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Exact operator quantization of a model of two-dimensional dilaton gravity
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Exact operator quantization is performed of a model of two-dimensional dilaton gravity in Lorentzian
spacetime, classically equivalent to the one proposed by Callan, Giddings, Harvey, and Strominger, in
the special case with 24 massless matter scalars. This is accomplished by developing a nonlinear and
nonlocal quantum canonical transformation of basic interacting fields into a set of free fields, rigorously
taking into account the spatially closed boundary condition. The quantized model enjoys conformal in-

variance and the entire set of physical states and operators are obtained in the BRST formalism. In ad-

dition, a rather detailed discussion of the nature of the basic issues for exact treatment of models of
quantum gravity is provided.

PACS number(s): 04.60.+n

I. INTRODUCTION

The sentiment that we are on the verge of unveiling (at
least a part of) the long-standing mystery of quantum
gravity may well turn out to be too innocent, but the de-
velopments in the last few years in low-dimensional quan-
turn gravity appear to contain encouraging evidence to
make us feel tempted for such optimism. A powerful ma-
trix model technique [1] opened up an avenue for exact
nonperturbative analysis and the target space interpreta-
tion of the gauged Wess-Zumino-Witten models [2] re-
vealed a way in which such an interesting and important
physics as that of a black hole can be unraveled in string
theory.

Encouraging signs are not confined to the realm of
string theory. Notably after the work of Callan, Gid-
dings, Harvey, and Strominger (CGHS) [3], it has been
recognized that a class of field theoretical models of
quantum gravity in two dimensions, characteristically
containing a dilaton field, provides an excellent testing
ground for a variety of fundamental issues in quantum
gravity. Semiclassical analysis, which partially incorpo-
rates the back reaction of the metric field, has been per-
formed by many authors and has demonstrated the use-
fulness of such models [3—9]. In particular, the
phenomenon of evaporation of a black hole by the emis-
sion of Hawking radiation has been vigorously pursued
with fair amount of success.

However, semiclassical analysis of course has its limita-
tions. The type of analysis performed is valid only in the
limit of large black hole mass and in the presence of a
large number of massless matter fields, and the approxi-
mation breaks down for the most interesting phase which
determines the ultimate fate of a black hole. Also, in
such a framework, the difficult yet all important problem
of the interpretation of the wave function, including the
question of unitarity and loss of quantum coherence, can-
not properly be addressed. It is therefore clear that a
more powerful treatment, with full-fIedged quantization
of the gravitational degrees of freedom, is desired.

There have been a number of attempts to quantize the
CGHS model beyond the semiclassical approximation,
however, with moderate success [10—18]. One of the ma-

jor difficulties is the choice of the proper functional mea-
sure which defines the quantum theory. Many of the pro-
cedures so far proposed lead, after a complicated non-
linear field transformation, to a free field theory, but the
change of the measure due to such a transformation is, to
say the least, treated in an unclear manner. One may
take an attitude to regard the resultant free theory as
defining a quantum model, but then the quantum
mechanical relations between these free fields and the
original interacting fields, for which we must make physi-
cal interpretations, will remain concealed. A slightly
different choice of the measure which permits more
rigorous treatment has also been proposed [17,18], but in
this case there is a different problem; the quantum theory
so obtained does not appear to yield to analysis beyond
semiclassical approximation.

The purpose of the present article is to give an im-
provement on this situation by providing an interacting
model for which the measure chosen is clear and at the
same time exact operator quantization is possible. The
model, to be defined precisely in the next section, can be
regarded as a special case of CGHS model, namely the
case where the number of massless matter scalars is ex-
actly 24, with a certain choice of the measure. To make
the model well defined we shall impose spatially closed
boundary conditions and stay in Minkowski space
throughout in order to be able to discuss spacetime phys-
ics, including such important concepts as causality, local-
ity, etc. Exact operator quantization will then be accom-
plished by developing a nonlinear and nonlocal canonical
transformation, valid quantum mechanically as well as
classically, which maps the original interacting fields to a
set of free fields. The model so quantized enjoys confor-
mal invariance, and by utilizing it we shall provide a
complete analysis of the physical states and operators in
the Becchi-Rouet-Stora-Tyutin (BRST) framework. In
this article, we will not be able to give a physical interpre-
tation of our results as there are still many difficult prob-
lems to be overcome. These problems, which we believe
must be faced in any serious attempt for exact treatment,
will be explained in detail. In particular, the necessity of
a careful examination of the choice of the inner product
for the space of states is stressed. Our emphasis
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throughout will be the rigor of the analysis, which we be-
lieve is particularly important for quantum gravity, for
various intuitions cultivated in our experience with ordi-
nary field theories must be attentively scrutinized.

The rest of the paper is organized as follows. In Sec.
II, we shall define the model and study its classical prop-
erties. A canonical transformation is introduced and
proved in Sec. III and with its use the model is quantized
in a rigorous manner. Conformal properties of various
fields will also be clarified. Section IV is devoted to the
analysis of the physical states and operators of the theory
in the manner of BRST. Similarities to and differences
from the case of noncritical closed string theory formu-
lated in Euclidean space are clarified. In Sec. V, a rather
detailed discussion of the nature of the remaining prob-
lems will be given. Finally two Appendixes are provided
to supplement the technical details omitted in the text.

ber of choices for the measure have been proposed and
analyzed with varying degrees of rigor and naturalness
[10—18].

One attractive line of thought is to look for a choice
such that the quantum theory so obtained consistently re-
tains the on-shell conformal invariance present in the
classical theory in the conformal gauge. Such an attempt
was made, independently by de Alwis [10] and by Bilal
and Callan [14], although the procedures employed were
somewhat indirect. Recently a more transparent way of
deriving a quantum theory with conformal invariance,
which leads to essentially the same model as that in Refs.
[10,14], was proposed by Hamada and Tsuchiya [18] (see,
in particular, the Appendix). Their starting point is the
action proposed by Russo and Tseytlin (RT) [19,20],
which is classically equivalent to the CGHS action (2.1).
It is obtained from (2.1) by the following transformation
of fields.

II. THE MODEL AND ITS CLASSICAL PROPERTIES

A. The model

The model we shall study in this article is classically
identical to the one introduced by CGHS [3]. Its action
is given by

s = f d g& ge— ~[4g Pa QaQ+R —4A, ]y'

C=e
2Q)A&p:e g&p

where

to= —,'(In@—@) .

Then the action becomes

S= fd'x& hh p—a C&ap@+Rl, @—4p '
y'

(2.4)

(2.5)

(2.6)

N

+ y, g.pa J;ag, (2.1) + y, h.pa~, ag, (2.7)

x"=(t, o ) =P/L, (2.2)

and we require that all the fields appearing in the action
be periodic in o, i.e.,

F(t, o+2~) =F(t,o). . (2.3)

When the action is rewritten in terms of x", it retains its
form except with the replacement k~p =XL. From now
on, we will deal with such a "dimensionless" form and
when necessary recover the correct dimensions by ap-
propriately multiplying by the factors of 1/L.

A choice of a classical action, of course, does not fix a
quantum theory. We must specify the canonical vari-
ables and the form of the measure to be used for the func-
tional integration. Except for the requirement of invari-
ance under general coordinate transformations, there is
no absolute maxim to be imposed by general principle
and hence the choice is far from unique. In fact a num-

where P is the dilaton field and f; (i =1, . . . , N) are N
massless scalar fields representing matter degrees of free-
dom. We shall stay in Minkowski space throughout and
use the metric convention such that for Rat space
g p=diag(1, —1). In order to define all the quantities
unambiguously and to be able to perform integrations by
parts which occur in various places, we shall take our
universe to be spatially closed with period 2+L. For this
purpose, it is convenient to introduce the rescaled coordi-
nates

where the curvature scalar R& refers to the conformally
transformed metric h p. The authors of Ref. [18] take
the functional measures for the fields h &, 4, and f to be
those defined by the norms

~~5h~~
= f d &—hh Phr 5h hp

//5@/f
= f d x&—h 545@, (2.8)

~~~5f ~~'= fd'x& h5f 5f; —(i=1, . . . , N).

Then they separate h & into the Weyl factor p and the
background metric g & as h &=e ~g

& and rewrite the
measure into the one with respect to g in the manner of
David and Distler and Kawai [21,22]. The resulting ac-
tion takes the form

S = f d xV —g [g Pa 4ap@+2g Pa 4appy'
+R 4—4pe

+i~(g Pa~app+R p)

+-,'g Pa.f a,f]+Sg"(g,b, c),
(2.9)

where a.=(N —24)/12 and Ss" is the usual action for the
reparametrization ghosts b and c. For ~%0, they further
perform a simple redefinition of fields (with a unit Jacobi-
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an) and show that the result is essentially identical to the
effective action obtained in [10] and [14].

Because of the transparency of its derivation, we shall
take this action (2.9) seriously and analyze in this article
the special case with %=24 in detail. Although the ac-
tion still contains an exponential interaction, we shall see
that it can be canonically mapped to a free theory and
hence can be solved exactly.

In this sense the model is certainly mathematically
consistent. We need, however, to mention two subtleties
to be kept in mind. The first is the question of the range
of N in the functional integration. Classical N is a non-
negative quantity and as was emphasized in [18] there is
no symmetry principle which allows one to extend this
range naturally into the negative region. Ignoring this re-
striction may or may not be a serious problem and the
answer should await a detailed analysis. (See, however,
the discussion in [11].) The second concerns the physical
interpretation of the model. Namely, the procedure out-
lined above can be interpreted in two ways. One point of
view is to take the classical RT action seriously and re-
gard h & as the genuine metric of the spacetime. Then
the choice of the measure (2.8) seems natural. An alter-
native view is to regard the procedure as quantizing the
original CGHS action with a definite but somewhat
unusual measure. In this standpoint, one continues to in-
terpret g & as the metric. Again the justification of one
or the other can only be decided after a detailed study of
the model.

These subtleties will have to be watched but we believe
that the model has a big advantage in that one knows the
precise setting and that it is still solvable.

B. Classical yroyerties

—4pe +~+—'c) fc) f). (2.10)

Hereafter, we shall set y =1 for simplicity. Variation
with respect to N, p, and f gives the equations of motion

28 0 4+28 0 p+p e + 1'=0,

8+8 N+p e + 1'=0,

a a f=o.

(2.11)

(2.12)

(2.13)

Since the ghost part of the action can be handled in the
usual way, we first look at the remainder, which we shall
call the classical action S". Setting the reference metric
g & to be the Bat metric g & and X to be 24, the classical
action becomes

S"= d x(c) 4c) 4+2c) 4c) p
1

y'

Eqs. (2.11) and (2.12), one finds that @+2p=f—=g +g
is a free field. Next put this back into Eq. (2.12) and
define the functions 2 (x ) and B (x ) by

c)+ A (x+ ) =pe~ '

a B(x )=pe& ' '

(2.15)

(2.16)

Then it is easy to see that W+ AB =g is again a free field.
Thus we can write

4=y —AB,

p= —,'(g —+) .

(2.17)

(2.18)

Since f and y satisfy periodic boundary conditions, we
can expand them into Fourier modes as follows.

P
y+ ig + 0 ++ & y 1 a+e —lnx

4~ v'4~ „~, n

P+ 1 g + & x++ i y I3+
—inx*

4m. v'4~ „~0 n

(2.19)

(2.20)

A (x++2m)=ad (x+),

B(x 2rr)= B—(x ) . —j

(2.21)

(2.22)

From the mode expansion of g, the constant a is easily
seen to be related to the momentum zero mode P& by

P /2a=e ~ (2.23)

Now we observe that the equations as well as the bound-
ary conditions above for 2 (x+) and B (x ) are identical
in form to those which appeared in the operator analysis
of the Liouville theory [23,24]. Suppressing the depen-
dence on t, the solutions can be expressed as

3 ( r)c=pC( )aJ do'E (cr —o')e + (2.24)
0

rr

B(o )=pC(a) I dcr" Ei& (ocr")e. —

where C(a)=1/(&a —&a ') and the functions E (cr)
and Ei& (o. ) are defined by

E (cr)=exp( —,'lnae(cr)), (2.26)

We now solve the equations for A (x+) and B (x ).
Although the product AB must be a periodic function,
A (x+) and B(x ) separately need not be periodic. In
fact, since the left- and right-moving components P
each undergo a constant shift, the correct boundary con-
ditions for A (x+) and B(x ) are of the form

Here and hereafter the light-cone coordinates are defined
by

x —=x +x'=r+cr, c)+=—,'(c), +c) ), =4c)+c)

Ei& (o.)=exp( ulnae(c7—)) .

e(cr ) is a stair-step function with the property

e(o +2m. ) =2+e(o.),

(2.27)

(2.28)
(2.14)

general solutions for these equations of motion can easily
be obtained: First, each matter scalar f, is trivially a free.
field. Next, by eliminating the exponential term from

and it coincides with the usual e function in the interval
[ —2m, 2rr]. It is useful to note that the derivatives of
E (o ) and Ei& (cr) are proportional to the periodic 5
function, viz. ,
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a.Z.(~ —~ )= n(~ —o ),1

C a

'd F. , ~ (o —o')= — &(o —o') .
1

(2.29)

(2.30)
—,'(i}+f)'=—

P~ 29+a +8+a
4m

4~ P
a +8+a4'

+X +X ~

In addition to the equations of motion discussed above,
there are constraint equations which follow from general
covariance, namely those expressing the vanishing of the
energy-momentum tensor T &, which is obtained by vary-
ing the action (2.9) with respect to the reference metric g.
Classical parts of T.I, after setting g.p=9.t, are given in
the light-cone coordinates by

—,'(i3 f) =—
~a b+a'b

4~
4n P~ a+8 b

4m

(2.41)

a x+a'-x

=(a C)' —a'e+2a~a e+-,'(e f)',
T =i3 8 4+p e

(2.31)

(2.32)

From the previous equation of motion for p [Eq. (2.12)],
T+ is seen to vanish, showing the on-shell conformal
invariance at the classical level. As for T++, use of Eqs.
(2.17) and (2.18) readily yields

(2.42)

In terms of these quantities, the original metric g & is
given by

g &=e~(y AB—)
(P /2~)t=e~[y pe —~ a(x+)b(x )] 'i)

& . (2.43)

T++ =~+X~+0 ~+-X+ —(~+f )

Defining P, and $2 by

—(Pi+4~»
2

(2.33)

(2.34)

This is the finite uniuerse -version of the general solution
obtained by CGHS [3].

Let us give a simple example which describes a black
hole metric in the limit that the size of the Universe L
tends to infinity. It is given by the choice

it can be diagonalized as

T++ = —,'(~+Pi)' — —~+Pi —
—,'(~+02)'

2

(2.35)
y=c =const, 0 f=0,
a (x+)=sinx, b (x ) =sinx

The corresponding P
—are given by

+ 0 + +
g+ = x —+ ln sinx —+cosx—

4~ 4m

(2.44)

(2.45)

(2.46)

+ —il P~+ —,'(i3+f)
2

(2.36)

(P /4m)x+
A (x+)=pe ~ a (x+), (2.37)

B(x )=pe ~ b(x ), (2.38)

where a (x+) and b (x ) are arbitrary periodic functions.
Then by simple calculations, P—(x —

) and (i3+f) can be
expressed as

Thus the vanishing of T++ simply relates the chiral com-
ponents of the three types of free fields, y, f, and f. In
order to enforce the proper boundary conditions, we find
it advantageous to take the functions A (x+), B(x ),
and y as arbitrary and compute the corresponding g and
f.

2 (x ) and B (x ) with the proper boundary condi-
tions can be written as

=(c —A, g+g ) (2.47)

which describes a black hole. We must note here that in
fact infinitely many other configurations lead to the same
L~~ limit. Specifically, any choices of a(x ) and
b (x ) for which La (x+ ) and Lb (x ) tend, respectively,
to g+ and g are indistinguishable in the limit of a large
universe. We will have more to say on this point in the
final section.

III. QUANTIZATION OF THE MODEL

A. Canonical transformation and operator quantization

Notice that in the limit L~~, g— vanish. Recalling
that @=A,L, the metric becomes, in this limit,

(P~/2n. )t .
lim g &= lim [e~(c —p e " sinx+sinx ) 'ri &]J ~oo I —woo

+ P~ +itj+(x ) = x++ln a (x+ )+8+a (x+)
4m. 4m

P~ P~
(x )= x +ln b(x )+B+b(x )

4m ,
4~

(2.39)

(2.40)

In the previous section, we found that the general solu-
tion to the classical equations of motion can be described
by three types of free fields, g, y, and f. Quantization of
the matter sector is trivial since f, 's are canonical righ. t
from the beginning. For the dilaton-Liouville sector,
however, it is not yet obvious what combinations of g
and g are to be quantized as canonical free fields for the
following reasons: First, any function of free fields is
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again a free field and depending on the choice an addi-
tional functional Jacobian may arise. Moreover, the form
of the energy-momentum tensor T++ alone is in general
not sufficient to settle the question. After all, the fact
that they take "free-field form, " as in (2.31), does not
even guarantee that the fields appearing in them are free
fields.

Nevertheless, the expression obtained in (2.36) is sug-
gestive. It appears to imply that Pi and P2 should be re-
garded as canonical free fields and that, while the former
being a normal field, the latter should be treated as a
"negative metric" field. (This should not be taken as dic-
tating the way the inner product should be defined. It is
a separate problem to be discussed in the final section. )

In this subsection, we shall prove rigorously that this ex-
pectation is indeed correct. Namely, it will be shown
that the transformation of fields (C&,p)~($„$2) is canon-
ical quantum mechanically as well as classically.

Let us begin with classical analysis. First, for later
convenience, we shall rescale the fields P, and $2 to define
canonically normalized fields P, and $2 and expand them
into Fourier modes as follows:

i I a +—
,P~ j =i IP~, a„—j

=m 5 +„o, (3.16)

(3.17)

(3.18)

(3.19)

Then with the use of previous formulas for P;, the follow-
ing brackets are readily obtained:

Iy(x), g+(y+) j = (x+ —x ) ——,'e(x+ —y+), (3.20)+ +

Ip(x), g (y )j = — (x+ —x )
—

—,'e(x —y ), (3 21)

I P(x), P(y) j
= Iy(x), X(y) j =0,

If(x),g(y) j
= [g(x),g(y) j

= —
—,
' [e(x + —y+ ) +e(x —y ) ] .

(3.22)

(3.23)

We are now ready to prove the canonical nature of the
transformation. The Poisson brackets we wish to repro-
duce at equal time are

P;(x+,x )=P; (x+)+P, (x ),
n' ('+)

n~O"

We take the basic Poisson brackets to be

(3.1)

(3.2)

(3.3)

(3.4)

I C&(x ), II@(y)j ET=5(o, —cr~ ),
Ip(x), II (y) ]ET=5(o.„—o ),
rest=0,

where the momentum fields are given by

II~=2(4+p ),
II =2@ .

(3.24)

(3.25)

(3.26)

i Ia"+—', a"—'j = —m5 + 0,
Iq,p j= —1,
rest=0 .

(3.5)

(3.6)

(3.7)

(3.8)

After some calculations, this leads to

IP, (x+),P,+(y+)j =
—,'(x+ —y+) m~( +x——y+), (3.9)

IP, (x ),P, (y ) j
=

—,'(x —y ) —ire(x —y ), (3.10)

Thanks to the fact that the modes of 1' have vanishing
Poisson brackets with each other, the only nontrivial
brackets to be compared are Iy(x), AB (y) j and the time
derivatives thereof at equal time. Calculations are some-
what tedious and very similar to the ones needed for the
self-interacting Liouville theory [24]. In particular one
needs to be careful about the presence of the momentum
zero mode in the functions E (o ) and Ei& (o)inside.
AB. Useful formulas are listed in Appendix A.

With the help of these formulas, it is straightforward
to get the brackets

(3.1 1)
I@(x),&(y) jET

t'ai (x ), Pi+(y+) j
=

—,'(y+ —x ),
[Pi(x),Pi(y) j

= n[e(x+ ——y+.)+e(x —y )],
(3.12)

(3.13)

(4'i+02»
1

8n.
(3.14)

and similar expressions with all the signs reversed for P2.
(The e function here is the stair-step function defined in
the previous section. )

In terms of P;, the fields g and y now take the form

I@(x),N(y) ]ET=0,

I4(x), C&(y) ]ET=0,

tp(x) p(y)]ET
= —

—.
'

I: I&(x» e(y) j ET+ I 0(x),x(y) j ET]=o

Ip(x), p(y) ]ET=—,'5(a —o~),

(3.28)

(3.29)

(3.31)

= —Ig(x), AB (y) j ET
—

I AB (x),y(y) j ET=0, (3.27)

1x= (Ni
—6»

Sm
(3.15) IP(x) P(y) ]ET

I+(x»P(y) ]ET=-,' IX(»4(y) ]ET=o

I @(x),p(y) j ET
= —

—,'5(o —o~ ),
and their Fourier modes, defined in Eqs. (2.19) and (2.20),
are easily seen to satisfy the Poisson brackets relations

(3.32)

(3.33)

(3.34)
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[@(x),p(y) ]ET= —,'&(a, —a~ ), (3.35)

(3.36)
[L ', P, (x) ]=e' —B+P,+Qm

l
(3.46)

From these bracket relations, it is evident that our trans-
formation correctly reproduces the canonical Poisson
bracket relations (3.24).

Now we can quantize the theory by the replacement

E& ET (3.37)

B. Conformal properties

As was shown in Sec. II B, the off-diagonal part of the
energy-momentum tensor T+ vanishes due to the equa-
tions of motion and the model has invariance under the
left- and right-conformal transformations. Upon quanti-
zation the left-Virasoro generators for the dilaton-
Liouville and the matter sectors take the form

LdL L1+L2
n n n

I.„' = —,
' y:a„' a':+iQn a„',

(3.38)

(3.39)

m

(3.40)

To prove the canonical nature of the transformations
quantum mechanically, we must define the composite
operator AB. Here we have a situation far simpler than
the corresponding case for the I.iouville theory [23,24]:
All the modes of lt commute with each other, and AB is
well defined without the need of normal ordering. Thus
all the Poisson brackets relations previously obtained can
be directly converted into quantum commutation rela-
tions, and the quantum canonicity follows immediately
from the classical one.

As for the negative metric field (t 2, the sign of L, as well
as those of the commutation relations, are reversed, and
the net result is identical with the positive metric case.
Combining them we immediately get

[L,t/r(x)]=e' " 'd+f—+ m, (3.47)

(3.48)

A(t~+(x+ ) kP (x+ ) Kit (x ) kP (x )
(3.49)

where P,
+—and P,

—refer to the annihilation and creation
part of the nonzero modes, respectively. If we adopt the
usual Hermiticity assignment for the modes this operator
is manifestly Hermitian for real A, . More importantly, it
becomes a primary field only with this normal ordering.
As we cannot directly make use of the Euchdean opera-
tor product technique, the calculation of the commutator
[L„,e ~] is slightly tedious. However the results are
standard: For P& and Pz we obtain

Note that y field transforms as a genuine primary field
with conformal dimension O.

Next consider the simple exponential operator of the
form e ~ where P is either P, or $2. For the "cylinder"
type coordinates under use for our spatially closed
Lorentzian universe, the proper normal ordering is the
symmetric normal ordering defined by

A,P(x). A, q/2 p(x++x ) A.q/2

f= 1 . f . f.Ln T X 'an —m am' (3.41) 1 &l( ) inx +
[L„,e ' ]=e'" —8++n

l

2 ip((x)
2

where the background charge Q is given by Q =&2vr.
Paying attention to the negative metric nature of a„'s, we
readily obtain

[L ',L„']=(m —n)L' +„+ (m —m)5 +„o

dime ' = — +QA, ,
2

A,$2(x)
e

(3.50)

(3.51)

+Q m5 + 0 (3.42)

1 —12 2

[L,L„]=(m —n)L +„+ (m —m)5 +„o

Qm5 + o (3.43)

[L,L„)=(m —n)L" +„+ (m —m)5 +„o, (3.44)
2

m +n, O

(3.52)

dime = +QA, .
2

(3.53)

This immediately implies that e & and e + are primary
fields with conformal dimensions:

[Lf,Lf]=(m n)Lf +„+ (m——m)5 +„0 .m+n, O ' (3.45) dime ~= A, =k,
&2m-

(3.54)

Thus, both L„" and L„satisfy the standard form of the
Virasoro algebra with the central charge 2 and N, respec-
tively, and together with the ghost contribution the total
conformal anomaly vanishes for %=24.

Let us now discuss the conformal properties of the
basic fields and the operators involving their exponen-
tials. First, for the positive metric field P&, we easily find

dime "x=0 (independent of 1, ) . (3.55)

Finally we need to clarify the conformal property of
the composite operator AB(x). As remarked in Sec.
II B, this operator consists only of modes of 1E, and there
is no necessity of normal ordering. The calculation of the
commutator with the Virasoro generator is rather tedious
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due to the nonlocal nature of the operator. However, if
we formally adopt the symmetric normal ordering it be-
comes almost identical to the corresponding case encoun-
tered in the interacting Liouville theory [24] and we can
easily transcribe their procedure. The final result is

[L„",AB(x)]=e'" —
+ [AB(x)],+ 1

x
(3.56)

showing that AB is a primary field with dimension zero
just like the field y. It means that our fundamental field
N=y —AB as a whole behaves as a dimension zero pri-
mary field, a gratifying result.

IV. BRST ANALYSIS OF PHYSICAL STATES
AND OPERATORS

A. Analysis of physical states

Having quantized the model in a rigorous manner, we
now construct the physical states and the operators of the
theory in the BRST formalism. Because of the conformal
symmetry, the analysis will be quite similar to the one for
the string theory. In fact, technically, our model has
features which are hybrid of the critical and noncritical
string theories: It can be regarded as a critical bosonic
string theory since the total central charge is made up of
the contributions from 26 free bosons, with matter fields
playing the role of the 24 transverse coordinates. On the
other hand, the presence of the background charges for
the remaining two coordinates leads to structures remin-
iscent of the c= 1 noncritical string theory.

Thus in the following, we shall be able to make use of
the analysis performed on the noncritical string theory
[25,26], albeit with some modifications. These
modifications are due (i) to the fact that we stay in Min-
kowski space, (ii) to the extra presence of the matter
fields, and (iii) to the special structure of the background
charge terms for the dilaton-Liouville sector. Our
analysis is closely analogous to those performed for
noninteracting Liouville gravity [27] and for a free field
model of dilaton gravity [16] both defined in Euclidean
space, but we believe it is useful to give some details and
clarify the difFerence between Minkowski and Euclidean
formulations. This will also serve to make this article
sufficiently self-contained.

[a', a„']=—[a', a'„]=m5 +„o, [a',a'„]=0 . (4.5)

(4.6)

where sl(2) invariant normal-ordering for the ghosts is as-
sumed. 'The physical ghost vacuum is defined as usual by
Io), =c, Io),„,.

Hereafter we shall follow the work of Bouwknegt,
McCarthy, and Pilch (BMP) [26]. Let us recall their gen-
eral strategy. First the BRST operator d is decomposed
with respect to the ghost zero mode in the form
d =coLo Mbo+d, where Lo is the total Virasoro opera-
tor including the ghosts. From the well-known relation
Lo= [bo, d] one can deduce by a standard argument that
the nontrivial d cohomology must be in the sector satisfy-
ing

Lop=0 . (4.7)

On the subspace Vo defined by

V,= I yIL, q=o, b,y=o], (4.8)

d becomes nilpotent and the d cohomology (absolute
cohomology) is reduced to the d cohomology (relative
cohomology).

The next step is to further decompose the d operator
with respect to a grading called the degree to be assigned
to the mode operators. For this purpose, define the fol-
lowing light-cone-like combinations of modes for the
dilaton-Liouville sector:

1—(qi+q2»
2

1—(pi+p»
2

(4.9)

[q
+—

,p )=i, —

Since the Virasoro generators L„and L„given in Eqs.
(3.38)—(3.41) both satisfy the standard form of the
Virasoro algebra with central charges 2 and 24, respec-
tively, the nilpotent BRST operator, which we shall
denote by d, is immediately obtained as

d =pc „(L„+Lf)——,'g:(m n)c —c „b +„.,

1. Prehminary

In this section, we shaH deal explicitly with the left-
moving sector only and P; will mean the chiral com-
ponents with the following mode expansion and the com-
mutation relations:

2

and assign the degree as

deg(a„+)=deg(c„)=l, deg(a„)=deg(b„)= —1 .

(4.1 1)

1 + . 1;;„+P;(x )=—q;+p;x +i Q —a'„e
2 ~o n

a+4, = y a'„e '" +
(ao'—:p'),

nEZ

(4.1)

(4.2)
d do+de +d2 (4.12)

The rest of the mode operators, including the matter part,
are defined to carry degree O. Then d is decomposed ac-
cording to the degree as

[q2 P2) = —
&

[qi P2)=lq2, Pi]=o,
(4.3)

(4.4)
do= g P+(n)c „a„

n&0
(4.13)
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d, = g:c „[a+ a ++—,'(m n—)c b ++Lf]:,

d2= g P (n)c „a„+,
n&0

where P (n) —are given by

1P+(n) = —(p, +p2+2ign),
2

P (n)=p

(4.14)

(4.15)

(4.16)

(4.17)

Notice that, because of the special structure of the back-
ground charges, P (n) is independent of n, and, further,
that the n dependence of P+(n) is shifted by 1 unit com-
pared with the Euclidean case. It is easy to check that
d p

=d p
=0 holds identically and furthermore,

[do, LO]= I do, b&] =0, and similarly for dz. This allows
us to consider dp and d2 cohomologies actually on the
entire Fock space X

Let us summarize, in advance, the rest of the pro-
cedure: Depending on the conditions on P (n), w—e study
the do or d2 cohomology on the Fock space V and then
restrict it to the relative cohomology space Vo. Then we

shall show that for each case such a cohomology is in one
to one correspondence with the relative d cohomology
and explicitly construct the representatives for the d
cohomology. The final step consists of the construction
of d cohomology from the d cohomology. It turns out
that except for the single case where the relative coho-
mology contains b

&
lP ) &, the absolute cohomology can

be obtained in the simple way: If g is an element of d
cohomology, then g and coP represent the possible d
cohomology. Therefore in the following, we shall consid-
er explicitly the d cohomology only and will comment on
the d cohomology when we deal with the specia1 state
mentioned above.

K+—:g a+„b„,1

P (n)
(4.18)

which satisfies

[do, K+] = g:(nc „b„+a+„a„):+1
n&0

(4.19)

2. p+(n +}O(Vn HZ, nAO) case

Let us begin with the case in which P+(n)WO for all
nonzero integer n. In this case dp cohomology is useful
sirice one can define the operator

= [ —I K+,do] +doK+ ]p,

8D'oq, +—d,K+q, . (4.22)

It is instructive to write down the explicit form of d&$0.
It is given by

d&go g c „L„F ~lP) (4.23)

Evidently, because of'the presence of the matter, this is
DLGnot an eigenstate of X " unlike the case treated in

BMP. Similarly, K+d&$0 is also not an eigenstate. Nev-
ertheless, for each term making up such states, g
does have positive integra1 value and this will be enough
to consider the inverse operator g DL'o on such states.
Since the rest of the argument, which is also modified
from that in BMP, is somewhat technical, we shall
relegate it to Appendix B. When a11 the dust settled, the
result turned out to be formally identical to the one ob-
tained in BMP. Namely, a representative g of the d
cohomology corresponding to a dp cohomology
represented by PO=F & l

P )
&

is given by

states satisfying these conditions are indeed dp nontrivial.
To see this, look for a state Q such that dpi' gives a state
without any nonzero mode excitations in the DLG sec-
tor. Because of the form of dp 0 must be of the form

&o(A a+ b )Qo, where Oo is a state without DLG
excitations, but obviously such an expression vanishes.

It is evident from Eq. (4.21) that for p+p )0 only a
zero-mode excitation is allowed in the matter sector. On
the other hand, for p+p ~ 0 there can be matter excita-
tions at nonzero Virasoro levels. As will be discussed in
Sec. V, this case will be of great importance especially
when one considers L ~ ~ limit.

We now describe the construction of d cohomology in-
cluding the latter case. Essentially we follow the pro-
cedure described in BMP, but due to the presence of the
matter degrees of freedom, a part of the arguments will
have to be modified.

Let Po be a do nontrivial state of the form F ~lP) &

where F ~ is a matter operator at level N and
P=(p,p, pf ). We have dog&=0 and in addition
d2 go:0 as well. Therefore, d atro

=d, 1io and according to
the general argument of BMP (see the Appendix of [26])
this state must be do exact. Thus we look for f& of de-

gree 1 such that d, go= —dog, . Let us apply the opera-
tor K+ introduced previously. Then one gets

K+d, Po= —K dog,

DLG (4.20)

where 8' " is the level counting operator for the
dilaton-Liouville-ghost (DLG) sector. By a standard ar-
gument, nontrivial dp cohomology can only be in the sec-
tor where 1V' vanishes. We must also satisfy the
Lot(=0 condition, which in this case reads

g= g (
—1)"(T+)"$0,

n =0

where the operator T+ is defined by

=+ DLCK

(4.24)

(4.25)

p+p + —,'pf +8 I—1=0, (4.21)

where Pf counts the level for the matter sector. The

Let us give some examples. For I' &=a'
&

and a' z, ap-
plication of the formula above gives the following physi-
cal states lP, ) and lPz):
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pf
P+(1)

I2; + pf +
2 + CX )CX ) + CXP+(1) P+(2)

(4.26)
where 3+ and A are arbitrary coefficients. These states
are easily checked to be d nontrivial as well. For the
latter state, it is instructive to compare with the usual bo-
sonic string case with Q=O. In that case all the momenta
vanish and we have c,~0). This state, however, is d ex-
act. Indeed

P'(1) P'(1) P'(2) dcpb
&

0) g
=bpM cpb —] lo&, =c ) l0& . (4.34)

(4.27)

If we were dealing with a string theory, this would de-
scribe the transversality condition. However, in the dila-
tion gravity context, it means that whenever matter fields
are present they necessarily induce excitations in the
dilaton-Liouville sector.

3. p %0case

In this case, the relevant tool is the d2 cohomology.
The procedure is entirely similar to the previous case, ex-
cept for the use of K —= (I/p ) g„~pa „b„ in place of
K+. Lpga=0 condition is the same as given in (4.21) and
we obtain the representative for d cohomology corre-
sponding to Eqs. (4.24) and (4.25) as

(A a, + A af ))~P)g, (4.35)

(4.36)

This phenomenon is allowed because BMP theorem 4.2
breaks down. Namely, in this particular configuration of
the momenta, there exists another d-nontrivial state
b

&
0) at ghost number —1 and the argument of

theorem 4.2 which assumes the nonexistence of cohomo-
logies separated by 2 units of ghost number is no longer
valid.

Now for 8 =0, we simply have ~P) ~ as represent-
ing nontrivial do and d cohomology, where pf =2.

r = —1 case: Going through an analysis similar to the
previous case using K+

&, we find the following two non-
trivial do cohomology representatives:

Q= g ( —1)"(T )"fp,
n=0

4. I'+(r)=0, p =Ocase

(4.28)

(4.29)

It is easy to check that these states represent d cohomolo-
gies as well.

Finally we must make a comment on the absolute
cohomology which arises from g= b& ~P) &.

—According
to the general argument of BMP, we have, in addition to
g itself, the second member cpP+y, where y is deter-
mined by the equation M/= dy. Explicitly, this reads

Now we consider the remaining case where P+(r) =0
for some integer r and at the same time p =0. Physical
states for this case have come to be called "discrete
states. " We look at the do cohomology and define the
operator K„+ analogously to E + except without the term
involving P+(r). That is,

M$=2c &c,b, ~P)&=2c, P)~

=d a, P&, .
P+(1) (4.37)

Thus the second member of the absolute cohomology
takes the form

a „b„.1

„~p „P+(n) (4.30) cpb ]+ a ] ~P&,
2 +

P+(1) (4.38)

This operator satisfies the relation Idp, IC„+I =g DLo,

where 8 „ is the level-counting operator for the DLG
sector this time excluding the rth level, and it must van-
ish in order for dp cohomology to be nontrivial. Lpga=0
condition now reads

As mentioned previously, this is the only exception in
which the second member of absolute cohomology is not
given simply by appending the cp operator to a represen-
tative of d cohomology.

—,pf +8 +A' DLo
—1 —0 . (4.31) B. Physical operators

c, ~
P )

&
(ghost number 1), (4.33)

Since pf and g f are nonnegative, we see that g can
either be 1 or 0. Together with the vanishing of g D"
this means that r =+1 and only a level 1 excitation is
possibly allowed in the DLG sector. We now study these
cases separately.

r=1 case: When there is an excitation at level 1 in the
DLG sector, pf =0 and we find two types of do cohomol-
ogy represented by the following states:

(A+a+&+ A af &)~P)~ (ghost number 0), (4.32)

lim %(z,z ) ~0) =
~ g ),z~0

z —+0

(4.39)

where ~0) is the sl(2) invariant vacuum. However, in the
Minkowski cylinder coordinate we cannot directly use this
procedure. Thus we shall first develop a useful

Having obtained all the BRST nontrivial states, we
now wish to discuss the corresponding physical opera-
tors. It is well known that in the Euclidean plane coordi-
nate formulation a state ~g) corresponding to an opera-
tor V(z, z ) is given by
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machinery which allows us to convert between these two
types of formulations and then try to make use of the
simple correspondence (4.39).

Consider in Minkowski space the left conformal trans-
formation of a scalar field P with a background charge Q.
It is given by

[T„f(x+)]= [—e.(x )8 y(x+)+Qa, e(x+)], (4.40)

where

T —ye LM

e(x+ )
—=ge „e'""

(4.41)

(4.42)

+ inx+[L„,P(x ) ]=e'" —B+P+ Qn
l

(4.43)

dy+
P(y) =P(x) —

Q ln —Q ln
dx

(4.44)

Applying this result to the case of interest, namely,
+y+=z =e' (4.45)

y =z =e'"

we immediately get

This implies that for a finite transformation (including
the right transformation) given by y+=y+(x+),
y =y (x ), the field P transforms as

It is obvious from this relation that L„and L„both
satisfy the standard form of the Virasoro algebra.

Now the operator 0'(x+,x )M corresponding to a
given state ~t/i)M in Minkowski space can be found
through the following procedure: First get the corre-
sponding Euclidean state

~ g )E by ~ g )z =Vl '
~ g )M.

Then by the usual correspondence find the Euclidean
operator 0'(z, z)z. Finally, it is converted to the Min-
kowski operator by %(x+,x )M =VN'(z, z)zR . Since
the conversion is done by a similarity transformation,
conformal and BRST properties of the states and the
fields are guaranteed to be preserved.

In particular, all the physical operators corresponding
to the physical states obtained in the previous subsection
can easily be constructed. One thing we must be careful
about in this procedure, however, is that the normal or-
dering is properly defined for the independent fields P;
and not for 1i and y. Let us give an example at level 1 to
illustrate this point. Consider a state of the form
( A + a+, + A af, ) ~

P ) &, which is a physical state for
p, =p2= iQ, p—f=0. The corresponding operator in-
variant under the left BRST transformation is given by

c[A+ t(B+.e '. ):e '.—:e '.(8+.e ':)IQf1 2Q$2 2Qpl 2Q~2

(4.56)

where the symmetric normal ordering must be adopted.

(z,z) =P (x+,x )
—iQ(x++x ) —2Q ln(i),

(4.47)

qEP=qM iQVr, —

p =p iQ, —
(4.48)

(4.49)

EP M
CXn (4.50)

An alternative more useful way of effecting this transfor-
mation is to agree to use the same mode operators and re-
gard it as a similarity transformation. Specifically,

cyyEPey —1 yM

S'=eQ~eQ ~ .

(4.51)

(4.52)

It is not difficult to check explicitly that this operation
correctly converts the Virasoro generators. Namely,

L„=,':g a„a:+iQ—(n + 1)a„, (4.53)

eL, E'e-' =L,~n n (4.54)

L„=—,':g a„a:+iQna„+ 5„O .
2

(4.55)

where we have supplemented the superscript EP and M
to distinguish the Euclidean-plane and Minkowski fields.
By writing out the Fourier components, this means the
following identifications:

V. DISCUSSIONS

Starting from a definite model of dilaton gravity given
by the action Eq. (2.9), we have succeeded in its operator
quantization and analyzed the physical states and opera-
tors of the theory in the BRST framework. Our emphasis
throughout is the rigor of the analysis, trying to avoid as
much as possible any explicit or implicit assumptions and
preconceptions, which often obscure the validity of the
results obtained. This is particularly important for quan-
tum gravity since it possesses many features quite distinct
from ordinary quantum field theory.

The work we have performed in this article constitutes
the first stage of our intended investigation. The task of
extracting physical consequences of the model remains to
be undertaken. We now wish to list and analyze in some
detail the nature of the problems that lie ahead, which
would be invariably encountered in any attempt for exact
treatment of models of quantum gravity.

With the knowledge of the physical states and opera-
tors in hand, the obvious next step is to calculate the
"matrix elements" and interpret them physically. There
are a number of closely intertwined problems, both tech-
nical and conceptual, to be solved at this stage. The issue
centers around the interpretation of the "wave function, "
namely, the difficulty of interpreting it as a probability
amplitude. Perhaps the best attitude toward this problem
is to try to stick rigorously to the principle of quantum
mechanics and see what that leads to.

In our setting, the first specific problem to be solved is
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what inner product to be introduced in the space of
states. The canonical commutation relation alone does
not tell us the answer since we can have infinitely many
different representations of the Heisenberg algebra. In an
ordinary quantum field theory, this problem is settled by
demanding appropriate Hermiticity property for the
basic operators so that the physical observables have real
eigenvalues and that the Hamiltonian is bounded from
below. Clearly, this criterion cannot be applied directly
in quantum gravity. Let us nevertheless try to see how
far we can go along this line.

First we show that possible Hermiticity assignments
for the modes are severely restricted once we adopt the
usual assignments for the ghosts b and c, namely

(5.1)

The argument goes as follows. Consider a physical ma-
trix element of a BRST invariant operator 8:

( I phys & @
I
phys' & ) . (5.2)

Since this should be independent of the choice of the
representative of the cohomology, we must have

0=(Iphys&, edI4 &)

=(d'Iphys&, el* &), (5.3)

where d is the BRST operator. This means that d must
always annihilate physical states and hence we must re-
quire d~=const Xd. But since the part of d consisting of
ghosts alone is Hermitian, the constant above can only be
unity. This in turn dictates the Hermiticity property of
the Virasoro generator to be

L~=L (5.4)

In general this does not fix the Hermiticity property of a„
completely, but for the dilaton-Liouville sector it does.
The key is the presence of the background charge term
ign (a„' —a„) in L„, which is linear in the oscillator.
Since Q for our model is real, this leads to (a'„) =a' „
for n&0. Once the assignment for the nonzero mode is
fixed as above, the zero mode ao (and its conjugate)
should be taken to be Hermitian since (aoa„) =aoa
must hold.

This, however, still does not settle the question of the
inner product. As was first discussed in detail in [28] and
subsequently applied to the case of gravity in [29], there
are essentially two different realizations of the Heisenberg
algebra with the Hermiticity assignments deduced above.
The one that was argued to be relevant to quantum gravi-
ty is associated with the inner product with indefinite
norm, for which Herrnitian operators may have imagi-
nary eigenvalues. We believe that this is a point of ut-
most importance which captures the very characteristic
of gravity distinct from usual field theories.

In fact we can already see its relevance in our analysis
of physical states. First, we have seen that for the
discrete states with I'+(r) =0, the value of the zero mode
p

+ is imaginary. Furthermore, for states involving
matter excitations, it may be more relevant. RecaH the
Log=0 condition (4.21):

—,'(p, —pz)+ —,'pi+8' —1=0 . (5.5)

As will be discussed shortly, states containing matter
fields with finite momentum in the limit L —+~ must
have matter excitations at arbitrary high Virasoro levels.
From the condition above, this is possible only if p &

—p 2

can take arbitrary large negative values. There are
several ways of realizing this condition, including the one
with imaginary values for p s. After all, the equation
above should be expressing the energy balance between
the matter and the dilaton-Liouville sectors, characteris-
tic of a theory of gravity. Thus at the least, we must
carefully examine the appropriate choice of the inner
product in order to compute the matrix elements and to
make physical interpretation of them, including the ques-
tion of "unitarity" of the theory.

Deeply linked with the problem above is the question
of how to extract physics. To see what sort of averaged
spacetime configuration is associated with a given physi-
cal state, we must evaluate expectation values of some ap-
propriate operators in such a state. BRST invariant
operators are certainly preferred, but it is not an easy
task to find such operators of direct physical significance.
Another possibility is to devise a way to completely fix
the gauge freedom within the conformal gauge and try to
evaluate an operator, such as the metric, which allows for
more direct interpretation. Preliminary investigation in-
dicates that this attempt also requires some ingenuity to
be successful.

At this juncture, let us make a brief remark on an im-
portant point which should be kept in mind when one
tries to deal with a "quantum black hole" in two dimen-
sions. It has to do with the notion of asymptotic fatness
and that of the "mass" of the black hole. In semiclassical
treatment, one first identifies a classical black hole
configuration and then finds the Hawking radiation emit-
ted into the asymptotically Hat region of such a back-
ground, with subsequent modification of the metric due
to the radiation itself, i.e., the back reaction. This
sequential procedure can no longer be applied in an exact
treatment such as the one we have been pursuing. The
metric, the dilaton, and the matter degrees of freedom are
inherently intertwined and especially in one spatial di-
mension, where the radiation does not disperse, there
cannot be an asymptotically Hat region. This is already
indicated in the form of a physical state with matter exci-
tation discussed in the previous section. Such a state is
necessarily accompanied by excitations in the dilaton-
Liouville sector. This would make the identification of
the black hole "mass" even more difticult.

Finally, let us discuss the question of the large L limit.
The problems described so far can be posed already for
the case of the universe with finite size L. If, however,
one wishes to study what happens in the L —+~ limit,
one must face a further technical problem. As was
remarked at the beginning of Sec. IV, the structure of the
physical states of our model is very similar to that of a
critical closed string theory. However, its interpretation
is quite different. The p's should be interpreted only as a
set of variables describing the zero modes of the theory
and not as physical momenta. The actual momenta are
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discretized in the units of 1/L and are associated with
higher Virasoro levels. Consequently, in the limit of
large L, states carrying finite physical momenta corre-
spond in string language to excited states at arbitrary
high Virasoro levels. Moreover, as we have seen already
in the analysis of classical solutions, large degeneracy is
inevitable in this "infrared" limit. Bumpy structures
which may be seen in a finite universe can be artifacts to
be flattened away as L is taken to infinity. Although we
believe that a lot of physics should be extractable for a
finite universe, we must keep this difhculty in mind and
try to develop some clever means to deal with it.

Although undoubtedly quite challenging as they are,
the problems described above are all extremely intriguing
and worth pursuing. They are presently under investiga-
tion and we hope to be able to report our progress else-
where.

While preparing the manuscript, we received a pre-
print [30] which deals with a model similar to ours with
24 matter scalars. The treatment of the model, especially
the boundary condition, is however different from ours.
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APPENDIX A

In this appendix, we list some useful Poisson brackets
needed for the calculation of jy(x), AB (y) j discussed in
Sec. III A.

As remarked in the text, one needs to carefully take
into account the fact that the quantity e, which specifies
the boundary conditions for A(x+) and B(x ), is a
function of P&. From its form a=exp(P&/2), we derive

jy(x), aj = jgx, e "
j
=—,'a,

jg(x), C(a) j
= —,'a C(a) = —

—,'C(a) &a+
c)a ' V'a

jy(x), E (or —o') j = ,'e(cr —o')E (—o—o'), .

jy(x), E(r (ay —o")j
='—4e(cry —o—")E(r (o y

cr")—.

Using these formulas as well as Eqs. (3.20)—(3.23) in the
text, we obtain the following basic Poisson brackets eval-
uated at equal time:

jy(cr ), A(o )jET= A(cr ) ——,'C(a)A(o )E» (cr„crz)———'A(cr )e(o„cr )—,4

jy(cr„), A(o )jET= A(o ) ——,'A(oy)e(cr„—oy),
4m

jj(cr„),A'(cr ) jET= ——2C(a)A(cr„)E&r (cr„—oz),

jy(o ), A(cr )jET= —
—,'A(cr„)5(cr —o. ),

jy(cr ),8(cr )jET= — 8(o„)——,'C(a)E, & (o~ —o. )8(o„)+—,'8(crr)E(cr —crr),
4~

jg(o.„),8(o~) jET= — B(o )+ ,'B(cr )e(cr —o—),

jg(a ),8(or)jzT= —2C(a)E» (o —o )B(o ),

jy(a ),8(cry)jFT= —
—,'8(cr )5(cr„—or) .

Combining this equations it is now straightforward to get

jg(cr ), AB(cr )]ET=—
—,'C(a)[A(cr„)E, & (cr„cr~)8(o~)+A—(cr )E,& (o~ —o. )B(o )],

jg(cr„), AB(cr )]ET=—
—,'C(a)[A (cr, )E,&

(o'„—o~)8(o~)+A(o )E,& (o~ —cr, )8(o, )],

jg(o„),c), ( AB)(cr ) ]ET= —
—,'C(a)[A (o„)E&& (cr„—cr )B(o )+ A(cr )E&& (o—cr„)8(o )],.

jj(cr ) c), ( A'B)(cry ) j ET=,'5(o' cry )c), ( AB)(cry )

—
—,'C(a)[A(o„)E,&

(o„—or )8(o„)+A (o~)E,& (cr~ —o„)8(cr„)].
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Notice that these expressions are all symmetric with
respect to the interchange x~y. Therefore the combina-
tion

{y(o ), AB(o~)I ET
—{y(cr ), AB(o )IET

and the time derivatives thereof (at most one each for x
and y) all vanish.

APPENDIX B

In this appendix, we shall supply the arguments needed
to justify the result (4.24) and (4.25) in Sec. IV A of the
text.

First we prove that the solution of (4.22) is given by

Wi= —&DL'oK+di4p .

For this to be correct, we must show that K +g, =0.
Noting that K+ is a level zero operator in the DLG sec-
tor and hence commutes with 8 DL'o, we get

K f, — K8' DL—oK d, fp

+ DLo(K ) did p

This indeed vanishes because (K ) =0.
Next we prove the important property that d21t, =0

holds. Since d2 and 8' DL'o again commute, we have

ding,

= d—zP DL'GK+d, Pp

+ DLGd2K d

leap

8 DLo {d 2 K I d 1 1t'p +8 DLoK
+d p d t gp

~" DLG X +— + dll p
A —i p + +

~p P (n)
—8 DL'oK+d, d21(p=0,

where we used the fact that d, gp does not contain any
a „and hence gets annihilated by a„+.

We now go to the next step. Form 1tp+g, and act d on
it. Because dzft=0, we get d(gp+1tt)=dt1tt. Again
from the general argument this state must be do exact
and we look for a state gz of degree 2 such that
d, f& = dpf2. —It is clear that we can repeat the previous
procedure and find a solution

P2 + DLoK dt's 1

In order for this process to terminate, we must show that
there exists the maximum degree. This is easy to prove
once we note that all the degrees are carried only by the
oscillators in the DLG sector. (In the construction
above, the degree is carried solely by a+„'s.) Thus every
time the degree is raised by 1, the Virasoro level of the
DLG sector is increased at least by one unit. But since
the total Virasoro level, including the matter sector, must
stay constant, namely at X, it means that at every step,
the level in the matter sector is decreased by at least one
unit. Thus, after at most X steps, the process terminates.
In this way we have the general solution (4.24) and (4.25)
for the relative cohomology.
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