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A general nonrelativistic field theory on the plane with couplings to an arbitrary number of
Abelian Chem-Simons gauge fields is considered. Elementary excitations of the system are shown to
exhibit fractional and mutual statistics. We identify the self-dual systems for which certain classical
and quantal aspects of the theory can be studied in a much simplified mathematical setting. Then,
specializing to the general self-dual system with two Chem-Simons gauge fields (and nonvanishing
mutual statistics parameter), we present a systematic analysis for the static vortexlike classical
solutions, with or without a uniform background magnetic field. Relativistic generalizations are also
discussed brieBy.
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I. INTRODUCTION

In two-dimensional space, we can have particles obey-
ing &actional statistics [1], and in the field-theoretic
context a similar effect is generated by introducing the
Chem-Simons (CS) term [2] in the action. The CS field
theory was then found to be useful in describing the frac-
tional quantum Hall states [3]. According to some re-
cent suggestions [4], a suitable generalization of it may
in fact provide a unified mathematical approach to the
long-distance physics of various quantum topological fm.u-

ids. The construction involves a set of Abelian gauge
fields a (I = 1, 2, . . . , N) with the CS-type term

[here (KIg) is a real symmetric matrix] as the sole kinetic-
energy density for them. By considering matter fields
with generic gauge-invariant couplings to the a 's, we ob-
tain a compound or multilayered system which exhibits
fractional statistics for the exchange of indistinguishable
particles and mutual "statistical" interactions between
particles belonging to different species (or layers). Mod-
els of a similar nature have been considered also in Ref.
[5], and as these authors emphasize, parity need not be
broken in a field theory with an even number of CS gauge
fields. See Ref. [6] for an application to the quantum Hall

effects in the double-layer electron system.
The purpose of this paper is twofold. First, we clar-

ify the precise nature of a nonrelativistic quantum field
theory incorporating the above form of CS-type interac-
tion. In particular, we find explicitly the corresponding
first-quantized description in the general n-body sector.
In the latter description, fractional and mutual statistics
for the particles are the manifestations of the Aharonov-
Bohm effect involving a combination of fictitious charges
and localized fI.uxes aKxed to them. This is described
in Sec. II. (For a complementary discussion on mutual
statistics from the braid group viewpoint, readers are re-
ferred to Ref. [7].)

Second, in Sec. III, we identify the corresponding
self dual system-(with an arbitrary background magnetic
field), which has a simpler mathematical structure than
the generic case due to hidden supersymmetry [8]. For in-
stance, thanks to the supersymmetry, one can construct
the exact many-body ground-state wave function in this
case. (See Ref. [9] for related discussions. ) In this pa-
per, however, we concentrate on the analysis of static
soliton solutions to the classical field equations that fol-
low, i.e. , look for a generalization of the 3ackiw-Pi so-
lutions [10,11]. More general types of vortex solitons,
which are likely to exhibit fractional and mutual statis-
tics themselves, are found. The self-duality equations
for our model share certain common elements with those
for self-dual non-Abelian CS vortices discussed recently
[12,13]. For instance, the Toda-type equation

(1.2)
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has a prominent role in both cases. But note that, in
our model, K = (K»i) need not be equal to the Car-
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tan matrix of a certain Lie algebra and very little is
known for this case. Concentrating on the case of two
CS gauge Belds, we will present a fairly detailed study
on the nature of possible self-dual vortex solutions, with
or without uniform background magnetic Beld. For the
case with nonzero magnetic fi.eld the self-duality equa-
tions were also touched upon in Ref. [6], but there is only
a minimal overlap between the latter work and ours.

Fully relativistic self-dual systems, including several
Abelian CS gauge Belds, are also possible, and we briefIy
discuss them in Sec. IV. The nature of static soliton
solutions is discussed in the special case of these mod-
els. Section V contains a summary and discussion of our
work. There are two appendixes. In the Brst we provide
the derivations of certain formulas appearing in Sec. II.
The second appendix contains the index-theorem analy-
sis for the self-dual system treated in this paper.

pathological cases, we will below assume that all ~1's are
nonzero and M & N; i.e. , the number of the CS Belds
does not exceed that of the matter Belds. Also, for def-
initeness, we shall take the potential U(@t, @) to have
the general form

U = ) V„(r, t) iFtt (r, t) 4„(r, t)

x @„(r',t) 4„(r,t), (2.3)

where V„„t(r—r') = V„t„(r' —r).
The stationary action principle for varying a~ yields

the Gauss laws (i,j = 1 or 2)

II. NONRELATIVISTIC QUANTUM FIELD
THEORY

6' = e'& V'; al = ——) q„'et e„.
Kl

p

(2.4)

ra A I) —KIE a Ottava
I=1

+) iMt, (a
"I," I I——) q„ao
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N

V' —— q„a ——epA'
2m&

~
hc " h,c" )

Choosing the basis where the matrix (Itlz) [see Eq.
(1.1)] is diagonal, let us consider the nonrelativistic CS
gauge-field theory deBned by the Lagrangian density

These, together with the Coulomb gauge conditions
V';al = 0, then determine a (r, t) in terms of the matter
densities p„(r, t) = 4t (r, t) 4„(r,t),

a, (r, t) = e'~V'~ —) q„d r' G(r —r') p„(r', t), (2.5)
p

where G is the Green's function for the 2-dimensional
(2D) Laplacian, i.e. ,

')v' G(r —r') = h (r —r'),
(2 6)

G(r —r') = ln ~r —r'~.
27r

—U(C t, 4), (2.1) Now the Hamiltonian operator of the system can be iden-
tiBed with

[e„(r,t), ~„ (",t)] = [et (r, t), e„',(.', t)], = 0,

[ill„(r, t), @„,(r', t)]~ ——b„„b (r —r').
(2.2)

where @~ (p=1, . . .,M) denote M difFer-
ent bosonic (fermionic) fields satisfying the equal-time
(anti) commutation relations

M
II = A' ) (rn, t)t(r, tn) +rU(CI, tI)),=2mp "'

p=1

(2 7)

where

II~(r, t) = V' ——) q„a (r, t)

[The subscript —(+) refers to the commutator (anticom-
mutator). ] This system possesses [U(1)] local gauge
invariance in connection with N independent CS gauge
Belds a, and we have included the external electromag-
netic Beld A " for the sake of generality. Excluding the

e„A'"(r, t) @~(r,t)

—= D@„(r,t), (2.8)

Note that p„vt A = 0, 1, or 2 and our (2+1)-dimensional
metric is given as II~„= diag( —1, 1, 1).

with the fields a expressed in terms of 4~ and 4 through
Eq. (2.5).

What we have in Eq. (2.7) is the properly ordered
Hamiltonian, and the corresponding operator Beld equa-
tions are
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ih "( ' ) = [@„(r,t), II]
Ot

h2= ) q„ao(r, t)4„(r,t) — D @~(r,t) + V„(r, t) @„(r,t)
2mpI

d'r' et, (r', t) V» (r —r') iI „(r', t)4„(r,t) + R, (2.9)

where 7Z, the quantum correction from operator ordering as first discussed in Ref. [11], is specified as

d r' l, l
p„(r', t)4„(r, t)

1 1

(47r2 r —r' 2y
(2.iO)

and the operators aol(r, t) represent the solutions to the equations

I
Kl~'~V'~as(r, t) +ih) " (D, il)'„) (r, t)4„(r, t) —@„(r,t)(D, tII„)(r, t) = 0 (2.11)

or, more explicitly,
I

ao(r, t) = ) " s'~V'~ d r'G(r —r') J„,(r', t),
KIc

J„,(r, t)—: (D;0„)'(r, t) 4„(r,t) —@t(r, t)(D; 4„)(r, t)

(2.12)

From the (anti)commutation relations (2.2) it follows that

[@„(r',t), a, (r, t)] = s' V'~ q„G(r —r—') ill„(r', t), (2.13)

and in evaluating the commutator needed to derive Eq. (2.9), we have taken (following Ref. [11])that

[e„,(r', t), n,'(r, t)]l, , = O;

i.e., the quantity e' V'~G(r —r') at the coincidence limit r' = r has been prescribed to be zero. Now we denote

(2.14)

I I
q„q„,

pp' = p'p
I KI

(2.i5)

and. then

D ttt (r, t) = IV; — er'7t) ttrr dr'G(r —r')pr (r', t) ——e A'"r(r, t)) (r,ttt)r,
h,c

p'
(2.i6)

) q„oo(r, t) = ) "" e*~V'~ d r'G(r —r') J„;(r',t),
p/

(2.17)

showing that the parameters q„'s and rl's enter the field equations only through the P» 's. From this we infer that
theories with difFerent q„'s and rl's but with the same values for the P»t 's are physically equivalent. A simple physical
interpretation for the P»t 's will be given later.

To see clearly the physical content of the above non-relativistic quantum 6.eld theory, we will now derive the
equivalent first-quantized description. For the two-particle sector of a one-layer system (i.e. , a single matter field),
this has been explicitly performed in Ref. [11].The general n-body sector with the Hamiltonian (2.7) will be considered
here. Let l4) denote any Heisenberg-picture state vector with the total number of particles equal to n = P„ i n„.

After the completion of this paper we learned that C.-L. Ho and Y. Hosotani [14] previously considered the Schrodinger
equation for n anyons (on a torus), starting from the corresponding CS field theory. Ours is more explicit and also deals with
a more general Hamiltonian, and so we include this discussion for the sake of completeness.
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Then the corresponding many-particle Schrodinger wave function is given by

(l) (M) (M)(r i, . . . , r, . . . , r i, . . . ,r, t) = 0nM

M

er(r,",t)" @r(r„',t) e),
p=i p'

(2.18)

where the vacuum ~0) satisfies the conditions @p(r, t) ~0) = 0 for any p = 1, . . . , M. Now, using the field equations
(2.9), we have

& (l) (l) (M) (M) t~ih 4 rl, . . . , r„,. . . , rl, . . . , r„,t
p

0 @,(rr, t) te, (rt',t, t))gn, !

np

x ) O(rrI rtt) . . (th@(r r, ter)
~

@r(rtrt, t) j-gn„!"' ( at""'
X . )CM r], t ' @M r„,t

1 (M)
&M ~

= A+B+C+D, (2.19)

with
np

A = ) 0 ) @p(r,P, t)
p k=1

x ) e*ttt, '" d r't (r„—r') J (r', tr) @ (r„r, r) @ (r rtt)rtI . O~ ~ ~ (2.2o)

np

R=) 0 . ) 4p(r,",t)
p k=1

62
X ~ ~ ~

277ip
~( A:) ~( k)) P dz G( ()

) ( ])
C

p'

2

e t;"(r xt) er@ (r rtte)rt~ |ter(rtrtt)) 4, (2.21)

C = ) 0 . . ) @p(ri", t) Vp(rk", t)4p(r&", t) +) d r'i1)'„, (r', t)V„pt(rk" —r')@p (r', t)@p(rk, t)

x 4 (rtrt, t)) O (2.22)

np

n=) o." ) ' e„(r',p', t)
p k=l

p2
2m I c

p/ p
d r', p (r', t)@r(rtertt) . . 8 (r J, tr)) tr, . C'

47r /r!p! rt/2
(2.23)

where V', ' denotes the derivative with respect to rkP .
The contributions designated as C and D above have the structure of the standard one-body and two-body inter-

action terms. So we may immediately rewrite them as [15]

C= ~ ) V„(r„'"',t)+-) )
(p, k)

'
(p, k} (. ,k )~(,,k}

(2.24)

D= —, ): ):
(p k) (p k )g(p k)

2m tc2 "" 47( ) &»p'
(2.25)
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where the sum 2 P( k) P(, k, )&( k) has the effect of taking in once every different set of pairs (p, k) and (p', k'),
excluding the case with p' = p and k' = A:. On the other hand, we show in Appendix A that the contributions B' and
A above can in fact be expressed as

(p k)

+(p, k) &,
& +(p, k)

hc
(p', k') ((p,k)

/

P „G( „" — (", )) — „A'"( (" t)
hc

(2.26)

.,~., )G( (.) .))
(p, k) (p, k )((p k)

g(p'»') '&g(p'»')
X

(+// I //) ~(+ I )
(gy// I/, // ) g(p/ I / )

ppipiiG(rk, —rk„) — ep~A, (rk, , t)(p ) (p ) ex (p )

hc

(2.27)

where P(, k, )&( k) denotes the sum over all indices (p', k') that appear on the left of rk(") in the arrangement

(ri( ), . . . , r(, , . . . , ri", . . . , rk("), . . . , r("„),. . . , ri, . . . , r ~ ). In Appendix A it is further shown (after a bit involved
manipulations) that the contributions A, B, and D above combine to give a surprisingly simple expression, namely,

h2
A+ B+D = ) ~

—
~

V!'")—
(p, k)

2mp ]
,~ +(p, k)

hc ((, ,k )g(p, k)
)

(p) (p')

(2.2S)

Using this result in Eq. (2.19), we then find that the appropriate many-particle Schrodinger equation reads

i
- 2

(p, k)

(p, k) (,k) ( ', k') g(,k)

(2.29)

where we have defined

/

A(p k), (ri', . . . , r„)= e' V",.""' ). Ppp G(r„'"' —r„'", ')
')8( ) )

V~(p, k)
2 2

(p' k') (p" k")W(p' k')
Pp p G(rk, —r„„)(p') (p//)

The wave function 4 should be single valued with respect
to every particle coordinate and satisfy the symmetry
requirement appropriate to bosons or fermions,

(p) (p) ) ~~ ( (p) (p)@( r r )
—mih( r r )/U 1 kQ kg k)

(2.31)

The Schrodinger equation (2.29) provides an equivalent
first-quantized description for the quantum field theory
defined by the ordered Hamiltonian operator (2.7). The
entire effect of the CS interactions now enters through

the vector potentials A(p k), which can be related to the
induced Aharonov-Bohm-type interactions between the
charge-Aux composites of suitable nature. In particular,
the form (2.30) implies that the Aharonov-Bohm inter-
action strength between the two particles carrying the
labels p and p' is equal to —Pppi. A straightforward in-
terpretation of this is as follows. In view of the fact that
we had N Abelian CS gauge fields a„(I = 1, . . . , N),
we associate with a type-p particle an N-tuple of charges
(qi, . . . , q~) and also an N-tuple of corresponding fluxes

1

(—a, . . . ,
—~) in accordance with the Gauss laws (2.4).
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Then, given two particles from type-p and type-p' each,
the expected strength of the Aharonov-Bohm interaction

I
will be p& q„(——")= —ppp~, in agreement with the ob-
servation we just made. [Actually, with the Aharonov-
Casher interaction [16] taken as an additional effect to
the Aharonov-Bohm interaction, the flux affixed to a p-

1 N

type particle will have to read (— ~, . . . , — ~ ). Note
that, in interpreting the many-particle Schrodinger equa-
tion (2.29), we are in no way bound by the Gauss laws
(2 4) ]

We here remark that the above interpretation, based
on % distinct U(1) charges and corresponding flushes, is
not the only possible. We will illustrate this phenomenon
through a closer look at the N = 1 and N = 2 cases.
With K = 1 (i.e. , one CS gauge field only) but arbitrary

I

number of matter fields, we may write Pppi = ' " and
so assign flux —~ to a particle of charge qp, here, the
charge-flux ratio is necessarily the same for all particle
species. With N = 2 (i.e. , two CS gauge fields), on the
other hand, we have the formula

duced to a U(1) CS theory; i.e. , from the two CS gauge
fields, it is only their particular linear combination that
has a dynamical role. [Incidentally, if I i+2 ( 0, we will
always be allowed to set ~1 ———v2 ——K thanks to the
rescaling freedom of the CS fields. Then we may intro-
duce new CS fields v„, v„by(1) (2)

(U(') —.(')), (2.36)
2

and in terms of these fields the CS Lagrangian becomes

(2.37)

The Lagrangian of this form has been considered recently
by Wilczek [5].] It should be an interesting mathematical
exercise to extend the above discussion to the case of
general N, but it is not pursued in this paper.

As is well known, the Aharonov-Bohm interaction af-
fects the statistical character of the particles involved. To
see this, observe that the vector potential in Eq. (2.30)
is locally a pure gauge:

1 1 2 2
q„q„, q„q„,pp'= +

K1 K2
(p, p' = 1, 2, . . . , M), (2.32) (1) (M} (p k)

A(pl, );(r, , . . . , r„)= —V', ' A,

from which we immediately derive the results

P„„,( Pp„Pp „ if v. iK2 ) 0,

p„„,) p„„pp „ if rir2 ( 0,
(2.33)

foi any given p, p'. Equation (2.33) puts a restriction on
the possible values of the p„„I for M ) 2 [to be realizable
by a U(1) xU(1) CS field theory], and here the sign of
K1K2 matters also. As we described in the previous para-
graph, this system may be related to that of composites
carrying appropriate two-vector charges and correspond-
ing two-vector fluxes. But, for the case with v1K2 & 1,
an alternative, in some sense simpler, interpretation is
also available. Specifically, we assign (scalar) charge

1 2 1 2

to a type-p particle, and then the Aharonov-Bohm and
Aharonov-Casher interactions between two particles be-
longing to the type-p and type-p', respectively, will have
the net strength

1 1
I

q, 4, +q, 4, =+
2 2

q„q„,
(2.34)

2 (for every p, p'), (2.35)

and for this case the charge-flux ratios qp/Pp become in-
dependent of p. When the Pppi's satisfy the conditions
(2.35), the equivalent U(1) xU(1) CS theory constructed
according to the above correspondence is effectively re-

i.e. , equal to P„„[seeEq. (2.32)] under the restriction( 0. This shows that a multicomponent system
of' charge-flux composites, with diferent charge-flux ra-
tios for individual components, can equivalently be rep-
resented by a U(1) xU(1) CS field theory. We have an
exceptional situation if

A=- ) )
{p/ kl ) (pll kl/ )g(p/ Jg/ )

1
ppp 27'

( (p') (p") )
x arctan

I +7/I

(2.38)

So, by redefining the single-valued wave function 4' ac-
cording to

4(ri, . . . , r( ), t) = e &. 4'(ri, . . . ,r, t), (2.39)

we may have the gauge potentials A(p I, ) disappear in
the Schrodinger equation for O'. But the gauge function
A here being multivalued in general, 4 will have to be
multivalued (for a single-valued 4) and so satisfy highly
nontrivial boundary conditions that are sensitive to the
Ppipii s. To be exPlicit, consider exchanging the Positions
of two identical particles, say, r& and r&, with the func-

tion 4(. . . , r&, . . . , r&, . . .) along a certain closed path(p) (p)

C (see Fig. 1). Then, from Eqs. (2.31) and (2.39), the
resulting expression should differ &om the original by the
phase factor +e» I»e& ~( ), where p(C) is equal to the
sum of the Pppi's over the index set (p', k') associated

I

with the r&", 's in the interior of C. [Here an implicit

assumption is that no position variable other than r&"

and r&" takes values on C.] Also note that as we allow a
specific position variable r&" to be taken along a closed
path C, the initial and final expressions of 4 should dif-
fer by a phase e&.~( ), with p(C) defined as above. If all
Pppi's with p g p' vanish, the system is that of M species
of &actional-statistics-obeying particles. In the terminol-
ogy of Wilczek [5], the Pppi's with p g p' are relevant for
mutual statistics, while the P»'s are responsible for more
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tain any concrete information on its behavior. Naturally,
one might then ask whether there exists a certain special
choice of the potential U(@t, iIJ) for which the mathe-
matical treatment of the system becomes more tractable.
This leads us to consider the so-called self-dual system,
which is based on the potential

FIG. 1. Closed curve C formed as the positions of two iden-
tical particles, r&" and r&", are exchanged. ~pep& "(r)

I
~pt(r t)~p(r t)2m„c )p

usual factional statistics. We close this section with the
remark that, because of the highly nontrivial nature of
the boundary conditions satisfied by 4, the regular gauge
description based on a single-valued function 4 should be
preferred for all more explicit studies. x@t,(r, t)@p (r, t)@p(r, t), (3.1)

1+2). 12m coP+ 2m c~P)l PP ', (r t)
ppl p p'

III. SELF-DUAL SYSTEMS AND SOLITON
SOLUTIONS

The system described by the field theory of Sec. II
is highly nontrivial, and it is extremely difIicult to ob-

where B'"(r)—:e'~V';A'"(r) and op = 1 or —1 (for each
p, independently). For this choice of the potential, the
many-particle Schrodinger equation (2.29) can be cast
into the form

BC
ih = H(q„)4,

Ot

H(i~) = ). I

—
2 I

'7'"' ' ——&(p,k)( i " r.' ') ——
epA "(rk t)

2mp
(p k)

+ ). I

— ~p I' &, ' ep&, (rk )+&(p,k), (r». . . , r M )
ij (p, k) ex (p) (&)

(p, ~)
2mpc )

(3.2)

since Ppp~ = Pp~p and we have, thanks to Eqs. (2.30) and
(2.6),

(p, I )j =—
(p', I")~(p, ~)

~pp'~ (rk rk ) .(p) (p')

(3.3)

ih " ' = ) q„'a,'(r, t) @p(r, t) — D'@„(r,t)

opep+ (r)@p(r t)
2mpc

- ( o. + o. IP'(2mpc " 2m'c ")
xC„*,(r, t)Cp (r, t)Cp(r, t), (3.4)

Note that H(i, t) in Eq. (3.2) has the form of the non-
relativistic (many-body) Pauli Hamiltonian on the plane,
with spins op = +1 or —1. There is a hidden supersym-
metry in the system [8,9] which can be exploited to find
the exact many-body ground state. But, in this paper,
we shall direct our interest to the static solutions of the
corresponding classical field theory. That is, we consider
@p(r, t) to be classical c-number fields and 4't(r, t) the
corresponding complex conjugates 4„*(r,t). The Hamil-
tonian is as in Eq. (2.7) [with the potential U given by
Eq. (3.1)], but the classical equations of motion do not
include the operator ordering term in Eq. (2.9), i.e.,

E = d r ) ID, C p+iopD
2mp

(3.5)

D;Cp = Z w I I Z
V', —— q„a,- ——epA; I 4'p,

hc " ' hc " *

)
i =1,2,

dropping unimportant surface terms. This is an immedi-
ate consequence of the identity

ID+pl' = l(D. +'~pD. )~pl'

+ „( „E3 "+)—q„'I')I~I„I'
I

elope" V'; (4„*D,0„)— (3.6)

I

where the CS gauge fields a„(r, t) are of course supposed
to satisfy Eqs. (2.5) and (2.12). As we will show, this
classical field system under suitable restrictions admits
a class of interesting, vortex-type, static solutions, car-
rying nontrivial characteristics endowed upon them by
the CS interactions. Our work generalizes Refs. [11]and
[17],where the case of a single matter field with R'" = 0
(Ref. [11])or R'" g 0 (Ref. [17]) was analyzed. It is con-
ceivable that the solitonlike solutions discussed here may
have significant physical roles as regards the nature of
various topological fIuids within the effective Beld-theory
approach [3,4].

To proceed, note that the choice of the potential as in
Eq. (3.1) allows us to write the static energy functional
in the form
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and the relation (2.4). Hence any configuration satisfying
the self-duality equations

Di@p —— io—pD2@„(o„=+1 or —1),

p

(3.7a)

(3.7b)

a, (r) = —e"'(7~U (r), A;."(r) = —e'~ V'z V'"(r),
(3.8)

and introduce the functions fz(r) (p = 1, . . . , M) by

( ) g tJp(gi q U (r)+e&v (r))f ( ) (3.9)

For the functions fp(r), Eq. (3.7a) now implies that

will have the lowest possible energy, i.e. , E = 0. A so-
lution of these equations should solve the classical field
equations (3.4) automatically, but there is of course no
guarantee that one can always find a nontrivial solution
to Eqs. (3.7a) and (3.7b). Suppose that a nontrivial so-
lution exists. Then we may conveinently write (i.e., work
in the Coulomb gauge)

= ~2(P»1&1 + P221~1 —'2

+41r ) h'(r —R.'),

(3.i3)

where we have denoted
& P„z~ ——P„„~ and

& e„= e~.
Here it is not difBcult to guess that the system under
nonzero B' behaves difFerently from that for B' = 0.
Also, a rather di6'erent behavior is expected when the
condition P11P22 ——P12 is satisfied. [See Eq. (2.35).]
Hence, for the respective cases decided by these factors,
we will separately look for the solutions to Eq. (3.13)
below.

the external magnetic field B is zero or at most uni-
form. Assuming this, we now write (iili, iII2) = (p, y)
and present Eq. (3.12) in the form

&'» l4 I' = ~1(piilkl'+ p» l~l' —ei&'")
n1

+47r) 8 (r —R ),

(V'1 + i''V2) f„(r) = 0, (3.10) A. The case with B " = 0 and K:—PiiP22 —P12 g 0

and therefore f„(r) should be restricted to an entire func-
tion of z( )

= 2:+io'zy, viz. , f„=fz(z( )). Clearly, the
function @~(r) may vanish only at the zeros of f„and let
these zeros be at (K(1",. . . , K„",). Also, from Eq. (3.9),
we have

) q U (r) + e„V'"(r)
I

= -~.
2

ln I+.(r)l'/lf. (z(-,))l' (3.»)

and combining these with Eq. (3.7b) then yields the
equations

V' ln 1@„1'= o„—& ) p„„1@„1'—e„B"
&

I

np

+47r) b (r —R("))(p = 1, . . . , M), (3.12)

where we have used the definition (2.15) and the relation
V ln

I
f„12 = 4vr g"', 8 (r —R "

) .
Our problem is now reduced to the study of the cou-

pled nonlinear equations (3.12), satisfied by the matter
densities Iiij„(r)1 . Note that, in connection with the CS
interactions, only the parameters P„„enter Eq. (3.12);
this is natural in view of our general observation made
in Sec. II. While the equations of this form appear
very frequently, say, in the study of various integrable
models, there is no systematic mathematical method for
constructing the solutions for generic (P„„), M & 2.
Nonetheless, the solution space is expected to have a rich
structure. With that in mind, we shall below study in
some detail the nature of solutions allowed when there
are just two independent matter fields, i.e., M = 2, and

In this case, Eq. (3.13) may be written in the forms

where

v I""q''I=-K' q''I,
~in X') ~ X') ' (3.i4)

v'I '" &, 'I =-K ~ q', 'I,
(, ~')'

K=
I

(' -~,P»/a ~,P»/b &

rr2P»/a o2P—22/b y—

(3.i6)

This equation will be integrable [19] if the matrix K is
identified with one of the Cartan matrices of the classical
Lie algebra. We here recall the following rank-2 Cartan
matrices:

Here and henceforth, we will often omit the b-function
terms in the equation, which are significant only at the ze-
ros of P or ~.

1Pl 1P12
'I

I

ll 12
I (3 15)

2p12 o2p22 ) 4 K21 K22

This is a Toda-type equation [18], and we are here inter-
ested in the regular solutions with Q~ = Jd r 1/1 & oo
and Qx = Jd r

1 pl & oo. As we shall see below, the char-
acters of this equation depend very much on the proper-
ties of the matrix K.

The above system is integrable if K has certain specific
forms. To discuss this case, we rescale the matter fields
as 1/1 = 1(bl /a and = Iyl /b (a, b: positive constants)
so that Eq. (3.14) may assume the form
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2

( 2!
—2b

(3.17)

Comparing K with these expressions, we conclude that
our system is integrable if oi ——o.2 ——o.(= +I) and K
belongs to one of the following one-parameter families:

1 —2) '

( —2
1 —1 )

(3.18)

or

& —2 3)
3 —6) '

[Note that, in Eq. (3.18), the constant 6 appeared above
has been set to a, 2a, or sa. ] These special cases are
known to be also relevant for non-abelian self-dual CS
systems first discussed in Ref. [12]. We here have 6—:
PiiP22 —Pi2 & 0, and hence, according to Eq. (2.33),
they all belong to the case with riv2 ) 0. A constructive
method for the corresponding exact solutions is described
in Ref. [13]. An interesting property of the solutions when

K is equal to the Cartan matrix of A2 (and probably B2
and G2 as well) is that the charges Q@, Qx are quantized
in such a way that the fluxes [see Eq. (2.4)]

When both Ki and r2 are positive, we have Pii ) 0,
P22 ) 0, and PiiP22 —Pi2 ) 0 and so conclude that U
is positive definite if o i ——o 2 ——1. With Ki & 0 and
e2 ( 0, U will be positive definite if oi ——o2 ———l. On
the other hand, with ri & 0, and v2 & 0 (and therefore
PiiP22 —Pi2 & 0), we will have a positive-definite po-
tential if all the coefIicients appearing in the right-hand
side of Eq. (3.20) are positive, viz. , no self-dual solution
if K» & 0, K» & 0 and (for the case of oio2 ——1)
Ki2 ( 0. The parameter range is also restricted by
the fact that if the Laplacian of a function f is posi-
tive for large Irl, f is asymptotically increasing. We may
apply this with f = —in i/i or —inly, noting that

and lyl should approach zero as r ~ oo (and
hence the functions —ln IPI and —ln Iyl increase in-
definitely) to obtain a configuration with finite charges.
Then, in view of Eq. (3.14), this cannot be realized if
the matrix K is strictly negative; hence, no solution if
Kz„~ (= O'„P„~~—) & 0 for every p, p'.

For further restrictions on the parameters, it is useful
to note that Eq. (3.14), now including the b-function
terms, can be cast as

(3.21)

If detK = oio2(PiiP22 —(Pi2) ) is positive, these rela-
tions show that both

4p—= d re*'V', (qia,'+ q, a, )

= —(AiQy + A2Q~)
(3.19)

d'r e"V';(q,'a,'. + q,'a,')
= —(AiQy + P22Q~)

may become integer multiples of 2vrhc.
For a generic matrix K, Eq. (3.14) has been studied lit-

tle so far. For example, there is no known criterion for the
existence of a regular solution to the equation. Therefore,
we will first try to narrow down the range of the param-
eters P~„(for given o i, o2) in which a regular solution
with finite charges might be available and then give some
explicit solutions for certain specific cases. First of all,
we recall that a solution to Eqs. (3.7a) and (3.7b), if it
exists, should have zero energy. Hence, in view of Eq.
(2.7), there will be no regular self-dual solution if the po-
tential U is positive definite. The potential is, from Eq.
(3.1), given by (here it suKces to set mi ——m2 ——m since
the self-duality equations are independent of the masses)

(3.20)

should be asymptotically increasing; but this cannot be
the case if Ki2 & 0 and %22 & 0 or if A2i & 0 and Kii (
0. With det K ( 0, we encounter a similar inconsistency
jf~i2 & pand~22 ) por jf~2i & pand~]i ) P.
Based on this discussion, we conclude that no solution
can be found in the following parameter ranges: (i)
(o.i ——cr2 ——+1, Pi2 & 0) or (crq ———g2, Pi2 & 0), with) 0 and K2 ) 0, (ii) (o'i ——cr2 ———1, Pi2 ) 0) or
(o, = —o.» P» & 0), with r., & 0 and K2 & 0, (111)
a'i ——o2 ——o.(= +I), Ki2 ———crPiq & 0, and at least one
between Kii(= —crPii) and K22(= —oP22) is positive,
with eiv2 & 0, (iv) o'ia'2 ———1, Pi2Pz2 ) 0 or Pi2Pii & 0,
with riv2 ( 0.

We have summarized our findings in Fig. 2. The
shaded regions are those excluded on the basis of the
above arguments; viz. , there does not exist a nontrivial
solution satisfying the self-duality equations if the pa-
rameters lie in these regions. Note that exactly a half of
the parameter space is excluded.

Let us now discuss some explicit solutions to the self-
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(a) K1 & 0 and K2 & 0: (b) ~, &OandK2&0:

a1 ——+1 al ———1 al ——+1 a1 ———1

a2 ——+1 a2 ——+1

a2 ———1

(c) r1K2 & 0 and ol ——o2 ——o(kl): the entire range with op12 & 0 excluded

(1) K1r2 & 0 and a1o2 ———1:

All& 0

A»& 0

FIG. 2. For parameters lying in the shaded regions, there
exists no solution to the self-duality equations.

K11 —K21
) (3.22)

duality equations in question. A glance at Eq. (3.14)
shows that, with the ansatz ~y(r)] = p~P(r) ~2 (p: a pos-
itive constant), it can be reduced to a single equation for

as long as p is chosen suitably. Indeed, as we make
the choice

solution, with the field P (y) having vorticity ni (nz)
and the asymptotic behavior, (~, ), is equal to
2(ni+ ~i) +2(n2+ az), where n denotes the largest inte-
ger less than o.. Here the 'vorticity' is equal to the total
number of zeros in a speciGc rnatter Geld. By applying
this to the case when the Liouville-type solutions appro-
priate to the values n1 ——n2 ——n and o.1 ——o.2 ——n + 2
are allowed, we immediately see that the corresponding
general solution should contain 8(n+ 1) free parameters.
But this is precisely twice the number of free parameters
entering the Liouville-type solutions [20]. A plausible
conjecture is that, in a general solution, we no longer
have the restriction (satisfied by all Liouville-type solu-
tions) that the zeros of P be also the zeros of y. Fur-
thermore, we found numerically that there exist also so-
lutions with the asymptotic behaviors not given by in-
tegral power falloK; i.e., n1 and a2 above need not be
integers but vary continuously. For an example, see the
next-to-next paragraph [especially the discussion after
(3.26)]. In view of the relations 4z ——+2ahc(ni + ni)
and 4x ——+2m hc(n2+ nz), these solutions will then have
nonquantized fiuxes. [In this regard, see also the com-
ment immediately after Eq. (3.36).]

In the parameter range where no Liouville-type solu-
tion exists, analytical means are not available at present
and we resorted to numerical analysis (assuming the ro-
tationally symmetric form). For some values of param-
eters we succeeded in finding solutions while, for other
values, no acceptable solution could be found. It seems
that solutions exist in a large portion of this parameter
range also, but the precise criterion on the parameters
to have solutions is not clear yet. We also note that if a
particular non-Liouville-type solution, say,

what follows from Eq. (3.14) is just the Liouville equation
for [P/2:

%12 —%22
(3.23)

To have nontrivial solutions, the coefficient of ~P~ on the
right-hand side of Eq. (3.23) should be negative as well as

p & 0. For these Liouville-type solutions, the Huxes are
quantized, i.e. , 4~ = 4x ——(integer multiples of 2nhc).
We note here that, because of the restrictions mentioned
above, the parameter range allowing these Liouville-type
solutions does not cover the entire unshaded region in
Fig. 2. One may then ask the following questions.

(i) When the Liouville-type solutions exist, are there
additional solutions distinct from the Liouville-type? If
so, should they have quantized Qux values always?

(ii) When the parameters are such that no Liouville-
type solution exists, will there be some solutions to Eq.
(3.14) after all?

These issues are discussed below.
On question (i), the existence of more general types

of solutions is conGrmed by the index theorem, and our
numerical study further shows that there are also solu-
tions with nonquantized Aux values. The result of the
index theorem analysis (see Appendix B for details) is
as follows: The number of free parameters in the general

for a polynomial function p(z).
Now, as a speciGc example, we will discuss solutions in

the self-dual system with Pii ——P2z ——0 but nonzero Piz
(i.e., keep only mutual statistical interaction). This can
be realized by the choice

1= 2= 1 1 2 I
~1 ~1 ~ ~2 ~2

2
K1 = —K2=Kq

(3.24)
and then Pi2 = ~. The self-duality equations now read

Recently, some authors [21] argued that the flux (or charge)
for the solutions of the Liouville equation is quantized be-
cause of the inversion symmetry. This is misleading, however.
Rather, we might as well say that the inversion transformation
generates nonsingular solutions because the charges happen
to be quantized (and, correspondingly, the field has integral
power falloK asymptotically). No useful information is gained
by considering the inversion symmetry in our case.

is known, a family of new solutions may be obtained by
considering its conformal transformation [12], i.e. ,

t v'( ) &(~( ) v*( *)) ~

p'(z) X(p(z), (p*(z*)) )
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2

hc K

2

hc v

(3.25)

choosing oq ——02 ———1 so that solutions may exist. Note
that if the theory is rewritten in terms of the fields v~
and vi, defined by Eq. (2.36), this system is described(2)

by the I agrangian density

l = Ke v~ c) vp + zap
[

———ilvo
~
(j5+ XA+

~

— —
Q vo

(2) * ( 8 ' (i)l . * ( 8 t I (2))') kc)t ~ ')
]

& ——Vv'" [0 —
I

& ——&'v"
I X +

(
+( t', l ' &' ( t, , ~

' ( & & ~ V~'

2mi ( hc ) 2m2 q hc ) i 2mic 2m2cp K
(3.26)

Equations (3.25) clearly admit the Liouville-type solu-
tions, which are based on the ansatz ~P(r)[ = [y(r)~. In
addition, we have found some non-Liouville-type solu-
tions numerically, assuming that the fields P(r) and y(r)
are functions of r only. These are shown in Fig. 3.
In Fig. 3(a), a plot is given for a solution correspond-
ing to ni ——n2 ——0 (i.e. , zero vorticity for both P and
y), the asymptotic behavior of which is determined as

r and [y[ r . Evidently, the fiuxes are
not quantized for this solution. Another plot now for a
solution corresponding to nj ——0 and n2 ——1 is given in
Fig. 3(b).

Finally, note that the charges (Qy, Qz) of a vortex soli-
ton with given fiuxes (4~, @x) are determined by Eq.
(3.19), and they will be in general nonzero. This prompts
one to make a conjecture that the vortices described

0.6

0.5

0.4

0.3

above experience fractional and also mutual statistical
interactions analogous to those experienced by the ele-
mentary quanta in the theory. The most direct approach
to settle this question is to derive the e8'ective Lagrangian
which is relevant to the slow dynamics of these vortices
[22]. But, in our case, this program is nontrivial espe-
cially because a multivortex-type solution cannot be in-
terpreted in an unambiguous way as representing a col-
lection of some elementary vortices here. So it remains
as an open problem.

B. The case with B " = Q and Lh. = PiiPss —Pi2 = Q

If PiiP2z is equal to Pi2, two CS gauge fields are no
longer independent and hence we are led to a self-dual
system with two matter fields coupled to a single CS
gauge field. In fact, we may now write D, re = (V';—

I I

9] nt)4 D x (+2 s 'v2n')x, and P', = —„'.'„' (t, i
1, 2). Here we find it convenient to write Eq. (3.13) using

the couplings q, =
z

~

~q,
'. rather than P;~. , viz. ,

0.2

0.1

00 10
I2KT

15 20 &'» Ixl' = —~2v2(~i[+I'+ ~2[~1')

(3.27)

0.8

0.6

0.4

where we have chosen ic ( 0 (with no loss of generality).
Evidently, if ili and p2 are of the same sign (i.e. , ilii12 ) 0),
these equations will admit a bounded solution only for
oi ——02 ——+1. For qqq2 ( 0, on the other hand, one
can have a solution only with o.io2 ———1. To show this,
suppose that ai ——a2 = 1. Then, from Eq. (3.27) (with
the suppressed b-function terms put in), we have

0.2

00 10 15
/0»IKlr

20 25 30

V' in [/[ ——'t7 ln [y[ = 47r ) b (r —K, )
v=1

FIG. 3. Non-Liouville-type solutions in the case of
Pii ——Pq2

——0. (a) The plot of a solution with vortici-
ties ni ——n2 = 0. We have here chosen P(0) = 0.55 and
y(0) = 0.5. (b) The plot of a solution with vorticities ni = 0
and n2 ——1. and hence

(3.28)



1832 KIM, LEE, KO, LEE, AND MIN 48

Q„"',(z —Z„)
H.=i (z —Z )"~"

(C: a complex number). (3.29)

But with q~q2 ( 0, this is impossible: The left-hand side
of Eq. (3.29) vanishes asymptotically, while its right-
hand side clearly does not. The situation is analogous
for Oq

——02 ———1. Hence the choice

ohio~

———1 is appro-
priate in the case of qqq2 ( 0.

Incidentally, the above consideration is suKcient to
show that there is no solution with Bnite charge if the
matri~ K, defined in Eq. 3.16, is equal to the 2 x 2
affine Cartan matrix ( z 2 ) or ( 2 ). [This corre-
sponds to the case for which Eq. (3.16) can be reduced
to the sinh-Gordon or Bullough-Dodd equation, as noted
in Ref. [12].] Indeed, for these particular forms for K,
we have a~02 & 0, and then, by the above consider-
ation, a bounded solution may be possible only with
0 ~

——02 ——+1. So choose o q
——o 2

——+1 and then we Bnd
the matrix (P„„~)described by the one-parameter family
of singular matrices, a( 2 2) or a( i & ). When trans-

2

lated into the above notation, this matrix form leads to
qiq2 ( 0 (i.e. , the wrong sign); hence, there should not
be any bounded solution.

Let us now study soliton solutions for some representa-
tive cases. First we consider the system with qq ——q2 = q
(and oi ——cr2 —+1, of course), so that Eq. (3.27) may
assume the form

&'» I+I' = —q'(lV I'+ l~l')

&'» l~l' = —q'(IV I'+ Ixl').
(3.3o)

f y l ~12(P(z)Q'(z) —Q(z)P'(z)) f P(z) l
0» lql(IP(z) I'+ IQ(z) I')"

The corresponding system has additional global SU(2)
symmetry and may be viewed as a nonrelativistic version
of a special self-dual model considered by Kim [23]. By
exploiting this global SU(2) symmetry, a series of exact
solutions, which are di8'erent from the Liouville-type so-
lutions (obtained under the ansatz Iyl = pl/1 ), can be
obtained. Specifically, we found that the coupled equa-
tions in Eq. (3.30) have also the solutions of the type

using the index theorem argument (see Appendix B), we
know that there must be solutions other than these two
types. We are also not sure whether or not the Buxes are
necessarily quantized for all bounded solutions to Eq.
(3.3o).

As another case, we choose qz/qi = —2 and cri
—02 ——+1. Then, according to the same procedure which
led to Eq. (3.29), we have

—= C* ",= (C: a complex number)
T

(3.32)

and inserting this into Eq. (3.27) yields a single equation
for 1@1:

&'»141*= —vl(141' —~l&l'"".=,
'' g", 141')

v=1

(3.33)

If we here restrict ourselves to the special case

(3.34)

Eq. (3.33) is simplified as

&' ln I@l' = —qi I
+I'(1 —21&1'l4 I') . (3.35)

14'(r)1- t

pa

(for some non-negative integer n)
as r —+ 0,

(with n ) n+ 2) as r -+ oo,

(3.36)

and for this solution we find the (nonquantized) fiuxes
C'y = 2zbc(n + n) and 4?x = 2vrhc(2n —+2n). This
is another evidence for our assertion that quantized Aux
values are not to be expected generally.

This is identical to the equation encountered in the rel-
ativistic self-dual CS Higgs system of Refs. [24,25]. For
the latter system, there are now rigorous existence proofs
[26] for both topological and nontopological soliton solu-
tions. Only the nontopological ones are relevant in our
case, for the other class leads to inBnite charge. In par-
ticular, a rotationally symmetric nontopological soliton
solution has the behaviors

where P (z) and Q (z) are arbitrary polynomials of z un-
der the restriction that these two functions share no com-
mon zero. Note that this solution in Eq. (3.31) does not
satisfy the Liouville equation and includes no rotation-
ally symmetric configuration since P(z) and Q(z) have
no common zero. The Huxes 4@ and 4~ for these so-
lutions are quantized as in the Liouville-type solutions;
in detail, for the solution (3.31), we have Cj'4, = C'x
2mhc(3nI + 3ng) if P(z) [Q(z)] is an nI (ng)th order
polynomial. [Since the vorticities of P and y are equal to
nz ——2n~+ ng —1 and nz ——nI + 2ng —1, this may also
be written as 4y = @x ——27rhc(ni + nz + 2).] However,

C. The case with B " g 0

As a uniform external magnetic Beld is turned on, a
spontaneously broken vacuum becomes possible and cor-
respondingly we might then have nontrivial solutions to
Eq. (3.13) in the form of topological solitons. With a
single matter Beld, an analogous phenomenon was no-
ticed in Ref. [17]. Assuming A:—PiiPz2 —Pi2 P 0 (the
E = 0 case is considered later), the asymptotic values of
1$(r) I

and Iy(r) I
for a topological soliton solution should

be equal to
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(P22el P12e2)/+
portance in determining the asymptotic behaviors, are
the roots of the secular equation

(3.37)
0 = det(L —AI)

= A —(v@Kii + v„K22) A + v~v (det K) . (3.44)

Using these vacuum values, we may now rewrite the self-
duality equations as [cf. Eq. (3.14)]

(3.38}

with the same matrix K as in Eq. (3.15). In case a
topological soliton solution is allowed, it will be subject
to the topological quantization conditions of the form

d r e'~'(7;(qia + qia ) + eiB'" = 2vrhcni,

(3.39)

d r e''V', (q2a. + q2a )+ e2B.
'" = 27rhcn2,

vyK11 + v~K22 = vyrrlP11 + vga 2P22
2 2 = 2 2

det K = O.g(r2L ) 0.
(3.45)

Based on these, we find that the appropriate choice for a
nontrivial soliton solution is

Now take the case of vir2 ) 0 (and so A & 0). In
this case, it is easy to show that Eq. (3.44) has neces-
sarily two real roots. Then note that, for an acceptable
soliton solution, fy and f~ above should approach zero
asymptotically in such a way that the resulting soliton
may have finite energy. This requires both roots to be
negative (i.e. , Ai & 0 and Az & 0), and in view of Eq.
(3.44), this translates into the conditions

where nq and n2 are integers.
In view of Eq. (3.37), one may hope to find a topo-

logical soliton solution only when the parameters of the
theory satisfy certain restrictions; namely, for A ) 0 (and
hence rir2 ) 0), one must have

B "(p22ei —pi2ez) ) 0, B "(—A2ei+Piie2) & o,

(3.40)

while, for A & 0 (and hence viK2 & 0), the inequality
signs in Eq. (3.40) should be reversed. Aside from these,
there must be some conditions involving the elements of
the matrix K mainly. We can obtain such conditions by
studying Eq. (3.38) in the asymptotic region. For this
asymptotic analysis, we set

Oy =02 = —1

ET' =02 =+1

ifrq) Oand v2) 0,

ifvq (Oand v2 (0.
(3.46)

A similar analysis may be repeated for the case of K~+2 (
0. For the latter case, however, the roots of Eq. (3.44) are
not always real and this introduces a certain uncertain
feature in the analysis. Nevertheless, for vqv2 ( 0, we
can make the following definite statement: no solution
exists with o~o2 ——+1.

In addition to the above, certain (plausible) conditions
can also be derived on the basis of the conjecture that a
regular soliton solution, if it exists, is likely to satisfy the
inequalities

l&(r) I

—v4 « l~(r) I

—vx « (3.47)

(3.41)

«. r
' ( v~K2i v K22 )

(3.42)

and may instead study the linearized form of Eq. (3.38),
i.e.,

at least for suKciently large r. Then, accepting this be-
havior, it is possible to apply the same reasoning as in the
case of B'" = 0 (see Sec. III A). For instance, Eq. (3.38)
will be inconsistent with the assumed asymptotic behav-
ior of IP(r) I

and ly(r) I
if the matrix K is strictly positive;

hence, no solution to Eq. (3.38) if Kz„i ——o„P&„i ) 0 for
every p, p'. Also, by proceeding as in Eq. (3.21), we ex-
pect that a nontrivial solution may exist only under the
conditions

Now suppose that the 2 x 2 matrix I can be diagonalized,
i.e. , SLS i = ( o & ) for some nonsingular matrix S.
Then Eq. (3.42) can be cast as

(det K)(niK22 —n2Ki2j & 0,

(det K)(—niK2, + n2K„) & 0,
(3.48)

(3.43)

Here the eigenvalues Ai and A2, which have crucial im-

where ni (n2) denotes the vorticity of the field P (y).
We do not know of any analytic method developed to

study the system in Eq. (3.38), even for some special
K. We thus looked for nuinerical solutions to Eq. (3.38),
while assuming the rotationally symmetric field configu-
rations. Here it should sufBce to say that, at least for
certain choices of parameters (and vorticities) which sat-
isfy the conditions given above, we did confirm the exis-



1834 RIM, LEE, KO, LEE, AND MIN

tence of regular topological soliton solutions. Note that,
in view' of the index theorem (see Appendix B), the exis-
tence of a particular solution with vorticities n1 and n2
actually implies the existence of a 2(ni + n2) parameter
family of soliton solutions.

If A happens to vanish, we again have a self-dual sys-
tem with two matter fields coupled to a single CS gauge
field. Using the same notation as in Sec. III B, it will be
possible to rewrite Eq. (3.38) (with the choice K ( 0) as

&'lnl&l' = —&i qi(qil&l'+ q. lxl') —ei& "
(3.49)

&'» IXI' = —~2 q2(qil&l'+ q2IXI') —e2& "

model are discussed in those papers to which readers are
referred.

IV. RELATIVISTIC GENERALIZATION

Here we will introduce the relativistic self-dual
U(1) xU(1) CS system (with no external magnetic fiel,
for simplicity) and then study the static soliton solutions
in the model. If one wishes, one may view this investiga-
tion as a direct generalization of the model considered in
Ref. [24]. Our model contains two complex scalar fields

P and X, and is described by the Lagrangian density

A precondition to have a topological soliton solution is
the existence of a nontrivial (uniform) vacuum solution,
and in the present case this will be true only when the
coupling parameters satisfy the relation where

l. = —"aBa + —e" a BaP, v P 2 P v

e1 e2

q2
(3.50) D„P = [0„—i(qia + qia )]P,

Here a particularly simple case is obtained for e1 ——e2 ——

e, and then, thanks to Eq. (3.50), qi ——q2
——q. For

this special case, the system has in fact a global SU(2)
symmetry and this is also manifest in the self-duality
equations

D44X: [044 L(q2a)4 + q2a4)]X44

(4.2)

and U(P, X) is to be chosen shortly. (In this section, we
set c = h = 1.) The Gauss laws read

&'lnl+I' = —~i lq'(I+I'+ lxl') —e&"

'7' » lxl' = —~2 q'(I@I' + lxl') —e&'"
(3.51)

$1 &i2'144' ai (qi JO + qi JO)
1

K1

(4.3)

This system admits a topological soliton solution if we
choose 0 i ——o 2 ———1 and eB ") 0. Then Eq. (3.51) be-
comes identical to the self-duality equations found in the
relativistic self-dual Ginzburg-Landau model with the so-
called semilocal symmetry [27]. General solutions for this

1

K2

with the currents J& = i [Q*D"P —(D—4'P)*P] and J& —=

-i[x*D"x —(D"x)*x].
The static energy functional is given by

(4.4)

where, on the second line, we have used the following
relations [derived from the Gauss laws (4.3), assuming
time-independent fields]:

Do '+ Dog'+ D '+ D x'+ U

1 q2 r1b —
q2 K2b 1 q, r1b —q1 v2b2 1 1 2 2 2 1 1 2

4'c(l»4)l +ID*xi +»c 1 c c c +4' 'c 12 12
q1 q2 q2 ql I ~l q1 q2 q2q1

+ = 141' (ccPcc(11411' —c') + ccPcc)llxll' —c"))

+Ixl'(cc))cc(141' —c') + cc))cc(lxl' '' ) ) (4 4)

i + 2 2 (q2~i)5' —(q2K2)5

i i+ ~ ~ (qi~i)t' —(qiK. )5'
2(q'q' —q'qi)lxl'

Now suppose that the potential U has the form

(4.5)

where 47„= +1 or —1 (p = 1,2), the P„„c's are defined
2 2

2 2' ', etc.], and c, c' are arbitrary constants. Then, with
the help of the identities analogous to Eq. (3.6), it is
straightforward to show that the energy functional in Eq.
(4.4) can be rewritten as

- 2

1 2 1 2 + 2 01 11 —C + 02 12 g —C
4 & qiq2 q2qi )

+, I

*, , ', ,' I
+ &Ixl' (ccP21(141' —c') + ccP22(lxl' —c' ))qi q2 q2 qi

+l»4t+ 4cc»4)1*+ l»x+ 4cc»xl'+ ccc*)4)4'+ 4c4 ) + cc'' (4c4'+ 4'4')) . (4.7)
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Hence, for the theory de6ned by the Lagrangian density
(4.1) with the potential (4.6), there exists a Bogomol'nyi-
type bound [28] for the static energy (which is non-
negative):

b = ——&ii@1'[~ipii(141' —c') + ~2p»(lxl' —c' )]Ky

——„~'l~l'I~iP2i(l@l' —c') + ~2P»(lxl' —c")].
E + ~pc 4@ + O2C' 4~ ) (4.8)

where the fluxes C y and C'x are defined as in Eq. (3.19).
Since E must be non-negative, this bound is meaningful
only for a positive value of uqc C@ + o2c' 4~.

Of particular interest here are the solutions saturating
the above Bogomol'nyi bound, which are realized if and
only if all squared expressions appearing in the integrand
of Eq. (4.7) vanish identically. This gives rise to the
following self-duality equations

We expect that, for the parameters in some range at least,
this system of equations admit both topological and non-
topological soliton solutions just as in the model of Refs.
[24,25]. To analyze these equations, we may again write
a; (r) as in Eq. (3.8), and then, for the functions fi(r)
and f2(r) defined by

&(r) = e "'" +" 'fi(r)

Dig+icriD2$ = 0, Dig+ io.2D2y = 0 (4 9)
&(r) —e ~~I~'U'+~:&'Lf (r)

(4.11)

b' = ——nl&l'[~ip»(l&l' —c') + ~2p»(l&l' —c' )I
Ky

——
&2 I&l'[~ip»(14 I' —c') + ~2p»(I&l' —c' )]

K2

(4.10)
I

Eq. (4.9) reduces to the statement of complex analyticity,
i.e. , fi ——fi(z(, l) and f2 —f2(z(, l) with z( l

= x +
io&y. At the same time, we use Eq. (4.11) to express
b (r) and b (r) in terms of 1/1 and lyl, and then combine
them with Eq. (4.10). The results are the equationss

&'»141' = 4~~IP»I&l'I~~P»(IPI' —~') + ~~P»(l&l' —~' )I

nl

+P» lx1'(~~ P» (141' —~') + ~~P»(l x
I' —~' ) I )

+ 4~ ) .4'(~ —a.)
z'= 1

(4.12)

'7'» I&l' = 4~2 p»l&l'[~ip»(l&l' —c') + ~2p»(lxl' —c' )]

n2

+P»llxl*(~iP»(1141* —~') + ~P(lxl»' —~")I) + 4~ ) .4'(~ —a'. )
v'= 1

We have assumed here that the fields P and y have zeros
at (Ri, . . . , R, ) and (Ri, . . . , R' ), respectively. Note
that there is a certain similarity between Eq. (4.12) and
Eq. (3.13). This is not surprising since one can recover
the model discussed in Sec. III as the nonrelativistic limit
[11] of this relativistic theory (restricted to the nontopo-
logical soliton sector).

A general investigation on possible solutions to Eq.
(4.12) is beyond the scope of this paper. We will below
concentrate on a particularly interesting special case, the
self-dual system with Pii ——P22 ——0 and Pi2 g 0. Note
that we studied the nonrelativistic model under the same
condition in Eqs. (3.24)—(3.26). Choosing the parame-
ters as in Eq. (3.24), Eq. (4.12) assumes a much simpler
form, viz. ,

8 = K6 'V~'~B V"'
V

-l(~ —'q ")&I' —l(~. —'~' "')~l'
/2

— „, I&l'(Ixl' —c")'
/2

— „, l~l'(I@l' —c')' (4.14)

with the Gauss laws (for time-independent fields) given
by

I

with the b-function terms not written out explicitly. The
Lagrangian density for this system reads

/2

I~I'(l0 I' —c')

/2

&'» Ixl' = „, I+I'(l~l' —c' ),

(4.13)
Note that the q's, mi, and )4:2 enter Eq. (4.12}only through

the quantities P„~i. This is an expected result even in the
present relativistic case, for the given equations should re-
main the same under suitable linear transformations on the
CS 6elds.
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/ 2 /2
( )oI&l

K K

„( )olyl
K K

(4.i5)

a simple calculation gives the result

r
nln2

qq'
(topological),

7t K
, (nin2 —nin2) (nontopological) .

qq'

(4.2i)

p ~ oo: lx(r) I

c/
(4.16)

and the fluxes are quantized for this solution, i.e. , 4y ——

q fd r e'~V', v = 2vrni and 4x ——q' fd r e' V', vz ~ 1 x z 2
2~n2 (ni, n2 int.egers). The second class is a nontopo-
logical soliton with the asymptotic behavior

T M oc)

There are two distinct classes of solutions to the self-
duality equations. The first is a topological soliton with
the asymptotic behavior

Thus individual P or y vortices do not carry angular mo-
mentum. On the other hand, a composite of a P vortex
and a y vortex each has a nonvanishing J, and this is
an anticipated result in a system with mutual statistical
interaction.

The general solution to the given self-duality equations
is difBcult to obtain, although certain subclasses of solu-
tions can be readily identified in terms of those of the pre-
viously known self-dual system. By evaluating the index
of the differential operator associated with the appropri-
ate fluctuation equation, the number of free parameters
entering the general solution with given values of 4y and
4~ is determined as

(ni and n2 are real numbers larger than 1). For this
nontopological soliton the fluxes are not quantized: We
have here the formulas 44, = 2vr(ni + ni) and 4'x
2vr(n2 + n2), when the field P(y) has vorticity ni(n2).
A topological soliton with 4@ ——27tnl and Cz ——2mn2
may conveniently be visualized as an assembly of Inil "P
vortices" with respective centers at the zeros of P and
In2I "y vortices" with respective centers at the zeros of
x

Note that, for the above soliton configurations, the
charges Qy = fd r J& and Qx = fd r J are simply re-
lated to the fluxes as

qq
&x

K

qq~x=-
K

(4.18)

due to the Gauss laws (4.15). This relationship suggests
the existence of mutual statistical interaction between P
vortices and )( vortices; but an assembly of P vortices
(or y vortices) only will show no peculiar statistical ef-
fect. This conclusion is further supported by calculating
the angular momentum J—:fd r eU x;To~, where T ~ de-
notes the momentum density in the theory. In fact, at
least for a spherically symmetric solution based on the
form

2nl + 2n2
2nl + 2o, l + 2n2 + 2o.2

(topological),
(nont opological) .

(4.22)

Here the general topological soliton solution with n2 ——0
but ni g 0 (or, if one wishes, with ni ——0 but n2
0) is easy to describe one may set y(r) = c' and, in
view of Eq. (4.13), just choose P(r) to be a solution to
the familiar equation from the study of the Ginzburg-
Landau-type model [28]:

4 2 /2 /2

(I+I' —c') . (4.23)

(4.24)

In this case, it follows from Eq. (4.15) that v(i)o(r) =
v. (r) = 0, while v( ) =,", , e'~V;v. (r) P 0. Another
subclass of topological or nontopological soliton solutions

2
are obtained by setting ly(r)l = —' lg(r)l, and this

of course corresponds to the case with ni ——n2 (and
ni ——n~). For the latter, the two equations in Eq. (4.13)
collapse to one, namely,

(4.19)

with

h ) (oo) = h( (oo) = 0 (topological soliton),

(4.20)
h( ) = n2, h )(oo) = ai (nontopological soliton),

the form of which matches precisely the corresponding
equation encountered in the study of the 'minimal' self-
dual CS Higgs model [24]. But this does not comprise the
full general solution in the sector specified by nl ——n2
(and o.i ——n2). The number of free parameters which
enter the solution based on Eq. (4.24) (as calculated in
Ref. [25]) is just a half of the value given in Eq. (4.22).
This may be understood by observing that the basic unit

2
in a solution satisfying the condition l)rl = — IPI2 is

assumed by "a P vortex on top of a g vortex, " while the
index theorem suggests the existence of more general so-
lution in which P vortices and y vortices serve as separate
units.
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V. SUMMARY AND DISCUSSION

The precise nature of the Schrodinger quantum field
theory with general [U(l)]~ CS interactions has been
clarified, a novel feature being the existence of mutual
statistical interactions between distinguishable particles.
Then, for the corresponding self-dual models with two
matter fields, we investigated the structure of classical
soliton-type solutions to the static equations of motion,
with or without uniform external magnetic Geld. In par-
ticular, to obtain a system which admits nontrivial soli-
ton solutions satisfying the self-duality equations, we de-
rived a set of necessary conditions for the parameters of
the theory. While our self-duality equations reduce to the
Toda-type equations or their generalizations, the matrix
K in the equations is not necessarily equal to the Car-
tan matrix of a certain I ie algebra. For some special
cases we exhibited soliton solutions in a more explicit
way. Soliton solutions in a relativistic self-dual system
with two CS gauge fields were also discussed briefly. We
conjectured that these solitons exhibit inutual (as well as
fractional) statistics.

Some comments are in order. First of all, it is in-

triguing that the Toda equation retains some of its in-

teresting mathematical properties (e.g. , the existence of
multisoliton solutions) even if its structure gets suitably
modified. Aside from the fact that the matrix I| in Eq.
(1.2) need not have a group-theoretical origin, we saw
this phenomenon realized when we add constant terms on
the right-hand side [as in Eq. (3.38)] and also quadratic

terms in the densities [as in Eq. (4.10)]. Quite possi-
bly, certain universal mathematical structures might ex-
ist behind all these models. Also desirable will be to
clarify further various physical properties (e.g. , statis-
tics) of the vortex solitons discussed in this paper and to
study their possible roles in the rea/ physics of multilay-
ered Hall media. Another fruitful line of research is the
quantum-mechanical investigation of our model Hamilto-
nian in Eq. (3.2). We noted already that, by exploiting
the supersymmetry in this system, it should be possi-
ble to find the corresponding exact ground state and also
their degeneracy. Just as in the case of a one-layer system
[9], this investigation might yield some valuable insight in
understanding the multilayered fractional quantum Hall
effects.
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APPENDIX A

Here we will first explain how Eqs. (2.26) and (2.27) are derived and then go on to establish the expression (2.28).
For the contribution B defined by Eq. (2.21), one may repeatedly use the relations such as

2

0„(r„„t)(p)
h2

2mp
V '" ——."V'""') P d r'G(r„" —r')p„(r', t) ——e„A'"(r„",t) 4'„(r„",t)

C C
p'

52 g(i, i) ' 'jP(i i) i - P, dpi G(r(i) ri)rk —r pp
p pl

P G(r" —r" ) ——A'"(r" t) e (r" t)e (r" t)

which follows from the noncommutativity of p„i(r', t) and @z(r&" i, t). Once all the field operators on the left of the
squared differential operator are relocated to its right by this procedure, one readily recognizes the expression in Eq.
(2.26) as a consequence of the definition (2.18) and the fact that (Oipz (r', t) = 0. For the contribution A, more steps
are necessary to derive the result (2.27) from the form in Eq. (2.20). Here, using the commutation relations (2.2) and
(2.13), we first observe that

d r' G(r„" —r') J„;(r',t)

a 'j ~(»I )g( (") (p) iD(p'I 1)
(rk ry lim„c

—) P *jg "' d r'G(r„" —r') Te' G(rk" —r')ilit, (r', t)iII i(r', t)
IC

p/ p

+ ) " e'~&(."' d r' G(r&" —r') J„,(r', t) i i'„(r&" i, t),
c (A2)
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where D,"' is defined as in the case of 9',."' . If we further let the operator 4~(r&" 2, t) act on the expression (A2)
from the left, the result can then be written as

'j ~(p k) G( (p) (p) )D(p k —l)

p

ijg{p,k)G(r{p) r(p) ) itg{p,k —l)G( (p) (p)
k —1 k —2J

mpC

/q2 pij/(p ) G(r(p) r(p) )pi&/(» ) g(r{p) r( )
k —2 k —li

flap C

ij~(p») gy (p) (p) yo(p, k—2)
~pp' & irkDl pC

—) P, e*PV. ' d r' G(r&(" —r')e''(7 '
[G(r&" i —r') + G(rk(" 2

—r')]@t,(r', t)@„~(r',t)
7DpI C

p'

+) "" e"V'(~' 1 d r'G(r ("~1 —r') J„,(r', t) ~4'„(rI, 2, t)4„(r~("~„t),
C

(A3)

where we have again used Eq. (2.13). Now it is not diKcult to infer that as analogous steps are repeated. all the way,
the final result should be the expression (2.27).

To show that the sum of A, B, and D can be expressed as in Eq. (2.28), we proceed as follows. We begin with the
trivial observation

): + ).
(p', k') g(p, k) (p', k') &(p, k) (p', k') &(p, k)

to cast the right-hand side of Eq. (2.28) into the form

G( {p) {p')

p(p k) ~ i&g(»k)
6

+ ) ). ),p„p„(~"v,""'G(r(' —r,", ))
(p, k) (p', k')&(p, k) (p",k")&(p,k)

{p) (p") C, (l) (M) g

The second term in this expression can then be rewritten as

(A4)

) ) eij~(P»)P, G(r(I') r(IP))I IC
{p,k) (p', k') &(p,k)

x v "'"——'.'&v{p' "'
AC

(pI I k I I ) & (pI k I )

A~ G(r~ —r~ )
{p') (p") — '

e„A;."(r„'", ', t)

(A5)

while the last term is eq,ual to

) ) p2 ip~(u', I ')
G( (I i (u'1) @(r(i1 (M) t)

(» ) (. ,')&(.,k)
'-'" ""-

—) ) ) ', pp, ,pp, ~„(.* v!'"'G(rs' —ra' '))
(p, k) (p', k')&(p, k) (P A: ))(P & )

( II
g ll)~( g)

x e'V'» )Grp —rp C r r{ ) t (A6)

The first term in Eq. (A6) evidently coincides with the contribution D shown in Eq. (2.25). On the other hand, the
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second term in Eq. (A6) and the expression (As) combine to yield the contribution A in Eq. (2.27). Equation (2.28)
has been established now.

APPENDIX B

As regards the solutions to the self-duality equations
(3.7a) and (3.7b), we will here present the index-theorem
analysis. Our immediate concern is to count the free
parameters entering the general soliton solution, with
given fiux values P& q„jd rbr(r) = o&2vrh'c(n„+ n„)
(p = 1, . . . , M) and the asymptotic behaviors

const
PCXj2

(B1)

(B2a)

Thanks to Eq. (3.11), the integer n~ here coincides with
the number of zeros for the field 4„(r). The number of
free parameters in question is equal to the number of nor-
malizable zero modes of the small fluctuation equations
given in the background of any specific soliton solution.
From Eqs. (3.7a) and (3.7b), the fluctuation equations
are of the form

(Di + i o pD2) b4 p
——4'p ) q„(b'ai + io.„ha2) = 0,

) ql(V', ba21 —V'2bali) ) p» (4„*be„+C„b@„*)= 0.
Pl

(B2b)

[Here (q„) is supposed to be a nonsingular M x M ma-
trix; but note that our formula (B9) is valid for more
general (q ).] Then, to eliminate superficial zero modes
related to the freedom of local gauge transformations, we
may generalize the real equation (B2b) to the complex
equation

(V'1 —io„V'2) ) q„(o„a, + io„ba, )
I

+ 2io„) P». @*,bC„= 0. (B3)
pl

Taking the imaginary part of this equation reproduces
Eq. (B2b), while the real part can be viewed as the
gauge condition.

Equations (B2a) and (B3) are represented by a single
matrix equation

[Ql q, ha, ] + io-1[+1q, ha, ]
(B4)

( XI qMb 1] + M KI qMba2] )
where

(Di + ioiD2. hc

0
2&o 1P11@1

Di + &MD2 0
2iolP1M@M +1 iol+2

@Mhc
0 (Bs)

(2ioMPM1@1 ' ~ 21+MpMM @M V', —io.M%2 )

The index of 'V is defined as of I(M ) in the limit M ~ oo gives

Index (17) = dim(kernel 17) —dim(kernel 17t) . (B6)

To calculate this index, it is convenient to consider the
quantity [29]

I(M') = ) ~„A.qld
p, I

=) (n +n„). (B8)

M2
I(M )=Tr M~—Tr, (B7)

which can be shown to be independent of M . Naively,
one may expect to recover the above index in the M ~ 0
limit. . On the other hand, a straightforward evaluation

Note that this is not integer valued in general, while the
index defined by Eq. (B6) is necessarily an integer. This
discrepancy is due to the continuum spectrum extending
to zero, which gives rise to a nonzero contribution to
I(M2). Subtracting this contribution &om the value in
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Eq. (BS) (see Refs. [20,30]), the correct value for the
index reads

Index(17) = ) (np+ n„),

where o.z denotes the largest integer less than o.. Fur-
ther, by the manipulations analogous to those de-

scribed in Refs. [20,25], it is not difficult to show that
dim(kernel 'Dt) = 0. So the kernel of 17 has the (com-
plex) dimension P (n„+ n„). Based on this, we now
conclude that the total number of (real) free parameters
in the general solution of the given character is equal to
2 P„(n„+6„). Also, in the case of topological soliton
solutions which are allowed in the presence of nonzero
uniform externel magnetic Geld, it suKces to delete the
oz term in this result.
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