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Induced quantum numbers in a (2+1)-dimensional electron gas
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A gas of electrons confined to a plane is examined in both the relativistic and nonrelativistic case.
Using a (0+1)-dimensional e6'ective theory, a remarkably simple method is proposed to calculate the
spin density induced by a uniform magnetic background field. The physical properties of possible
fluxon excitations are determined. It is found that while in the relativistic case they can be considered
as half-fermious (semions) in that they carry half a fermion charge and half the spin of a fermion,
in the nonrelativistic case they should be thought of as fermions, having the charge and spin of a
fermion.

PACS number(s): 11.10.Ef, 05.30.Fk

I. INTRODUCTION

Planar electron systems display peculiar phenomena
which originate from the Abelian nature of the rotation
group SO(2) in two spatial dimensions. Since the an-
gular momentum is not quantized, quantum statistics
is allowed which continuously interpolate between Bose-
Einstein and Fermi-Dirac statistics [1]. Particles obeying
such fractional statistics are called anyons [2]. Their exis-
tence in the context of the fractional quantum Hall effect
(FQHE) is generally accepted. The quasihole excitations
of the Laughlin ground state carry fractional charge and
obey fractional statistics [3,4].

An alternative approach to the FQHE due to Jain [5]
relates it to the integer quantum Hall effect (IQHE). The
basic concept of this construction is that of a "compos-
ite particle, " consisiting of an electron bound to an even
number of Hux units. The IQHE of such composite parti-
cles turns out to be equivalent to the FQHE of electrons.
All experimentally observed filling fractions are predicted
in this way. Also the observed hierarchy instability of the
various states is naturally explained.

Whereas these systems involve nonrelativistic Landau
levels, relativistic levels, related to the Dirac Hamiltonian
in an external magnetic Geld, show up in a certain type of
doped two-dimensional (2D) semimetals —materials with
so-called d.iabolic points, where the valence and cond. uc-
tion bands intersect [6,7].

These facts motivated us to study a planar gas of elec-
trons occupying an integer number of Landau levels in
an uniform magnetic field, in both the relativistic and
nonrelativistic frameworks. In our treatment we focus
on induced. quantum numbers such as the fermion charge
and spin. Based on our results, physical properties of
possible fluxon excitations are asessed. In 2+1 dimen-
sions fluxons are pointlike objects carrying one magnetic
Aux unit 2vr/e, where e is the electric charge of the charge
carriers in the system. A fluxon may be pictured as the
object in the spatial plane that is obtained when this
plane is pierced by a magnetic flux tube.

In Sec. II we consider the relativistic electron gas. We
extend a method recently proposed by one of us [6] in

order to calculate the spin induced by a magnetic back-
ground field with arbitrary strength, thus generalizing
the vacuum result of Paranjape [8]. We find a close
connection between induced fermion charge and induced
spin, reflecting the fact that spin and charge are not sep-
arated. It is argued that a fluxon is, in fact, a half-
fermion (semion) having spin 4 and fermion charge
In the nonrelativistic case, discussed in Sec. III, a fluxon
has spin 2 and fermion charge 1 and is, thus, a genuine
fermion. The close connection between induced spin and
induced fermion charge which we found in the relativis-
tic case is lost. In the last section we explain that this
is due to the fact that, contrary to the relativistic case,
in the nonrelativistic system the spin degree of freedom
is independent of the dynamics. We show that the in-
duced spin in the nonrelativistic electron gas is not re-
lated to a Chem-Simons term, but to a so-called mixed
Chem-Simons term, involving two different gauge poten-
tials, viz. , the electromagnetic potential and one which
describes the spin degree of freedom.

II. RELATIVISTIC COMPUTATIONS

We consider a relativistic electron gas in two spatial
dimensions in the presence of an uniform magnetic field,
as described by a massive Dirac field at finite, positive
chemical potential. In 2+1 dimensions the Dirac algebra

(tp"D„—m)iII = 0, (2)

where 4 is a two-component Dirac spinor field with mass

may be represented in terms of the Pauli matrices. We
choose the representation p = o. , p" = iu", with g~

g~ = diag(1, —1, —1) the metric tensor of Minkowski
space.

The eigenvalues of the Dirac Hamiltonian play an im-
portant role in our calculations. In order to make the
discussion self-contained, we provide a brief account fol-
lowing Johnson and I ippmann [9]. The Dirac equation
reads
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m and D~ = 8„+ieA~ is the covariant derivative, as-
suring a minimal coupling to the electromagnetic Beld
with coupling constant e, the electric charge. We de-
scribe the uniform magnetic field B by the vector poten-
tial A = A = 0;A = Bx . Separating the time vari-
able by setting 4(x, a) = g(a) exp( —iExP), we write
Eq. (2) as an eigenvalue equation for @(x):

(cx m+ Pm)g = EQ.

H~ ——m —eBo + m, (4)

in which one recognizes the Schrodinger Hamiltonian Hs
of a spinless particle with mass 2 and charge e in a uni-
form magnetic Geld:

Hs = ~'-

The operator in parentheses is the Dirac Hamiltonian
H~, it involves the matrices o." = pop", P = p, and
the gauge-invariant momentum vr" = iD". The idea is to
look for the eigenvalues of the squared Hamiltonian

starting point is the Lagrangian

2 = 0 t(imp + p —H&)C + 64 "ZC, (10)

d x E,g = i ln Det (iB—p + p —H~ + 6E),

where 4 is a Dirac spinor with two anticommuting
(Grassmann) components representing the positive and
negative energy spinors, p is a positive chemical potential
which accounts for the Bnite density, and 6 is an external
source which couples to the spin density operator CtEC'.
This last term enables us to compute the induced spin
density, i.e., the ground-state expectation value of the
spin density operator. It should be emphasized that b

has nothing to do with the magnetic Beld B, i.e. , the
second term in (10) is not a Zeeman term which would
appear in a nonrelativistic approximation.

Integrating out the fermionic degrees of freedom, one
finds the one-loop efI'ective action

This operator has the well-known oscillator eigenvalues

e„=O(n+ —,'), n = 0, 1, 2. . . , (6)

E~ = kgm2+ 2~eB~(n+ -', ) —2eBSg,

where fl = 2~eB~ is the cyclotron frequency. The energy
eigenvalues corresponding to stationary solutions of the
Dirac equation (2) now follow immediately. They are
given by the relativistic Landau levels [9]

where Det stands for a functional determinant. Employ-
ing the identity lnDet = Trln, we obtain a functional
trace, which can be written in the energy representation
as

) ln kp + p, —E+„+—sgn(m)
~eB~ . dkp 6

27r 27ri 2n=o

where the plus and minus signs correspond to positive
and negative energy spinors, respectively. The quantity
S~ denotes the eigenvalues of the spin operator E; they
are given by [10,11]

S~ = + -'sgn(m) . (8)
This can be easily shown by observing that the energy
eigenvalue equation (3) written in the rest frame without
a magnetic Geld,

Pm/ = +~m~Q,

can be transformed into an eigenvalue equation for the
rest-frame spin operator —o since P = O' . This gives
Eq. (8) for the spin of a particle in the rest frame. But
the spin is a pseudoscalar with respect to the Lorentz
group [SO(2,1) in 2+1 dimensions], and so a Lorentz
boost leaves it unchanged. We conclude that the ex-
pression (8) gives the spin of a particle in an arbitrary
frame.

The smallest energy eigenvalue is either

6——sgn(m)
2

where E~ are the energy eigenvalues (7) and 6 2sgn(m)
are the eigenvalues (8) of the spin operator. We note
that all the information about the system (except for the
degeneracy of a Landau level per unit area, ~eB~/2vr) is
contained in a (0+1)-dimensional theory, i.e. , ordinary
quantum mechanics [6]. This is due to the fact that the
system is translation invariant (up to a gauge transfor-
mation), and so it suKces to study the system in a single
point.

In terms of the efI'ective action one can express the
ground-state expectation values of the fermion number
density operator at% and that of the spin density oper-
ator -'%to. @ as

or

E+p ——+gm2 + ~eB~ —2eBS+ Bb b=O

In this way we obtain, from (12) [12,6],
E p ———Qm2 + ~eB~ —2eBS

it has the value m sgn(eB).
We next turn to the problem of the electron gas. Our

p = (N + -')0(p, —)m~) — sgn(m)0(~m( —p)
eB

27r 2 4'
{14)
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and Dirac sea,

s = s + sgn(m)(N + —,')0(p, —lml)
eB' 1s, = — = —sgn(m) p
87r 2

(21)

eB
0(lml —p)

87r
(15)

with 0 the Heaviside unit step function. The integer N
denotes the number of filled Landau levels:

2 2p —m

2leBl
(16)

where the integer-part function [x] denotes the largest in-
teger less than x. We assume that the value of the chem-
ical potential does not coincide with one of the Landau
levels, thus avoiding the points in which the integer-part
function is discontinuous. These points correspond to a
partially filled Landau level. In deriving (14) and (15)
we employed the integral

The above results, which were derived for a constant
background field, also apply to cases where the magnetic
field has a specific profile, e.g. , corresponding to a fluxon,
the essential physics being captured by the number of flux
units that penetrate the spatial plane [15]. The vacuum
result (21) restricted to a single fluxon carrying one mag-
netic flux unit 2m/e shows that it acquires fractional spin
S@&

———4. It was pointed out in Ref. [16] that this is in
accord with the Chem-Simons term which is generated at
the quantum level when the system is placed in an exter-
nal electromagnetic field. This term is easily constructed
from (20) by realizing that on account of Lorentz covari-
ance the induced ferinion number current density (j") in
such a field, described by the field strength E", is

dkp 1 1
)27ri kp + (+ i kpb 2

(j") = —sgn(m)e" "F ), .
87r

This corresponds to a Chem-Simons term

(22)

where we have introduced. the usual "causal" path-
defining factor iA:Ob, with b a small positive number. The
first term in expression (15) for the induced spin den-
sity stands for the infinite contribution stemming from
negative energy states in the Dirac sea:

e„pA"6 4P (23)

in the efI'ective Euler-Heisenberg Lagrangian, with 0 =
—sgn(m)/(4n). A Chem-Simons term imparts a spin

s = —— sgn(m) ) 0( E). —1 leBl
2 27r

S@,
—sgn(m)~0 (24)

A similar infinite term is not present in the expression for
the induced fermion number density. There, because of
the spectral symmetry E +i —— E[sgn(eB—m) ) 0] or
E i —— E[sgn(eB—m) & 0], only Landau levels with
lE~ l

& p, contribute. The contibutions to p from levels
outside this energy interval cancel. We renormalize 8 by
subtracting the infinite spin (18) of the Dirac sea. This
will be justified in a moment. It then follows that the
induced spin density is half the induced fermion number
density up to a sign sgn(m):

s = -'sgn(m)p.

This result is reasonable. It shows that charge and spin
are not separated; both are induced in a ratio that reflects
the fact that these quantum numbers are carried by a
single particle, viz. , the electron with fermion charge 1
and spin

The low-density limit, which corresponds to a chemi-
cal potential smaller than the fermion mass (p & lml),
deserves particular scrutiny. This case is basically equiv-
alent to vacuum (2+1)-dimensional QED (QED2+i). In
this limit only the last term in (14) survives, so that the
fermion number density induced into the vacuum by the
background magnetic field is [13,14,12,6]

L = 2S ) (n —1) = S@Ny(Ny —1).
n=1

(25)

In this way, J becomes

J = S+ L, = S@N@ ———-N@, (26)

which is, apart from a sign sgn(m), Paranjape's result
[8]

From the full result (14) for the induced fermion num-
ber density we obtain the Chem-Simons coefficient

0 = —sgn(eB)(N+ 2)0(p —lml)

to a fluxon. In our case this yields a spin S@ ———4,
in agreement with the result (21). One may think of a
fluxon as a half-fermion because it carries half the spin
and half the charge of a fermion.

To make the connection with Paranjape's work [8], who
considered the total angular momentum J = S + L in-
duced into the vacuum by N@ fluxons, rather than the
induced spin S = S@N@, ———

4 N@, we note that the ex-
clusion principle forbids two anyons to be in the same
angular momentum state. So, when considering a state
with Ny semions, these objects have to be put in succe-
sive orbital angular momentum states and [17]

eBp, = — sgn(m)
47r

(20)
1——sgn(m) 0(lml —p),

4m
(27)

and, ignoring the contribution 8 due to states inside the which, according to (24), leads to a spin for a single fluxon
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given by

S ———sgn(eBm) (X + —)8(p —~m~) —40(~m~ —p).

(2s)

order in the magnetic field. This gives

& e,2 = —,'XB',

with y the magnetic susceptibility,

(34)

This yields, when multiplied with the density of fluxons,
eB/(27r), the previous result (15) with the contribution
8 of states in the Dirac sea omitted.

We next provide a further justification of our renormal-
ization of the expectation value of the spin density op-
erator, which consisted of subtracting the contributions
stemming from negative energy states in the Dirac sea.
Since these contributions are independent of the chemical
potential, we may set without loss of generality p = 0 in
our analysis. In this limit s was given by (21), implying
a spin magnetic moment, or magnetization M,

2

M = gpp~8 = — B,
Seam/

(29)

with p~ = e/(2~m~) the Bohr magneton and gp ——2 the
electron g factor. The corresponding spin susceptibility
g~ is

BM
BB

2

s~/m/'

where one should bear in mind that in 2+1 dimensions
e has the dimension of mass. We shall rederive this
result, which hinges on our premise that the first term 8
in (15) is to be omitted, in an alternative way involving
the "proper-time" regularization developed by Schwinger
[1s].

To this end we carry out the ko integration in the ef-
fective Lagrangian (12) with p = b = 0 to obtain

2

~ = (
—1)

e 2 1
(20.)

S~/m/ 3
(35)

(We have written this formula in a general form valid
for spin o = 0, —,1.) The first term, with o = —,is the
spin contribution which precisely yields the previous re-
sult (30). This justifies the renormalization procedure we

adopted.
Incidentally, it follows from (35) that for relativistic

spin-2 particles in two (and also in three) space dirnen-
sions the spin contribution is 3 times as large as the or-
bital contribution. The same ratio is found for a non-
relativistic electron gas at small magnetic fields in three
space dimensions, where

= (—1) +'2@~ vsD(0) (20.)

III. NONRELATIVISTIC CALCULATIONS

with vsD(0) = mkp/2m the three-dimensional density
of states per spin degree of freedom at the Fermi sphere.
However, whereas usually the spin contribution is para-
magnetic (y ) 0) and the orbital contribution is dia-
magnetic (y & 0), Eq. (35) reveals exactly the opposite
behavior. Instead of screening the external field, the pla-
nar motion of relativistic electrons is such as to enhance
the field. Since the diamagnetic (sic) spin contribution
dominates, the overall effect in vacuum QED2+i is nev-
ertheless a screening of external fields (y & 0).

)-(E
(

and introduce the "proper-time" representation of the
square root [19,20]

d7

( ),r, d p( ).

After a partial integration and after subtracting the B-
independent part, which corresponds to the free-electron
contribution, one easily finds

1eff-
8vr

d7
e

~3/2

cosh(2eBo. v.) 1 )x eB 33
sinh(~eB~r) r)

Here, the sinh factor stems from the fact that the pla-
nar orbits of a charged particle moving in a background
magnetic field are quantized, while the cosh factor, with
0 = 2, arises from the magnetic moment and, thus, from
the spin of the electrons. To obtain the magnetic suscep-
tibility we expand the effective Lagrangian (33) to second

g 3
2 = 0«(imp+ p —Hp)4+6@«

2

which governs the dynamics of the Pauli spinor field 4,
with Grassmann components @«and g~ describing the
electrons with spin g and $. The role of the chemical
potential p and the spin source 6 is the same as in the
previous calculation. The Pauli Hamiltonian

= 1 2 0
Hp = (iV+ eA) —gpp~ B+ eAp, —

2m 2
(3s)

with pii = e/2m the Bohr magneton and gp the electron
g factor, contains a Zeeman term which couples the elec-
tron spins to the background magnetic field. Usually this
term is omitted. The reason is that in realistic systems
the g factor is much larger than 2, the value for a free

In this section we treat a nonrelativistic electron gas
confined to a plane. We expect that some new qualitative
features arise from the fact that in this case the spin
degree of freedom is not enslaved by the dynamics. We
continue to use a relativistic notation with 0„= (Bp, V,8+: (Op —V'), where V' is the gradient operator, and
A~ = (AP, A).

Let us consider the Lagrangian
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electron. In strong magnetic fields relevant to the QHE
the energy levels of spin-J. electrons are too high and can-
not be occupied; the system is spin polarized, and. the
electron spin is irrelevant to the problem. Setting again
A = A = 0, A = Bx ) one Gnds) as eigenvalues for
Hg,

E„~=
i
n+ —I—

m g 2j
eB

)

~eB~ ( I) eB
E+„M const+

~
n+ —~—

m ( 2j 2m
(40)

where we omitted the negative energy levels which have
no meaning in this limit. The main diIFerence with (39)
stems from the fact that there the spin degree of freedom
is considered as an independent quantity, not enslaved by
the dynamics as is the case in the relativistic problem.

The induced fermion number density and spin density
may be obtained in a similar calculation as in the pre-
ceding section. From the effective action,

with Sy = k2 for spin-'t and spin-$ electrons, respec-
tively. We note that in the nonrelativistic limit, corre-
sponding to taking m ~ +oo, the relativistic Landau
levels (7) reduce to

their effective chemical potentials. The square brackets
denote again the integer-part function. Implicit in this
framework is the assumption that, just like in the rela-
tivistic case, the chemical potential lies between two Lan-
dau levels. The induced fermion number density (44) is
related to a Chem-Simons term (23) in the effective ac-
tion, with

8 = sgn(eB) —(N+ + N ).
27r

Because of the presence of the sgn(eB) factor, which
changes sign under a parity transformation, this Chern-
Simons term is invariant under such transformations.
The induced spin density turns out to be independent
of N~, viz. ,

(48)

This follows from the symmetry in the spectrum
E~+i,+ ——E, (eB ) 0) or E + ——E +i (eB ( 0).
The magnetic moment M is according to (29) obtained
from (48) by multiplying s with twice the Bohr magneton
p~. This leads to the textbook result for the magnetic
spin susceptibity y~.

r 6
S,g = i Tr ln

~

imp —I—I~ + p, + —a
2

(41)

BM e
Xi' = = —2@~ v2D(0),BB 4' m

(49)

we obtain

) ln
I

kp —E„++p+ —
I

~eB~ dk,
2vr 2~i 2j

r b t

+ln~ kp —E„+p ——
~

.
2 j

(42)
pm [eBi

p —+ + (50)

with v2D(0) = m/(2') the density of states per spin de-

gree of freedom in two space dimensions.
At zero Geld, p reduces to the standard fermion number

density in two space dimensions p —+ pm/vr = k&/(2vr),
where k~ denotes the Fermi momentum. A single Huxon
carries according to (48) a spin S ——

2 and, since, for
small fields,

~ikpb
= 0(t')

2m. i kp+ (+ ikp8
(43)

containing, as usual in nonrelativistic calculations [21],
an additional convergence term exp(ikpb). The resulting
value of the induced fermion number density is

p= (N++N ), (44)

with N~ the number of filled Landau levels for spin-t and
spin-$ electrons, and

The only difference with the relativistic computation is
that instead of integrals of the type (17), we now en-
counter integrals of the form

also one unit of fermion charge. That is, in the nonrel-
ativistic electron gas the Huxon may be thought of as
a fermion in that it has both the spin and charge of a
fermion. However, the close connection between spin of
a Huxon and induced Chem-Simons term for arbitrary
fields that we found in the relativistic case is lost. This
can be traced back to the fact that in the nonrelativistic
case the electron spin is an independent degree of free-
dom. In the next section we point out that the spin of the
fluxon does not derive from the ordinary Chem-Simons
term, but from a so-called mixed Chem-Simons term.
Such a term is absent in the relativistic case.

To see how the spin contribution (49) to the magnetic
susceptibility compares to the orbital contribution we
evaluate the kp integral in the efFective action (42) with
6 = 0 to obtain

my~ 1

/eBi 2
(45)

and

(46) The summation over n is easily carried out with the re-
sult, for small fields,
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1
&.~ = —):4'

(e&)'
p m— 1 2

imp —eAp —Vp + p — (i% + eA + V)
2m

27r 87rm
(52)

where cr =
2 and p~ is given by (46). The first term in

the right-hand side of (52), which is independent of the
magnetic field, is the free-particle contribution

eB+ XX~
2m

where the 2 x 2 matrix V„= i St(—B„S) represents an
element of the su(2) algebra, which can be written in
terms of (twice) the generators o as

2p m
27r

d'k ( k' ) ( k'
(2~)' q2m p g 2m )

The second term yields the low-field susceptibility

~=(—I)'+'2pa»(0) I(2~)' —I) .

(53)

(54)

In this way the theory takes formally the form of a gauge
theory with gauge potential V„. In terms of the new
fields the spin density operator

&a
j, =%~0

Equation (54) shows that the ratio of orbital to spin con-
tribution to y is different from the three-dimensional case
(36). Also, whereas a 3D electron gas is paramagnetic
(y ) 0) because of the dominance of the spin contribu-
tion, the 2D gas is not magnetic (y = 0) at small fields
since the orbital and spin contributions to y cancel.

becomes [22]

to 1

2 2 BVO
(62)

In deriving the first equation we employed the identity

S(8)o St(8) = cr B s(8), (63)

IV. MIXED CHERN-SIMONS TERM

In this section we investigate the origin of the induced
spin density (48) that we found in the nonrelativistic elec-
tron gas. To this end we slightly generalize the theory
(37) and consider the Lagrangian

imp —eAp + p, — (iV' + eA)
1 2

2m

which relates the SU(2) matrices in the j = — represen-
tation, S(8) = exp(28 cr), to those in the adjoint rep-
resentation (j = 1), R(8) = exp(i8 3 '). The matrix
elements of the generators in the latter representation are
(J i), = —i.....

The projection of the spin density jo onto the spin
quantization axis, i.e. , the direction n of the applied
magnetic field [22],

—B C~+m 2
(55)

1 BZ
2 OVO~'

(64)

It difFers from (37) in that the spin source term is omit-
ted and in that the magnetic field in the Zeeman term is
allowed to point in any direction in some internal space
labeled by latin indices a, b, c = 1, 2, 3. As a result also
the spin will have components in this space. It is conve-
nient to consider a magnetic field whose direction in the
internal space varies in space-time. We set

R (2:) = Bn (x), (56)

0 (x) = S(x)y(x), S'S = 1, (57)

with S(x) a local SU(2) matrix which satisfies

with n a unit vector in the internal space. The gauge
potential A& appearing in the first term of (55) still gives
e;i 0;A~ = R. Equation (56) allows us to make the de-
composition

only involves the spin gauge field V . So when calculating
the induced spin density s = (n jp} we may set the fields
V„and V„equal to zero and consider the simpler theory

2 = ) yt imp —eAp+ p, — (iV'+ eA.')

(65)

where the efFective chemical potentials for the spin-g and
spin-$ electrons are given in (46) and eA„+ = eA„+ V„.
Both components yt and yg induce a Chem-Simons
term, so that in total we have

e ~„& +(0+A+0„A~+ + 0 A„B A~ )2

e" "(e A„B Ap+ V 0 Vq)

o n(x) = S(x)o. St (x) . +e(0+ —8 )e"""V„B„Ap,

In terms of these new variables the Lagrangian (55) be-
comes

where the last term involving two different vector poten-
tials is a mixed Chem-Simons term. The coeKcients are
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1
0~ = —sgn(eB)N~,

2m

assuming that ]eB[ & 2[e,sO;V. ~, so that the sign of eB
is not changed by spin gauge contributions. The integers
N~ are the number of filled Landau levels for spin-g and
spin-$ electrons given by (45). Since N+ N —= sgn(eB),
we obtain for the induced spin density 8 precisely the
result (48) we found, in the preceding section,

1 Bl. gs=(n, . jo) = ——
2 OVO

eB
4m

The present derivation clearly shows that the induced
spin in the nonrelativistic electron gas originates not
from the standard Chem-Simons term (23), but from the
mixed Chem-Simons term involving the electromagnetic

and spin gauge potential.
The 6rst term in (66) is a standard Chem-Simons term,

the combination 0+ + 0 precisely reproduces the result
(47) and is related to the induced fermion number density
(44).

Note added in proof A. . Polychronakos informed us
that he has obtained a result [see Phys. Rev. Lett. 60,
1920 (1988)) for the induced vacuum spin which differs
by sgn(eBm) from that reported here.

ACKNOWLEDGMENTS

A.N. gratefully acknowledges financial support from
the "Deutscher Akademischer Austauschdienst"
(DAAD), the work of A.M.J.S. was financially supported
by the Alexander von Humboldt Foundation. This
work was supported by the "Deutsche Forschungsgemein-
schaft" under Grant No. KL 256. %'e kindly thank A.
Polychronakos for helpful comments on the manuscript.

[1] F. Wilczek, Phys. Rev. Lett. 48, 1144 (1982); 49, 957
(1982).

[2] F. Wilczek, Fractional Statistics and Anyon Supercon
ductivity (World Scientific, Singapore, 1990).

[3] R. B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
[4] D. Arovas, J. R. Schrieffer, and F. Wilczek, Phys. Rev.

Lett. 53, 722 (1984).
[5] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989); Adv. Phys.

41, 105 (1992).
[6) A. M. J. Schakel, Phys. Rev. D 43, 1428 (1991).
[7] A. M. J. Schakel and G. W. Semenoff, Phys. Rev. Lett.

66, 2653 (1991).
[8] M. B. Paranjape, Phys. Rev. Lett. 55, 2390 (1985); 57,

500 (1986).
[9] M. H. Johnson and B. A. Lippmann, Phys. Rev. 76, 828

(1949).
[10] S. Deser, R. Jackiw, and R. Templeton, Phys. Rev. Lett.

48, 975 (1982); Ann. Phys. (N.Y.) 140, 372 (1982).
[11] D. Boyanovsky, R. Blankenbecler, and R. Yahalom, Nucl.

Phys. B270, 483 (1986).

[12] J. D. Lykken, J. Sonnenschein, and N. Weiss, Phys. Rev.
D 42, 2161 (1990); Int. J. Mod. Phys. A 6, 1335 (1991).

[13] A. J. Niemi and G. W. Semenoff, Phys. Rev. Lett. 51,
2077 (1983).

[14] A. N. Redlich, Phys. Rev. Lett. 52, 18 (1984); Phys.
Rev. D 29, 2366 (1984).

[15] R. Blankenbecler and D. Boyanovsky, Phys. Rev. D 34,
612 (1986).

[16] A. S. Goldhaber, R. Mackenzie, and F. Wilczek, Mod.
Phys. Lett. A 4, 21 (1989).

[17] L. S. Forte, Rev. Mod. Phys. 64, 193 (1992).
[18] J. Schwinger, Phys. Rev. 82, 664 (1951).
[19] R. J. Hughes, Phys. Lett. 148B, 215 (1984).
[20] P. Cea, Phys. Rev. D 32, 2785 (1985). We disagree with

the computation of the vacuum energy in this paper.
[21] A. L. Fetter and J. D. Walecka, Quantum Theory of

Many Body Systems -(Pergamon, Oxford, 1967).
[22] A. M. J. Schakel, in Proceedings of the Korber Symposium

on Superguid IIe in Rotation, Helsinki, 1991, edited by
M. M. Salomaa [Physica B 178, 280 (1992)].


