4.28)

To see if this formula is working in our parton domain,
we can instead use the mass of a parton in place of m
and check directly whether the spectrum of partons given
by

and recalculating dEi, i, /dg again gives (4.26), where e(r)
is now explicitly calculable from the modes of the field
theory.

In hydrodynamic models, one assumes that hadroniza-
tion does not efFect the collective motion. If all the parti-
cles that are produced after hadronization are pions, then
the number of particles in a bin of rapidity should be just
the energy in a bin of rapidity divided by the energy of a
single pion: namely,

e(r/)r/
dg m

(4.29)

agrees with explicit calculation of particle number in the
field theory, as given in Appendix A.

In order for the formula (4.29) to be independent of r&,
we require that the electric field become vanishingly
small and that the pressure go to zero faster than 1/~ at
large ~. Indeed, we will find this is appi. ~imately true in
the numerical simulations, the results o. which we will
present in the next section.

V. NUMERICAL RESULTS IN 1+1DIMENSIONS

In this section we present the results of solving the
back-reaction problem in two dimensions (proper time r
and fiuid rapidity g) and compare the results to a phe-
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nomenological Boltzmann-Vlasov model. In previous
calculations using kinetic equations in Aux-tube models
[5—7], it was assumed that the Schwinger source term
(WKB formula) can be used by taking the electric field,
hitherto constant, to be a function of proper time. How-
ever, in the Schwinger derivation the time parameter
(which is not boost invariant) plays an implicit role.
Therefore it is not clear a priovi if such a source term in
the kinetic equations represents the correct rate of parti-
cle production. From the experience obtained in the spa-
tially homogeneous case, we believe that if we know the
correct source term, a phenomenological Boltzmann-
Vlasov approach should agree with the semiclassical
QED calculation.

The phenomenological Boltzmann-Vlasov equation in
3+ I dimensions can be written covariantly as

+eF„(r)
7 Bp~

=+[1+2f(p, r) ]erlE(r)
I

m.(m +p~)
X ln 1+exp

e E(r)l 5(p„) . (5.5)

Turning now to the Maxwell equation, we have from
(2.28) that

[5—7] that the p„distribution is 5(p„), which is boost in-
variant according to (B7). Assuming boost-invariant ini-
tial conditions for f, invariance of the Boltzmann-Vlasov
assures that the distribution function is a function only of
the boost-invariant variables (r, rI —y) or (r,p„). The ki-
netic equation reduces to

Df „df „df pp dX
D~ ()q& " ~p. ' dq'd'qd'p

(5.1) Jcond +jpoldE
d7-

(5.6)

We shall write the transport equation in the comoving
coordinates and their conjugate momenta:

(r«x«3 «'9)«PIl (P««px«py«P«I) . (5.2)

In order to write the invariant source term in these coor-
dinates, we begin with the WKB formula, which is

dN

I ( g) '"de'd—'q]d'pi

=+[1+2f(p,r)]e IE(r)l

1 d p dpxdPq

( —g )'~ pog (2n. ) (2vr) rp,

Thus in 1+1 dimensions we have

(5.7)

dp~j =2e p& p&, ~

where j"" is the conduction current and j„"is the po-
larization current due to pair creation [8,10,11]. The in-
variant phase space in the comoving coordinates is

X ln 1+exp
~(m +p~)

e IE(r)l
(5.3)

2 dpi', Dfj F "I 2m', D~p
(5.8)

if the (constant) electric field is in the z direction. The +
refers to the cases of charged bosons or fermions, respec-
tively. Our model for the spatially homogeneous case
consists of applying this formula even for a time-
dependent electric field. Here we will allow the electric
field to be a function of the proper time, writing

(F" F )' =IE(r)l . (5.4)

In the spatially homogeneous case, we assumed that
particles are produced at rest, multiplying the WKB for-
mula by 5(p, ). This longitudinal momentum dependence
violates the Lorentz-boost symmetry. Here we assume

I

f(pz, r)=+ f dr'[1+2f(p&=O, r')]er'IE(r')I

=+[1+2f(P„=0, r) ]

X sgn[E(r) ]ln 1+exp
~m

leE(r)l

dp " =eF„,(r) (5.9)

1S

Assuming that at ~=~, there are no particles, the solu-
tion of (5.5) along the characteristic curves

X ln 1+exp &m.IE(r )I
5(p„—eA„(r')+eA„(r)) . (5.10)

Thus the system (5.5) and (5.6) reduces to

=+ f dr'[1+2f(p„=O,r')],r'IE(r')
I
ln 1+expdE e2 A (r') —A (r)

mm ~«
" [[A(r') —A(r)] +r ]'

+[1+2f(p„=O,r ) ] 2 sgn[E(r) ]ln 1+exp
mm

(5.11)

A related derivation (but without the generality and fully covariance of the present one) for this model in terms of different vari-

ables can be found in [5—7].
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In the above expression and in the following, we intro-
duce the dimensionless variables

m~ —+z, eA ~A, eE ej„
2m

(5.12)

For scalar particles we carry out the calculations in
terms of the conformal proper time u (see Appendix C).
This gives us more control over the physics at very early
times, allowing us to choose a well-behaved initial adia-
batic vacuum, corresponding to the initial conditions

W'1, (uo ) =wk(uo ),
Wk( uo ) =wk(un ) .

(5.13)

It is worth mentioning that the adiabatic vacuum in
terms of u is not identical to the adiabatic vacuum in
terms of ~; they are related by a Bogolyubov transforma-
tion. The variable u is regular and improves numerical
stability near the singular point ~=0.

For an initial adiabatic vacuum state, the renormalized
Maxwell equation is given by
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3- FIG. 1. Conformal proper-time evolution of
(a) the gauge field 3 (u), (b) electric field E(u),
and (c) current j„(u), for scalar particles in di-
mension)ess units [Eq. (5.12)]. The initial con-
ditions are that of adiabatic vacuum with
respect to conformal u time at u = —2 with in-
itial electric field E(u = —2) =4.0.
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dE
du

e~ /m „dk„ 1"(k —3)
2m " WI, uR

1

Wk (El )
(5.14)

where 5e =(12vrm ) '. Equations (5.14) and (C7) define the numerical problem for the boson case. In solving (5.14)
and (C7), we discretize the momentum variable in a box with periodic boundary conditions, k„~ 2vrn/I. , where
I. =500 and n ranges from 1 to 3 X 10 . The time step in u was taken to be 5 X 10

To compare the Boltzmann-Vlasov phenomenological model to the above semiclassical system, Eq. (5.11) is written in

terms of the conformal proper time variable u and becomes
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FIG. 2. Conformal proper-time evolution of
(a) electric field E(u) and (b) scalar particle
current j„(u) with the same initial conditions
as in Fig. 1 (solid lines) compared to solution
of the Boltzmann-Vlasov equation (dashed
line). (c) and (d) are the same as (a) and (b) but
for initial adiabatic vacuum conditions at
u =0.
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dE e~ J. d, [ f(, )
A(u') —A(u)+ „,u, lE(u') 1ln 1+exp lE(u')

I

lC 2

+[1+2fp„=O, u )] sgn[E(u)]ln 1+ex
7TPl

exp
E(u)l

(5.15)
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1.5- FIG. 6. Proper-time evolution of dN/dg
for fermions.
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(solid curve), where the initial conditions were fixed at
~=1. All succeeding figures refer to these same initial
conditions. In Fig. 4 we present the time evolution for ~e
where e= T,. We see that at large ~ this quantity oscil-
lates around a fixed value. In Fig. 5 we show the time
evolution of p/e where pH=T„„. In this lowest-order
calculation, there is no true dissipation and no particular
equation of state emerges from the time evolution, al-
though there is some indication that p approaches zero
faster than e. In Fig. 6 we present the evolution of the
particle density dN/dq After a. short time (of order
r = 15), the particle density reaches a plateau which does
not change much in the subsequent evolution. This is
consistent with the fact that the Schwinger particle
creation mechanism turns off rapidly as the electric field
decreases. In Fig. 7 we present the time evolution of
rE/(dN/de) One can . see that at large r there is some
indication that this ratio approaches the value of the
mass (we choose m = 1), which agrees with the prediction
of the hydrodynamic model discussed in Sec. IV [see Eq.
(4.29)]. This lends support to the idea that the pion spec-
trum can be calculated using (4.28). Defining the
Boltzmann entropy by (A10) of Appendix A, we plot rs
as a function of ~ in Fig. 8. Note that this quantity is
roughly constant after ~=20, by which time particle pro-
duction has nearly ceased [compare Fig. 6]. This agrees

with the result expected from the hydrodynamic point of
view [Eq. (4.23)]. Finally, in Fig. 9, we plot the effective
"temperature, " defined by the hydrodynamic relation
(4.21), but using the Boltzmann entropy of Fig. 8.

In conclusion, the present results using boost-invariant
coordinates fall into line with previous studies [10,11] of
boson and fermion pair production from an electric field
with back reaction. The renormalized field-theoretic cal-
culation is tractable, yielding oscillatory behavior for a
relativistic plasma, which can also be well described by
means of a classical transport equation with a source
term derived from the Schwinger mechanism modified by
Bose enhancement or Pauli blocking. For the boost-
invariant case, the electric field decays much more rapid-
ly than for Cartesian coordinates, where the sole decay
mechanism is transfer of energy to the produced pairs.
The ability to use the transport-equation approximation
for boost-invariant pair production justifies in part the
use that has been made of this method of description in
past studies of the production of the quark-gluon plasma
and opens the way for further applications in the future.
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APPENDIX A:
PARTICLE SPECTRUM OF FERMIONS

We present here the formulas for direct calculation of
the fermion particle spectrum in the adiabatic method.
For further discussion, see [11,12].

During particle production, particle number is not
conserved or even uniquely defined. In terms of the adia-

owever, a naturalbatic expansion of Secs. III and IV h

su est
e nition of an interpolating particle-number oper t
gg sts itself. One may simply expand the field in terms

of the time-dependent creation and annihilation operators
of the lowest-order adiabatic vacuum

%'(x)= f [dk] g [a, (k;r)yk, (r)e'""

where

+c, ( —k;~)y k, (z)e '"'"]

1ks 'V +p d 1

d 7- 27.

+
gas

S

(A2)

analogously to Eq. (2.44) of the text, but in which the ex-
act mode functions fk, obeying (2.47) are replaced by
lowest-order adiabatic mode functions +— . The
requency adiabatic mode function is given e 1' '

1 b
substitutin co

'
g i,(r) for ilk(~) in the expressions (2.51) and

(2.54) for fk, in the text.
an e correspondingThe adiabatic basis functions d th

oc -space particle annihilation and creation o
an c, ( —k;r) defined in this way are related to

transformation.a ion. This transformation is easily found by
n ogoiu ov

using the Dirac inner product
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FIG.G. ~. Proper-time evolution of the
eA'ective hydrodynamical "temperature" for
fermions.
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(u, v)= f dX"uy„v= fd x& —gu v . (A3)

Indeed, by substituting the two expansions of the field
operator in terms of the two different bases (2.42) and
(Al), we find

a, (k;r) =(yk, (~)e'"'",0')

dgk+,
* df k,

dT

2g+ef +
(A5)

with

=a(ks;r)b, (k)+P*(ks;~)d, (
—k), (A4)

Squaring this expression and using (2.51) and its analogue
for the adiabatic mode function g &„we arrive at

IP(ks;r) I'=1 —
I
a(k;r) I'

=4 fk, 'lg k, I
'(0~k —ir'„) ( &k, —~k) +

2coi

Qk, +A.,~„cok+A,,nq

20k,

2

(A6)

+ [1 N(ks)—] I f3(ks;r)l

+2Re[a(ks;r)P(ks;r)F(ks)] . (A7)

For initial conditions which correspond to the adiabatic
vacuum,

&k.«0) =~k(&o»

+ks ( ro) ~k( ro)
(A8)

one can choose N+(ks)=F(ks)=0 and thus
N+(ks, r)= p(ks;r)l . Hence the time-dependent parti-
cle number defined by (A7) with (A6) has the property of
starting at zero at ~=0 if the initial state is the adiabatic
vacuum state. At late times, when electric fields go to
zero, it approaches the usual out-state number operator.
Thus we can identify the phase-space density as

f(k„,k„r)= „„„=IP(k„,k„r) I' . (A9)

The quantity defined in this way from first principles of
the microscopic quantum theory agrees quite well (after
coarse graining) with the single-particle distribution func-
tion f(p, r), obtained by solving the Boltzmann-Vlasov
equation (5.1). From the single-particle distribution, one
can construct the Boltzmann entropy density in the
comoving frame:

The expectation value of the number operator with
respect to the adiabatic Fock-space operators in (Al) is
then simply the sum over s = 1,2 or s =3,4 of

N(ks, r) =N+ (ks ) la(ks;r) I

APPENDIX B: FLUID RAPIDITY
AND PARTICLE RAPIDITY DISTRIBUTIONS

1 t+zr=(t z)'~ 2)
—=—ln

2 t —z

p =Et/w —pz/w, p„=—Ez+tp .
(B1)

In hydrodynamical models one has a purely phenome-
nological description in terms of the collective
variables —energy density, pressure, and hydrodynamic
four-velocity. Using a criterion for hadronization such as
those described by Landau [18] and by Cooper, Frye, and
Schonberg [19], one determines the particle spectra by
making a further assumption that at breakup the Quid ve-
locity is equal to the particle velocity. In our field-
theoretic treatment, no such further assumption is needed
as long as boost invariance holds and we determine the
particle spectrum along a surface of constant ~. In this
appendix we will show the equivalence dN/drl=dN/dy.

One ingredient in the proof is the fact that the trans-
formation of coordinates to the (g, r) system is a transfor-
mation to a local frame that moves with constant velocity
tanhg with respect to the Minkowski center-of-mass
frame; i.e., the comoving frame is not accelerated with
respect to the Minkowski frame. Because of this, the to-
tal number of particles counted in that frame is the same
as the number of particles in the Minkowski frame of
reference. The second ingredient is that in order for the
phase-space volume to be preserved under our coordinate
transformation, we need to ensure that the transforma-
tion in phase space is canonical in the classical sense of
preserving Poisson brackets.

Consider then the coordinate transformation

The Poisson brackets are defined as

a~ aa
ap ax

aa aa
aE at(A10)

dk„dk~s(r)= ——f "
If lnf+(1 —f )ln(1 f)]-(2'�)3

aa aa a~ aa
ap ax+ at aE

Iff approaches a Fermi-Dirac equilibrium distribution at
late ~, then this Boltzmann entropy will agree with the
quantity (4.24) defined by the energy-momentum tensor
in Sec. IV. The Poisson brackets of these quantities are

(B2)
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=0, [p„,p, 1
=0

(83 )

m ~=e "

In 1 + 1 dimensions the line element reads

(C 1 )

E+k,
y =—1n

2 E—k,
(84)

Thus we have

We see that the above transformation is canonical .
The phase-space density of particles can be derived as

shown in Appendix A, and it is found to be g indepen-
dent. In order to obtain the rapidity distribution, we
change variables from ( q, k „)to ( z,y ), where y is the par-
ticle rapidity

2 Q

ds = dt—+dz = ( —du +dr) ) .
m

(C2)

The transformation from the Minkowski t, z coordinates
to the Kasner u, g coordinates is conformal . We shall
refer to u as the conformal proper time.

Instead of expanding the field g as in (2. 19), we expand
the field P with the mode functions gk =fk /&r, which
satisfy

d'gk 1 dgk, [k„—e& (r)]+— + m i +
7 dr 7-'

dX dX
d q dk „dkqd x~ dy dz d k~d x~

where the Jacobian is

(85) (C3)

where m ~
—=k ~ +m . In terms of u, the mode equation is

Bk„/By Bk„/Bz

aq /ay aq /az

p, and p „can be rewritten as

p, =micosh(g —y )

p„= ™isinh(l —y )

Bk „
By Bz

(87)

+wk(u )gk(u)=0,
du

where

2

wk(u )—: e "+[k„—eA (u )]

We parametrize gk in a WKB-like ansatz,

(C4)

(C&)

The particle spectrum is calculated at a fixed value of
and so g =arcsinh(z /r ) =g( z ). Thus, functionally, at
fixed ~ we have

1 0
gk(u)= exp i Wk—(u ')du '

+2Wk(u )
(C6)

p„+eA„=k„=k„[g(z)—y ]

The chain rule then gives

Bk„Bk„B~Bk„
Bz . B~ Bz By Bz

(89)

At constant r, then, J
~

=dz /dk „, which leads to the
desired result

+W=w(u),gJ 4 ~2 k k (C7)

where the overdot now denotes differentiation with
respect to u . The Maxwell equation for an initial vacuum
state is now

and again the real mode functions 8'k satisfy the
differential equation

dX dN

dy d
(8 10)

dE
du

=J

Since the right-hand side of (A9) is g independent,
dX /d g is fiat in g. From (8 10) we conclude that the dis-
tribution dN /dy is Aat, as expected.

APPEND IX C: SCALAR ELECTRODYNAMICS
IN CONFORMAL COORDINATES

or

d 3„dA „ k„—eA„(u )
e " " —2 " =e [dk]

du du Wg ( u )

(C9)

Since ~=0 is a singular point of our equations, we find
it convenient to introduce the conformal time coordinate
u via

In the radial Schrodinger equation, a singularity at r =0
prevents straightforward application of the WKB method. The
transformation r = ro exp u maps the singularity from the origin
to —(x) and enables one to use the WKB approximation in

terms of the new variable u [26]. Our situation is different, be-

cause in the vicinity of the singular point ~=0 we can still use
the adiabatic expansion in terms of ~; the variable u is still help-
ful in avoiding numerical difficulties.

Performing the adiabatic expansion of Wk ( u ) for large
k, we find

d Ad
e

du 2 du

d 2 d A
2 L$ 2$ 2

du

where

+ finite terms (C 10)

4For a general Kasner metric, the conformal time is defined as

ri f—= f [ (
—g )

' ~ ] ', where g is the determinant of (2.5) .
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5e = lnA/I1

24~
(C 1 1) 5e =

12~m
(C12)

in 3+ 1 dimensions and

in 1+1 dimensions, as expected. Note that the renormal-
ization procedure introduces no additional interactions,
in contrast with (3.11) in (ri, r) coordinates.
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