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Avoiding the Gribov problem by dynamical gauge fixing
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We present a method to quantize SU(N) gauge theories which does not use gauge fixing, and therefore
circumvents the problematics around gauge fixing and Gribov copying. The method is illustrated in the
Abelian theory where no Gribov ambiguity is present, and it is shown to be equivalent to Landau gauge
fixing in this case. It is shown that there are fundamental differences between Abelian and non-Abelian
theories. These differences imply that in Abelian theories the gauge particle must be massless, but this is
not necessarily true in non-Abelian theories.

PACS number(s): 11.15.—q

I. INTRODUCTION

In order to quantize a gauge theory and develop a per-
turbative expansion, i.e., to have well-defined gauge po-
tential propagators, it is necessary to eliminate the redun-
dant gauge degrees of freedom from the functional in-
tegral representation of the generating functional. The
way in which this is done is by means of gauge fixing.
Faddeev and Popov derived the modified form of the
functional integral when gauge fixing is imposed [1]. A
basic assumption made in the derivation of Faddeev and
Popov is that the gauge-fixing condition imposed deter-
mines the gauge functions uniquely [1]. Doubt was cast
on the correctness of the Faddeev-Popov procedure after
the discovery by Gribov that the Coulomb and Landau
gauges do not fix the gauge functions uniquely in a non-
Abelian theory (Gribov problem) [2]. The same
shortcoming was found in various other gauges [3].

A question that immediately arose after Gribov's
discovery was whether this problem is a peculiarity of
only some specific gauges or whether it was of a more
general nature. Singer [4] showed that the problem is of
a much more general nature when he proved that in a
Euclidean formulation of a compact, semisimple, non-
Abelian theory no global, continuous gauge fixing is pos-
sible if the boundary conditions imposed on the gauge
functions at infinity imply the identification of space-time
with S . A similar analysis was carried out by Killing-
back [5] for Euclidean gauge theories on which periodic
boundary conditions are imposed, i.e., a gauge theory for-
mulated on the four-torus T . Once again the conclusion
was that no global continuous gauge fixing is possible for
either compact, semisimple, non-Abelian theories, or the
Abelian U(1) theory. This has particular implications for
lattice theories where periodic boundary conditions are
imposed. Whenever gauge-dependent quantities (such as
gauge-field propagators) are calculated in these theories,
they are affected by the Gribov ambiguity and correction-
al steps must be taken [6].

The work of Singer and Killingback does not totally
exclude the possibility of finding gauges that do deter-
mine the gauge functions uniquely. However, such
gauges must obviously violate at least one of the condi-
tions required for Singer's argument. Singer pointed out
that if no conditions are imposed at infinity such gauges

can in fact be found. Alternatively such gauges may exist
in Minkowski space. However, for such gauges an ana-
lytic continuation to Euclidean space must show that ei-
ther the conditions imposed by Singer are violated or the
pole structure of the gauge-field propagators in these
gauges is such that an analytic continuation to Euclidean
space is no longer possible. Some gauges do, in fact, ex-
hibit the latter feature [7]. One can, of course, also cir-
cumvent Singer's argument by dropping the requirements
of a global or continuous gauge-fixing condition.

Keeping the above remarks in mind one notes that a
possible resolution of the Gribov ambiguity is to resort to
gauges which are not subject to Singer's argument. This
possibility was pursued for a considerable time in the
literature and several gauges of this type have been in-
vented [7,8]. However, these gauges are usually plagued
by technical difficulties such as noncovariance or the
propagators of the gauge potentials in these gauges are
very complicated and in some cases the pole structure of
these propagators does not allow an analytic continuation
to Euclidean space.

A different stance taken in the literature towards the
Gribov ambiguity is that the Faddeev-Popov procedure is
correct even in the presence of Gribov copying [9,10]. In
this case it is argued that the integral

q= f d [g]bF(sA)5(F(gA) —C)

over all gauge transformations g, with b,z(sA ) the
Faddeev-Popov determinant and F(gA) the gauge-fixing
condition, does not depend on the gauge potential A„or
C. It should be noted that the Faddeev-Popov deter-
minant and not its absolute value (as would be required
for a change of the volume element under a change of
variables) appears in this integral. The independence of g
from A„and C ensures that when the Faddeev-Popov
procedure is applied in the presence of Gribov copying it
only leads to a multiplicative constant which cancels
when the generating functional is normalized. The in-
dependence of g from A and C was, however, only
rigorously proved on a lattice [10]. Furthermore, this
procedure fails when g =0.

Yet another approach to the quantization of gauge
theories was developed in Ref. [11]. Here the gauge po-
tentials A„are eliminated in favor of the field strengths
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F„.Once again this can only be done with an appropri-
ate choice of gauge. This approach was originally not
developed with the sole purpose of avoiding the Gribov
ambiguity, but rather as an alternative, and more natural,
approach to the quantization of gauge theories which
uses the physical degrees of freedom, F„,rather than the
gauge potentials A„which contain unphysical gauge de-
grees of freedom. Feynman rules for Abelian theories
can be derived in this approach but, unfortunately, the
derivation of Feynman rules for non-Abelian theories be-
comes very difficult.

The approach originally proposed by Gribov to avoid
the gauge-fixing ambiguity was to restrict the domain of
integration over the gauge potentials to a region in which
the Faddeev-Popov determinant remains positive [2].
This approach was elaborated on by Zwanziger [12]. In
these works he succeeded in deriving an approximate
effective action which is also practically implementable
from a perturbative point of view.

Several other investigations into the Gribov ambiguity
and its possible implications can be found in Ref. [13].
The common conclusion drawn from all the above-
mentioned approaches seems to be that the Gribov ambi-
guity is not crucial for the perturbative aspects of a gauge
theory, but it may be essential for the understanding of
nonperturbative aspects and the infrared behavior of a
gauge theory [2,7, 12,13]. In particular the infrared diver-
gencies seem to be much less severe when due attention is
paid to the Gribov problem.

There is an alternative approach to the quantization of
gauge theories, not mentioned until now, which does not
explicitly depend on a gauge fixing condition and there-
fore circumvents the problem of Gribov copies. This ap-
proach is (as far as we can establish) due to Popov [14].
The idea is essentially a very simple generalization of the
Faddeev-Popov gauge-fixing procedure. In the normal
Faddeev-Popov approach one assumes a gauge-fixing
condition F(gA)=0 which determines the gauge trans-
formations g uniquely. Then one writes the identity in
the form

1=5~[A]f d [g]6(F(sA))

with b,+[A] the Faddeev-Popov determinant which is, by
invariance of the group measure, a gauge-invariant quan-
tity. Inserting this identity into the functional integral
and using the gauge in variance of the action and
Faddeev-Popov determinant one can factorize the func-
tional integral into an integral over the local gauge group
and a remaining integral which is no longer gauge invari-
ant because of the gauge-fixing condition. The divergent
integral over the gauge group cancels when the generat-
ing functional is normalized. One can generalize this
procedure by considering any function F( A) with the
property that the integral

I(A)= f d [g]F(gA)

exists. By invariance of the group measure I ( A ) is gauge
invariant. One then inserts the identity

1=f d [g]F('A)/I(A)

II. ABELIAN THEORY

Although the Abelian U(1) gauge theory is free of Gri-
bov ambiguities we prefer to develop, for pedagogical
reasons, our method in this simple setting. The generali-
zation to other unitary groups is fairly straightforward
and is described in the next two sections.

Consider therefore a U(1) gauge theory:

XYM= 4F Fp~

Introducing sources J",
(2)

the generating functional

Z[J]~ f [dA]exp i f d x(XYM —J„A") (3)

is undefined since the integration involves an integration
over unphysical gauge degrees of freedom which, because
of gauge invariance, leads to a divergent factor. Stated
differently the propagator of the free gauge potential 3„
does not exist. In the Faddeev-Popov procedure one
avoids this difficulty by introducing gauge fixing. The in-
tegration over gauge degrees of freedom can then be fac-
torized from (3) and cancels when the generating func-
tional is normalized.

Here we seek to factorize the integration over the
gauge degrees of freedom from (3) without resorting to
gauge fixing, but rather using a technique similar to the
one devised by Popov and described in the introduction.
To this end we introduce the identity

into the functional integral and as before one uses the
gauge invariance of the action and I( A) to factorize the
functional integral into an integral over the local gauge
group and a remaining integral which is no longer gauge
invariant if F ( A ) is gauge noninvariant. Note that in the
conventional Faddeev-Popov approach explicit gauge-
fixing is required and that the identity

1=5~(A)f d [g]5(F(gA))

only holds in the absence of Gribov copies, while in the
latter approach explicit gauge fixing is never mentioned.
This idea was further pursued by Zwanziger [15] and
Parrinello and Jona-Lasinio [16] with specific choices of
the function F ( A ).

The approach we present here follows very much the
same line of thought as described in the above paragraph.
However, the resolution of the identity we use here as
well as the factorization of the functional integral is tech-
nically different and resembles more closely the choice of
a unitary gauge in spontaneously broken gauge theories.

The paper is organized in the following way. In Sec.
(II) the method is illustrated in detail for an Abelian U(1)
gauge theory. The generalization to larger unitary
groups is fairly straightforward. A detailed discussion of
SU(2) is presented in Sec. III and the generalization to
SU(N) is outlined in Sec. IV. Section V contains a dis-
cussion and conclusions.
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2
1~ f [dq*)[dg)[dP*][dP]exp i f d x (—D„P)*(D"P)+ (—D q)*(D"ri) —(P*P+ri*q) —

,
(—P*P+g*g)

(4)

where P is a complex scalar field and g is a complex scalar Grassmann (ghost) field. The covariant derivative is defined
as usual

D„=B„+ig3„, D„*=0„—igA„,
where g is an arbitrary coupling constant, not related to any physical coupling constant.

The trick needed to verify (4) is to introduce the identity

exp i f d x — (P'P—+7)*g)
\

"f[dr]exp i fd'x
4,

[X'+2X(0'0+v*v)]4 ~ 2
(6)

Using (6) in (4) gives

4
2f [dg*)[d )r][d(t*][dP][dy]e pxi f d x (D„P)*(D—"P)+ (D„ri)*(D—"r))— (P*P+ri*ri)

+
4,

[X'+2X(k*d+ri*V)]

f [dy]exp i f d x —,y' ~D"D„p,'+ ,'Ay—~~DI"D—„—p'+,'Ay

cc 1

Note that the normalization of this identity does not depend on p or g, but that it does depend on A, . Using the iden-
tity (4) we can write for the generating functional:

Z[J]~ f [dA][d@*][dg][dr)*][dr))exp i f d x — F"F„J—A "+ (D—„P)*(D"P—)+ (D„ri)*(D—"ri)

2—
2

(4*4+ri*ri)
4,

(4*4+v—*n)'

Next we introduce the following change of variables in
(8):

P(x)=g(x)e' '"', P*(x)=g(x)e

g(x) &( —~, ~ ), 8(x) H [O, rr) .

(9) +g2 g + Q g A "+—9"9
g

Note that in (9) we allowed the radial coordinate g(x) to
run from —~ to ~, for this reason the angular coordi-
nate 8(x) is restricted to the interval [O, vr) and not
[0,2') as usual. Under (9) the measure of the path-
integral transforms to A —+A„—(1/g)B„H, g~e' g, g"~e (12)

By means of a gauge transformation (actually a change of
variables)

[dy*][dP]=
I lkldk) [di)) (10) we obtain from (11)and (8)

Z[J]~ f [dA][~g~dg][dg*][dq]

2
1 2

X exp i f d4x — FI' F„J„A"+—(g~f)(g~g)+ k ApA
"+ (D~vl)*(D"vl) — —(g +g*q)

(13)
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e last factor represents the integration over the gauge group which cancels in the normalized generating functional.
ote also that the A, dependency of the normalization of the identity cancels in the normalized generating functional.

Hence we have for the normalized generating functional:

W[J]=f [dA][lgldg][dq*][dil]

X exp i f'd x — F"—F —J A "+—(8 g)(Bi'g)+ g A A "+ (D —ri)*(D"r))4 1 1 2 1

4 P& P 2 P 2 " 2

2—" (g'+~*q) (—g'—+q*~)' Z[0] . (14)

Note that (14) no longer possesses the U(l) symmetry.
As a final step we write the functional measure for g in an exponential form. To do this we note

[lgldg]a Q lg„id/„+ dg exp g —In(„
X X X

~ [dg]exp i fd x ——5 (0)lngz
2

Using (15) in (14) gives the final result:

2

W[J]=f [dA][dg'][di)'][di)]exp i f d x — F" F„J—„A"+——(B„g)(B"g)+ g'A„A "+ (D„ri)*(D"—ri)

2

2 (g +i)*i))——(g +i)'g) ——5 (0)in/
4I 2

Z [0] ~ (16)

Note that the normalized generating functional, W [J], is
independent of g, p, and k.

To enhance our understanding of this result, let us in-
vestigate it from a nonperturbative as well as a perturba-
tive point of view. First we investigate it nonperturba-
tively. Let us split the gauge field in (16) into its trans-
verse and longitudinal parts

Ay==a~( -'aA) .

Consider the terms

(17)

(18)

1 2—(a„g)(a~g)+ g'A„A~=-,'[a„g—ig(A, „+a„-'aA)g][a~g+ig(A„+a~ -'aA)g]

=
—,
' [(8„—ig A T „)p*][(8"+ig AT „)p], (20)

where

/=/exp(ig 'BA) . (21)

Since all other terms are gauge invariant and the sources
are divergenceless, we can replace A" by AP in all the
other terms. For the measure of the path integral we
note that

[dA][lgldg)" [dA, ][dA, ][lg'id(]

o- [dAT][dp*][dp] . (22)

Now we note from the identity (4) and g2=p*p that the
integration over P, P*, i), and 7)* can be done to yield

Z[o] .W[J]=f [dAz-]exp i f d~x — FPFT„J„A|!— —1
(23)
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We note that the redundant gauge degree of freedom
that occurred originally in (3) has been eliminated. The
role of the two real Grassmann fields is now clear. They
serve to cancel the longitudinal component of the gauge
field as well as the real boson field left after transforming
to the unitary gauge. Counting the number of degrees of
freedom, we note that we started with an integral over
four bosonic degrees of freedom in (3). Then we intro-
duced, via the identity (4), two bosonic and two fermionic
degrees of freedom which cancel exactly. Going to the
unitary gauge we integrated out one bosonic degree of
freedom, leaving us with an integral over five bosonic
(four gauge field and one real scalar field) and two fer-

mionic degrees of freedom. Finally, we noted above that
one gauge degree of freedom and the real scalar field can-
cel against the fermionic degrees of freedom, leaving us
with an integral which goes over only three transversal
gauge degrees of freedom.

Considering (23) we note that we have recovered stan-
dard QED in the Landau gauge (the inclusion of fermions
does not affect any of the above arguments since the fer-
mion and gauge field coupling is gauge invariant). This
follows since we can write (23) as an integral over four
gauge degrees of freedom with the constraint that the
longitudinal component vanishes, i.e.,

W[J]=f [dA]5(BA)exp i f d x — F~'F„——J„A"1 Z[0] . (24)

g =Zsgz =gz+(Zs —1)g

i '=Z, i ~ =C ~+(Z„—1)V~ =V4+5V'

A, =Zonk~ =A~+(Zq —1)A~ =A~+5A, .

(25)

At the one loop order, to which we perform the present

which is the generating functional in the Landau gauge

It is clear that (16) does not lend itself to a perturbative
calculation in the phase where (g) =0 since the in/
term cannot be expanded around this point and the un-
perturbed gauge field propagator is also not defined. On
the other hand, when (g):=V&0 the gauge field becomes
n1assive so that the unperturbed gauge field propagator
exists and (16) lends itself to a perturbative calculation.
On the tree level we can give a nonzero expectation value
to g by choosing p (0 and A, )0. To calculate U to
higher order we have to minimize the renormalized
effective potential for g. This is, of course, equivalent to
shifting g=u+p and demanding that the tadpoles sum to
zero. We introduce the following renormalized quanti-
ties:

U[ pii
—(A,~/6)v—

+serif, (U)]=0,

where

(26)

calculations, no wave-function renormalization is re-

quired and we set Z~ =Z& =Z„=1.
Performing the shift, we note from (16) the contribu-

tion of a massive gauge-field loop to the tadpole condi-
tion. As is well known, the massive gauge-field loop gives
rise to a quartic divergence when a cutoff regularization
procedure is used. This is, however, cancelled by the
quartic divergence coming from the measure of the path
integral for the g field, i.e., the term proportional to 5 (0)
in (16) [18]. Hence one is left with only quadratic and
logarithmic divergencies which can be absorbed into the
mass and coupling constant renormalization. A dimen-
sional regularization scheme, which we use below, is even
simpler since the contribution to the gauge-field loop
coming from the part of the propagator which behaves as
a constant at high momentum, vanishes. Similarly, the
contribution to the tadpole condition coming from the
measure of the path integral vanishes. Using a minimal
subtraction scheme we have for the tadpole condition

f (U) (1 3) )gRmA +(1 Y)
1

(4~)

2 2Azm Azm„ 2 2

2 3
+3g, m, ln

4aM
2mg

1 2 4'
2 pm' n

m
P

1 2, 4~M
Ag m 111

3 9 2
(27)

with M an arbitrary mass scale and

2 2 2 2 2
A,g U A,g U

mg —ggU, m =pg + 2= 2

2
m =pg+

(28)

U =Uo+&UI

with

pR/kR ~ IR(Q~ ~R)0 (30)

This gives and
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v, =3uof i(uo)/~duo' . (31)

Next we calculate the inverse gauge-field propagator to
one-loop order:

I (p) = I'(p)+i 11(p), (32)

where I (p) is the zero-order massive inverse propagator

r„',(p) =
& [(p' —g'v')g„. —p„p, ] (33)

We also observe that the p tadpole and exchange graphs
coinbine to ensure II(p =0) ~mz, the gauge-invariant
ghost diagrams vanishing in this limit.

We determine the renormalization constant for the
coupling, Z, by imposing the physical renormalization
condition

r(p=o)=o,
which gives

(35)

and II(p) is the vacuum polarization to one-loop order.
Note the appearance of a mass counterterm for the gauge
field. This arises from shifting g=u+p and renormaliz-
ing the coupling constant g =Zggz ..

—'g v~A ='Z g v A =—'g u A +—'(Z~ —1)g v2 g R R 2 g

(34)

(p) =
p'+g~F i(p')

v
~P~ 2 (38)

Since we calculate the propagator to finite order in per-
turbation theory it depends on the renormalization
scheme that is used. For a renormalization scheme
different from the physical one imposed here, such as
minimal subtraction, the gauge field obtains a finite mass.
We impose the physical renormalization condition here
since we know from the nonperturbative argument given
above [see (23)] that the gauge particle is massless. Fur-
thermore, we note that the propagator (38), calculated to
finite order in perturbation theory, obtains a gz depen-
dency. On the other hand, we know that the full propa-
gator should be independent of gz since the generating
functional is independent of gz. It is only when the prop-
agator is calculated to all orders in perturbation theory
that the dependency on the renormalization scheme and
gz disappears. We can recover the full propagator from
(38) by noting that since gz is arbitrary we can take the
limit g~ ~0. Since perturbation theory is exact in this
limit, and the full propagator does not depend on gz, tak-
ing this limit in (38) yields the full propagator. In this
limit the propagator (38) coincides with the propagator in
the Landau gauge, i.e.,

Z =3gz/8' E+finite parts (36) D„(p)= PpP~
gP+ 2 (39)

in a dimensional regularization scheme. The inverse
propagator is then given to one-loop order by

r„.(p) =E [p'+g,'F, (p')]g„.

This result was to be expected from (23). Note also that
this result does not depend on the renormalization condi-
tion. The renormalization constant Z can be changed
by any finite amount and (39) will remain unchanged.

I+g~F2(p')+
8~ c

(37)
III. NON-ABELIAN SU(2) THEORY

Consider an SU(2) Yang-Mills theory:

where F, (p ) and F2(p ) are finite. The only divergence
left as the dimensional parameter c.~0 is the term—(igz /8' e)p~ . This term, however, plays a role
analogous to a Landau gauge-fixing term where one
identifies the gauge parameter /=8~ e/gz. Indeed the
propagator is well defined in the limit c—+0 and is given
by

(q Ip) ~ J [d A]exp i Jd'x 'F& F.„. ——

with

F,„=B„A, r) A,„gf b
—Ab„A, —

Introduce the identity

(40)

1"f [drj*]ldilHdV*][dq]

2
X exp i f d x (D„y)"(D"y)+ (D„—q)t(D~q) ——~ (yt~+ pter) — (@t@+rltr))2— (41)

where y and g are doublets of scalar complex and
Grassmann fields, respectively:

I

and D„ is the usual covariant derivative

D„=B„+igT,3,„ (43)

."l2. '

in the fundamental two-dimensional representation of
SU(2).

There is an important difference between the Abelian
and non-Abelian theory in that the coupling constant g
appearing in the identity (41) via the covariant derivative
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q =Ups
y~ =y~p U (44)

0
X

Here p E (
—~, ~ ) and U E SU(2) where we restrict the

must be the same as the coupling constant determining
the cubic and quartic gauge-field couplings of Eq. (40).
In the Abelian theory this coupling constant was com-
pletely arbitrary and not related to any physical coupling
constant. The proof that (41) is indeed an identity is the
same as in the Abelian case (see Sec. II) and we do not re-
peat it here.

We insert the identity (41) into (40) and make the fol-
lowing change of variables:

[de*][dv]=[lpl'dp][dU) . (45)

Here [dU] denotes the invariant measure of SU(2). In-
troducing the gauge transformation,

UA„U'+ (i.yg)(a„U) U',
g~ Ug,

g'~r]'U',
(46)

and using the gauge invariance of the Yang-Mills La-
grangian we obtain

angle of rotation around the z axis to lie in the interval
[O, vr), instead of [0,2~) to make provision for the fact
that we allow pE( —oo, ao ). Under (44) the measure of
the path integral transforms to

&q lq &"f [dA][lpl'dp][dg*][dq]

X exp i f d x — F& F,„+——(B~)(B"p)+ gp (y —T, Tbg)A, „Ag+ —(D„i)) (D"ri)

(P +i) i))——(P +i) il) f [dU] . (47)

The last factor represents the integration over the manifold of the gauge group which cancels in the normalized gen-
erating functional. We note that in the remaining integral on the right of (47) the SU(2) gauge symmetry is explicitly
broken.

In the final step we write the functional measure for p in an exponential form using

[ I p I'dp]~ + I p. I'd p. "g dp. exp & —»p.'3

X X X

~ [dp]exp f d x ——6 (0)lnp
2 (48)

Using (48) in (47) gives for the normalized generating functional

W[J]=f [dA][dp][d71*][di)]

1
X exp i f d x — F~ F,„J,„A—,"+—(B~—)(B"p)+ gp (y T, T g—) A,„Ag+ (D„q) (D"i))—

2

(p +i)ti)) — (p +g g) ——6 (0) lnp—Z[0] . (49)

We immediately note a couple of fundamental
difFerences between the Abelian and non-Abelian
theories. Firstly, the result (49) is independent of p and
k, but not of g since g features in the Yang-Mills La-
grangian. Secondly, the argument given in the Abelian
theory which led to the result (23) of a massless field in
the Landau gauge fails in the non-Abelian theory. The
reason for this is that it is no longer possible to do the in-
tegration over the longitudinal components of the gauge

fields due to the self-interactions. Thirdly, when doing
perturbation theory, we note that the renormalization
condition which determines the renormalization constant
Z is no longer as arbitrary as in the Abelian case. In-
stead Z~ has to be determined from the vertex functions.
Consequently, in contrast to the Abelian case, there is no
freedom left when the inverse gauge-field propagator is
calculated.
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IV. NON-ABELIAN SU(N) THEORIES

Consider now a SU(N) Yang-Mills theory

(q&~y) CC f [dA]exp i f d x — F,—" F,„
Fg„„=rj„A,~ d„A—,), gf—,b, Ab„A, ~ .

Introduce the identity

(50)

1 ~ f [dg ][dr)][d(p ][dy]exp i f d x (D„—y)t(D"y)+ (D„r—i)t(D "r)) (p—tp+ri q) (—pt—p+ vitri)

(51)

where y and g are now N-tuplets of scalar complex and
Grassmann fields, respectively:

+= Ups

y =gpU

0

(54)

and

VN

9N

(52)
Here p E ( —~, 0() ) and

U E SU(N) /SU(N —1 )

with suitable restriction on the angles to make provision
for the fact that p H ( —~, ~ ). Under (54) the measure of
the path integral transforms to

Idm'][du]=[ pl'" 'dS )[dU], (55)

D„=B„+igT,3,„ (53)

is the covariant derivative in the fundamental N-
dimensional representation of SU(N). The proof of (51)
is as before and, as for SU(2), the coupling constants in
(53) and (50) are the same.

As before the identity (51) is inserted in (49) and the
following change in variables is made:

g —+Up, (56)

one arrives at

where [d U] is the invariant measure on the coset space
SU(N)/SU(N —1). Making the gauge transformation

A„-UA „U'+(~/g )(a„U)U',

(pic ) ~ f [dA][lpl'" 'dp][dn']Idnl

exp ~ f d x ——F+ F + (()g)(B~p)+ gp (y T, Tby)A—,„A/+ (D„q) (D"))—

(p2+g g) ——(p +ri q) f [dU] .2 4!
j

SU(N)/SU(N —) )
(57)

The last factor represents the integration over the coset
space SU(N)/SU(N —1) and cancels in the normalized
generating functional. In contrast to SU(2) the SU(N)
gauge symmetry is not completely broken in the remain-
ing integral in (57), but there is still an SU(N —1) gauge

symmetry left as can immediately be seen from (54). As
long as there is a gauge symmetry left, the propagator of
the gauge field will not be well defined. Hence we have to
break the remaining SU(N —1) gauge symmetry as well.
This can obviously be done in exactly the same way as de-
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scribed above [Eqs. (51)—(57)]. Hence the original SU(N)
gauge symmetry can be broken down systematically as
follows:

SU(N)DSU(N —1)3SU(N —2)3. . . DSU(2), (58)

where the final step involves the breaking of the SU(2)
symmetry as described in the previous section. At each
step of the breaking an integration over the coset space
SU(N —m) jSU(N —m —1) (m =0, 1,2, . . . , N 3) —ap-
pears in (57) and the final step involves an integration
over the SU(2) manifold. Altogether these terms involve
the integration over N —1 real angles and represent the
integration over the SU(N) manifold which again cancels
in the normalized generating functional. Furthermore,
every step involves the introduction of one real scalar
field and N m(m =—0, 1,2, . . . , N —2) complex
Grassmann fields. In total there are therefore N —1 real
scalar fields and —,'(N —1)(N +2) ghost fields left.

V. DISCUSSION AND CONCLUSIONS

Here we have presented a way of quantizing SU(N)
gauge theories which does not involve gauge fixing and
therefore circumvents all the problematics of gauge fixing
and the Gribov ambiguity. We have discussed this pro-
cedure in detail for the Abelian theory and showed that
the procedure amounts, in this case, to Landau gauge
fixing. There is a fundamental difference between Abeli-
an and non-Abelian theories. In a non-Abelian theory
the present procedure does not simply correspond to
Landau gauge fixing. Furthermore, the inverse gauge
field propagator is fully determined once a renormaliza-
tion condition has been imposed on the vertex functions
to determine the renormalization constant Z . The
consequences of this is currently being investigated for an
SU(2) theory.
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