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Nonperturbative approach to scalar field triviality
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We show how the nonlinear 5 expansion correctly predicts when quantum fluctuations will screen the
forces between scalar fields.
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There are four possibilities, displayed in Fig. 1.

(i) 2 —5(d —2) )0, (3)

for which power counting shows that it is not possible to
redefine away ultraviolet singularities to arbitrary order.
The theory is perturbatively nonrenorrnalizable.

(ii) 2 —5(d —2) =0, (4)

for which power counting shows that it is possible to
eliminate ultraviolet singularities. The theory is pertur-
batively renormalizable.

(iii) 2 —5(d —2) (0,
for which all ultraviolet singularities can again be elim-

For many years quantum field theorists had only the
weak-coupling Feynman diagram expansion as a calcula-
tional tool. Because of the pointlike nature of the parti-
cles described by the quantum fields, individual diagrams
in the series are beset by ultraviolet singularities. Simple
power-counting arguments in momentum space show
that our ability to control these singularities depends on
the dimensionality of the coupling strengths. For exam-
ple, consider the simplest theory of all, that of a single
scalar field P with interaction A, (P )" in d spacetime di-
mensions. Setting n =1+6, 5)0, the Lagrangian densi-
ty is most conveniently written as

L = & (tip)&+ & @2/2+ gM2$2($2M2 d)s—
In (1), p is the bare mass, A, is the dimensionless coupling
constant (in units in which trt=c = 1) and M is a fixed pa-
rameter that allows the interaction to have the correct di-
mensions.

The dimensionful coupling constant is, from (1),

(2)

inated. In fact, not all counterterms are formally infinite
and the theory is perturbatively super-renorrnalizable.

(iv) 5=0, (6)

corresponding to the trivial case of a free field L-angrangi-
an (1).

In recent times our understanding of these different re-
gions of parameter space has improved considerably as
alternatives to the finite-order weak coupling have been
devised. Made plausible by general arguments (e.g., Ref.
[1]), the consensus is that scalar field theories satisfying
(3) are triuial (i.e., the renormalized coupling constant

Uanishes) Tha.t is, the unrenormalized interactions
are too singular to implement, and the only way out is
quantum suicide, whereby they do not exist on renormal-
ization. For example, we know that, for d & 4, the theory
is trivial for 5= 1 and 2 [2,3].

The boundary line (4) is particularly interesting, since
it is difficult to decide whether or not a theory on it is
trivial. Simple calculations are often misleading. For ex-
ample, mean-field theory predicts nontriviality when
d =4 and 5=1 (i.e. four-dimensional k(tb )4 theory). In
fact, A, (P )4 is firmly believed to be trivial [4]. However,
it seems likely that A.P in d =3 dimensions is not trivial
[12]. Other theories on the boundary line between renor-
malizability and nonrenormalizability are more prob-
lematical. The A,P theory in d =6 dimensions is asymp-
totically free [5], often used as a trial ground for calcula-
tions with QCD in mind [6]. Although asymptotic free-
dom is usually seen as a sufficient condition for nontrivi-
ality, in this case the Hamiltonian is unbounded below, to
give an unstable theory. We have avoided the problem
by adopting (1) which, for 5= —,', is a ~P~ theory, guaran-
teeing an acceptable but nonanalytic Hamiltonian.

Theories on the boundary (4) with large 5 have been
studied by Lipatov [6] who has calculated the P function
as 5~ Oc, d ~2 in (1) in what is, essentially, a I /5 expan-
sion. Simplification occurs because, at each order in the

P function, only one diagram survives the 5~ 0o limit, in

FIG. 1. A "petal" diagram of the type necessary for the cal-
culation of the leading term in the nonlinear 5 expansion.

There are slight complications in that large-6 interactions
generate lower-5 interactions (e.g., a A.P theory will generate
gP terms of necessity). Triviality in this case requires that both
renormalized couplings vanish.
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which all points are joined by an equal number of lines.
(Of course, this requires that we work in fractional di-
mensions. ) He has shown that, in the limit, there is at
least one ultraviolet fixed point, A, *&0, implying a non-
trivial theory. The original hope that this leading term
was valid down to 6=1 is not sustainable, as we noted
earlier (although valid at 5=2 [12]),but it is an ingenious
attempt to tackle the highly nonlinear 6 & 1 theories.

In this paper we adopt the other extreme and address
the problem of the triviality of the theory (1) by expand-
ing in 5 about the free theory, 5=0, for all d. Along the
boundary line (4) this corresponds to a large-d limit.

The 5 expansion of (1) was originally proposed by
Bender et al. [7]. It is of no surprise that, as an expan-
sion in In~/, it is difficult to implement, practically im-
possible beyond terms O(5 ). However, even at O(5) it
has been shown by Bender and Jones [8] that we can
correctly predict the existence, or not, of interacting
theories at 6= 1. This paper continues that work to the
more general case, with particular emphasis on the
boundary. We note that the

~ P ~

"+ ' theory becomes
singular for 5& —1 and hence is unreliable for ~5~ ) l.
This is confirmed by simple calculations, but analytic
continuation beyond 6= 1 is not precluded. Nonetheless,
it is the antithesis to the Lipatov regime and can be un-
derstood as complementary to it.

We start by extending the work of Ref. [8]. Technical-
ly, the easiest quantities to calculate are zero-momentum
Green's functions, rather than the P function. We com-
pute the renorrnalized coupling constant G~ (at zero
momentum) in terms of the bare mass )u, and the bare
coupling constant A, . As always, regularization is neces-
sary. By insisting on a finite fixed value of the renormal-
ized mass mz, we investigate the behavior of Gz as the
regularization is removed. If Gz is forced to vanish the
theory is trivial. If not, it is not trivial. (If Gz is infinite
we have adopted an incorrect or inappropriate regulari-
zation. )

In the general case of (kp ")d theories, the dimension-
less renormalized coupling constant G~ is given by

G =( 1)n+)ZnG(2&)(p 0 p p)M
—[d+&(2—d))

where Z is the wave-function renormalization constant
and M~ is the renormalized mass. Detailed calculations
of Z, Mz, and Gz are straightforward to first order in 6.
From the observation that

We have yet to set n =6+1. On doing so, to leading
order we have

X2'+'r(I +5)G
[M b, (0)]

M„' =m'+26k, M'S . (12)

In the above, b, (x) represents the free propagator in d-
dimensional coordinate space and can be expressed as the
associated Bessel function

b(x)=(2~) " (x/m)' K, d&2(mx) . (13)

We regulate our expressions by introducing a short-
distance cutoff a; that is, the "petal" b, (0) is replaced by
b, (a) where

b(a)=(2') (a/m)' " K, d&2(ma) . (14)

The bare parameter m is a function of the cutoff a. There
are three cases to examine since we do not know a priori
how ma should behave as a goes to zero.

Case 1:ma ((1 as a ~0. Here, the Bessel function in
(14) has

b,(a)- I ——1 (ma )'
4m 2

as its leading singularity when 6 & 2.
Case 2: ma —1 as a ~0. In this case,

b, (a)-km —k(a )'

b,(a)- 1

2m
27TQ

e
—ma

We renormalize by substituting (11) into (12), thereby
eliminating the unrenormalized coupling constant A, in
favor of the renormalized coupling constant Gz.

SG~ [M b(a)] M
M =m+

2 I(5)
(18)

Case 1. For ma «1 as a —+0, the substitution of (15)
into (18) gives

as in case 1. When the prefactor is not important these
two cases will be taken together.

Case 3: ma » 1 as a ~0. Here, the asymptotic
behavior of the Bessel function is

(1—8)/2

Ing =B(P ) /Ba (),
1 )nSG M(2 —d)5+2

M =m+ R

2'r(5)
1 dr ——1

4~ 2

(10)

S=1+/( —,')+In[2b(0)M "] .

we require only the calculation of "petal" diagrams (see
Fig. 1) with all possible numbers of petals and the
appropriate number of external legs (prior to
differentiation). Explicitly [8],
Z= 1+0(5 ), (8)

M~ =m +25AM S+O(5 ), (9)

( 1) 1(,5M 2 (n 2)!
[M "5(0)]"

where m =p

x ( 2)(1—d/2)5 (19)

SG I ——1
1

4m 2
(20)

We now insist that the renormalized mass be finite.
However, as a ~0, the second term on the right-hand
side of (19) becomes infinite for d )2. Therefore, both
terms on the right-hand side must be infinite and of the
same order of magnitude as a ~0 to combine to give a
finite result for Mz. On multiplying by a,

6

(Ma&Fr)' ' + ——(ma) «1
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X e
—ma6 (22)

Following our previous line of argument, the second term
on the right-hand side must be —m . However, solving
for G~ always implies GR~~ as ma~~. We must
therefore assume that case 3 does not arise.

We now apply these techniques to investigate the trivi-
ality or otherwise of (XP )d+ ' scalar theory along the
boundary. The limit d~~ corresponds to the limit
5~0, which, in turn, corresponds to the limit n —+1 in
the nonperturbative expansion method we are employing.
In terms of A,P' "' theory, we reexpress d of (4) as
d =2+2/6. As a result, the renormalized mass can now
be written as

It follows that if
2 —5(d —2) ~0, (21)

then GR is driven to zero, as anticipated. Because of the
logarithm in S, condition (23) includes the boundary (iii).
That is, for small 5 the theories on the boundary are free,
in contrast with the large-5 results of Lipatov, for which
the theories are nontrivial. We note that we cannot infer
from (23) that the theory will be nontrivial in region (iii)
for 5 & 1, only that it will be trivial outside it.

Case 2 gives identical results.
Case 3. If we try to tune m as a function of a so that

(ma) )) 1 we have, upon substituting (17) into (18),

G M(2 —d)$+2 5 ( 1 —d)5/2
R 1 2~aMR=m +
2sr(5) 2m m

the constraint cannot be seen at leading order, we should
restrict ourselves to 5~1. Somehow, the expansion is
selecting the relevant quantum fluctuations that can lead
to charge shielding. The results are displayed in Fig. 2.

In this it is to be contrasted with the linear 5 expansion
which succeeded it [9]. Despite the terminology, this ap-
proach is very different in principle. The idea is to linear-
ize the theory (1), now written as

x= '(ay)'+-' 'y'+xM' '" -'"' -"(y-')" (28)

To this end we write

X=—'(ay) +—'0 y +—'5(p —n )y

+5' 2—
( n —1)(d —2)( y2 )

n (29)

dd
Vo= f „ ln[p +0 —5(O —m )](2' )"

dd Q2 2= f "",in( '+O') 5f "—P
(2m ) (2') p —0 (30)

on expanding the log term to first order. The effective
potential to first order is then given by

where 0 is a free parameter, to be fixed by variation.
For 5=0 we have a free theory, for 6=1 the theory that
we wish to solve.

A calculation of the effective potential V(P) to order
6 at 6 = 1 again requires only "petal" diagrams.
Specifically, the vacuum contribution to the effective po-
tential (usually ignored, but now a variable) is

SG~5b (a)
I (1+5)

in which

[b (a) ]s= [(2~)' (m /a) [K,zs(ma) ) ( .

(23)

(24)

V = V +—' 'y'+5aM' y2 (2m)!Ci

X [M g(0))n

(31)

1 1——r——1/5
ma
2

(25)

As before, we examine, in turn, the three possibilities
ma «1, ma —1, and ma ))1 as a —+0.

Case l. Ia «1, and so
where (n —m) is the number of loops (petals) b, (0), 2m is
the number of external legs, and C2 is the appropriate
symmetry factor for the diagram with (n —m) loops. In
(31) b,(0) is now the petal for a scalar field of mass A.

For a finite Mz (infinite m ) this implies

(ma) 2 I (1+5)e
2S (2~)'+ ' (26)

r(i +5)k '
s 0 2 in(m /M)

(27)

That is, GR ~0 as m —+ ~, again suggesting a free theory.
Case 3. ma )) 1 again gives nonsense.
In summary, the nonlinear 5 expansion is successful (at

leading order) at predicting the triviality of scalar
theories when 5~0. The only caveat is that, although

Thus, GR ~0 as d ~~ suggesting that the theory
remains trivial as its dimensionality becomes infinite
along the boundary.

Case 2. ma —1 and the free propagator goes like
b,(a) km -Since S—. (2/5)ln(m/M), a finite Mz re-
quires

I

I

I

I

I

I

L
I

I

I

I
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FIG. 2. The curve asymptotic to d =2 and 6=0 is the trivial-
ity boundary 2—6(d —2) =0. The nonlinear 6 expansion (valid
for 6 ~ 1) shows triviality in the shaded region, and the bound-
ary for 6~1. Lipatov's calculation shows nontriviality along
the boundary for large 6(6 & 1). The linear 6 expansion to lead-
ing order disregards the boundary, predicting nontriviality on
the boundary of the shaded region at least (e.g. , 4&d (6 for
6=1).
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We fix 0 by imposing the condition

(32)

(the so-called strong principle of minimum sensitivity
[10]). For 5=1 this gives

n'= +~M y """'M' "&'
( — )

(2m )!C2

result (at N= 1) of the O(N) extension of (1), in which
P ~P /N and A.~Nk. This looks very much like (18),
but for (1) the substitution of p, for m, (2) the replace-
ment of the renormalized coupling constant SGR by the
unrenormalized A, , and (3) the evaluation of b, (0) as h(a)
with mass MR replacing m.

However, the similarity is very superficial. This be-
comes more apparent when the unrenormalized A, is re-
placed by the renormalized coupling GR, now given by

X [M2 —dg(0)](n —m —1)

The equation for the renormalized mass MR is

(33) =—+O(BA(0)" ),
GR

(39)

d'&(p, n'(p))
$2

(34)

subject to the equation of constraint (32) above. Since n
is itself a function of P, the full derivative is given by

d'v(y, n'(y) ) a'v a'v
dp r)(b Bn t)p

r

BV dQ
an'

dQ
dP

BV dQ
Bn dp

(35)

The calculation is greatly simplified by observing that

dQ
y=o

(36)

whence

8 V
R

Qp2
(37)

The only nonzero contribution from (33) occurs when
m =1, giving the result (C2 =2n)

Mz =p +2n (2n)!X[M "b(0)]" 'M (38)

where b, (0) is now the loop for a scalar field of mass M~.
That is, we have a self-consistent equation for MR that
corresponds to a summation of selective diagrams to all
orders in A, , as can be seen by iterating the right-hand side
of (38). Equation (38) essentially reproduces the large N-

where B = —db, (0)/dM~ is the zero-momentum bubble
diagram. For d &4 dimensions B is finite; for d =4 di-
mensions B diverges logarithmically for small a, whence
A, vanishes logarithmically for n =2 and remains finite
and nonzero for n ~ 2. For d )4 dimensions
B =O((M~a ) ).

The constraints on d and n for GR to be finite and
nonzero are much less restrictive than in the nonlinear
case. For example, for the canonical A, (P) in d =4 di-
mensions the logarithmic a dependence now occurs in the
denominator of the second term of (38), rather than in
the numerator. As a consequence there are no intima-
tions that the theory is trivial in this approximation.
This is equally true for the quartic theory in 4 & d & 6 di-
mensions, for which, because of its equivalence to the
large-N limit, the linear 6-expansion permits finite,
nonzero Gz [11]. Only for d ~ 6 dimensions do we recov-
er the correct triviality of the theory. Admittedly, these
results are proven only at leading order in the 6 expan-
sion. However, in the 1/X expansion we know that non-
triviality at leading order implies seeming nontriviality to
all orders. As a rearrangement of diagrams, we might ex-
pect the same for the 6 expansion.

Perhaps we should not be surprised at the inability of
the linear 6 expansion to predict triviality correctly. By
definition triviality is all but invisible in perturbation
theory and the linear 5 expansion provides too simple a
resummation of diagrams for the essential nonlinearity to
be exposed, despite the optimization condition.
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